4 The other inverse trig functions. 5 Miscellaneous problems. Mark R. Woodard (
Furman U). §7.6–The inverse trigonometric functions. Fall 2010. 2 / 11 ...
§7.6–The inverse trigonometric functions Mark R. Woodard Furman U
Fall 2010
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
1 / 11
Outline
1
The inverse sine function
2
The inverse cosine function
3
The inverse tangent function
4
The other inverse trig functions
5
Miscellaneous problems
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
2 / 11
The inverse sine function
Definition
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
3 / 11
The inverse sine function
Definition The sine function is one-to-one on [−π/2, π/2] and has range [−1, 1] on this domain.
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
3 / 11
The inverse sine function
Definition The sine function is one-to-one on [−π/2, π/2] and has range [−1, 1] on this domain. We define sin−1 to be the inverse of sine on this domain. It follows that sin−1 has domain [−1, 1] and range [−π/2, π/2].
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
3 / 11
The inverse sine function
Definition The sine function is one-to-one on [−π/2, π/2] and has range [−1, 1] on this domain. We define sin−1 to be the inverse of sine on this domain. It follows that sin−1 has domain [−1, 1] and range [−π/2, π/2].
Cancellation equations Because of these restrictions, we must be a little careful with the inverse relationships: sin sin−1 (x) = x − 1 ≤ x ≤ 1 sin−1 sin(x) = x − π/2 ≤ x ≤ π/2
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
3 / 11
The inverse sine function
Problem Evaluate the following:
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
4 / 11
The inverse sine function
Problem Evaluate the following: sin sin−1 (.3)
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
4 / 11
The inverse sine function
Problem Evaluate the following: sin sin−1 (.3) sin−1 sin(14π/3) .
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
4 / 11
The inverse sine function
Problem Evaluate the following: sin sin−1 (.3) sin−1 sin(14π/3) .
Problem Find cos 2 sin−1 (1/4) .
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
4 / 11
The inverse sine function
Problem Evaluate the following: sin sin−1 (.3) sin−1 sin(14π/3) .
Problem Find cos 2 sin−1 (1/4) .
Problem Evaluate cos sin−1 (x) .
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
4 / 11
The inverse sine function
Problem Evaluate the following: sin sin−1 (.3) sin−1 sin(14π/3) .
Problem Find cos 2 sin−1 (1/4) .
Problem Evaluate cos sin−1 (x) .
Solution
√ Let θ = sin−1 (x). Then cos(θ) = ± 1 − x 2 . Since cosine is nonnegative √ −1 for θ ∈ [−π/2, π/2], it follows that cos(sin (x)) = 1 − x 2 . Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
4 / 11
The inverse sine function
Theorem Dx sin−1 (x) = √
Mark R. Woodard (Furman U)
1 . 1 − x2
§7.6–The inverse trigonometric functions
Fall 2010
5 / 11
The inverse sine function
Theorem Dx sin−1 (x) = √
1 . 1 − x2
Proof.
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
5 / 11
The inverse sine function
Theorem Dx sin−1 (x) = √
1 . 1 − x2
Proof. Let y = sin−1 (x).
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
5 / 11
The inverse sine function
Theorem Dx sin−1 (x) = √
1 . 1 − x2
Proof. Let y = sin−1 (x). Then sin(y ) = x. By the chain rule, cos(y )y 0 = 1 hence y 0 =
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
1 cos(y ) .
Fall 2010
5 / 11
The inverse sine function
Theorem Dx sin−1 (x) = √
1 . 1 − x2
Proof. Let y = sin−1 (x). Then sin(y ) = x. By the chain rule, cos(y )y 0 = 1 hence y 0 = √ However, cos(y ) = 1 − x 2 , which gives the desired result.
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
1 cos(y ) .
Fall 2010
5 / 11
The inverse sine function
Theorem Dx sin−1 (x) = √
1 . 1 − x2
Proof. Let y = sin−1 (x). Then sin(y ) = x. By the chain rule, cos(y )y 0 = 1 hence y 0 = √ However, cos(y ) = 1 − x 2 , which gives the desired result.
1 cos(y ) .
Problem Find the derivative of y = x sin−1 (x 2 ).
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
5 / 11
The inverse cosine function
Definition
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
6 / 11
The inverse cosine function
Definition The cosine function is one-to-one on the interval [0, π] and has range [−1, 1] on that domain.
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
6 / 11
The inverse cosine function
Definition The cosine function is one-to-one on the interval [0, π] and has range [−1, 1] on that domain. Let cos−1 denote the inverse of the cosine function restricted to the domain [0, π]. Thus the domain of cos−1 is [−1, 1] and its range is [0, π].
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
6 / 11
The inverse cosine function
Definition The cosine function is one-to-one on the interval [0, π] and has range [−1, 1] on that domain. Let cos−1 denote the inverse of the cosine function restricted to the domain [0, π]. Thus the domain of cos−1 is [−1, 1] and its range is [0, π].
The cancellation equations cos cos−1 (x) = x cos−1 cos(x) = x
Mark R. Woodard (Furman U)
−1≤x ≤1 0≤x ≤π
§7.6–The inverse trigonometric functions
Fall 2010
6 / 11
The inverse cosine function
Problem
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
7 / 11
The inverse cosine function
Problem Evaluate cos−1 cos(14π/3)
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
7 / 11
The inverse cosine function
Problem Evaluate cos−1 cos(14π/3) √ Show that sin cos−1 (x) = 1 − x 2
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
7 / 11
The inverse cosine function
Problem Evaluate cos−1 cos(14π/3) √ Show that sin cos−1 (x) = 1 − x 2
Theorem Dx cos−1 (x) = − √
Mark R. Woodard (Furman U)
1 1 − x2
§7.6–The inverse trigonometric functions
Fall 2010
7 / 11
The inverse cosine function
Problem Evaluate cos−1 cos(14π/3) √ Show that sin cos−1 (x) = 1 − x 2
Theorem Dx cos−1 (x) = − √
1 1 − x2
Proof. Let y = cos−1 (x). Then cos(y ) = x and, by taking derivatives, √ 0 = 1; hence y 0 = −1/ sin(y ). Since sin(y ) = − sin(y )y √ 1 − x 2, 0 2 y = −1/ 1 − x , as was to be shown.
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
7 / 11
The inverse tangent function
Definition
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
8 / 11
The inverse tangent function
Definition The tangent is one-to-one on the interval (−π/2, π/2) and has range (−∞, ∞) on this domain.
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
8 / 11
The inverse tangent function
Definition The tangent is one-to-one on the interval (−π/2, π/2) and has range (−∞, ∞) on this domain. Let tan−1 be the inverse of the tangent function on this restricted domain. Thus the domain of tan−1 is (−∞, ∞) and its range is (−π/2, π/2).
Mark R. Woodard (Furman U)
§7.6–The inverse trigonometric functions
Fall 2010
8 / 11
The inverse tangent function
Definition The tangent is one-to-one on the interval (−π/2, π/2) and has range (−∞, ∞) on this domain. Let tan−1 be the inverse of the tangent function on this restricted domain. Thus the domain of tan−1 is (−∞, ∞) and its range is (−π/2, π/2).
The cancellation equations tan tan−1 (x) = x tan−1 tan(x) = x
Mark R. Woodard (Furman U)
−∞