A comparison of two global optimization algorithms for ...

3 downloads 291 Views 246KB Size Report
engine in order to minimize the fuel consumption and/or pollutants emissions. ... The second class deals with global optimization algorithms. They are ..... a simple dichotic search. As an illustration ... An optimization software called KOALA ...
)

, " 0

/

/

>

+

,

E 9

" "

$

( F "

F

,,

GD&H

, ,

!" # $

%

G1H I *

& '"

"

, ( +

#

)

"

*

,

,

"

*

" J "

" !.C

"

" ! # $ %

K ,

"

&%'( ) "

*

,

+

"

!

)

,

" ,

)

;

"

. $

#

L G4H GDDH , "

AA M

.( "

A +

M

N

O . A

"

-P

"

/

* 2. . " ( > ) / !+ $ + + / (

)

$. J ) >

2 / &D ) ; . /$

/ 0 + ; / 0 @) + C "

. /$ ( .

." . .8 2

2-45461 7 * +A * @ / B1&% " C . .8 %5 2

* .

2 1 )" 9 :

2

3

?)+ ! $? ! ( ? + ! 15 &D& : ? 7)? P + U) ηρ ρ

ω

; >

F

,

+

ω

,

( ( ) ω ( ))

ω

2

∈ [%

"

" ;

"

] $

-2

*

( ,

-

3/

"

; *

=

9

ω () () ω ( )= = ( ( )) ( ( )) ρ ( ) = η ( ( )) ( ( ) + ρ η ω

7

$D(

( ))

−D ( ) ( ) =%

I

( () () )

*

"

()

$&(

ω ≤ω $ (≤ω

$T(

%≤

$(≤

*

() "

ω

$D(-$ (

() "

()

I

"

( ( ) ( ) )∆ ( () () )

$ + D( = $ ( +

$4(

ω

E(

*

()

$1(

( ) ≤ (ω ( ) ) "

()

(ω ( ) )

$5(

()

"

( )≤ω

# 9

$

( () () )

9

(ω ( ) ) ≤

"

( ( ) ( ) )⋅∆

ω

$ (

*

%≤ω

(ω ( ) )



$&(-$4(

I

.

() − ρ ⋅η ( ( ))

9

F

7



$6(

$T(

( )∈ ( ) I ()

F

η

9

( ) ) ≤ ( ) ≤ ′( ( ) ) () ′( ( ) )= F % − ρ ⋅η ρ ⋅ ( ω ( ) ) η ⋅ ( ( ))

" F

$4(

′(

&6;I

F &1; "

()

()

$D(

,

DT%; E

$ ( ω

;

() ()

" 9

11;I

()

()

*

F

-

ω

"

P/) P R ) .+ . $) + S @. ( ." A

$

(

$D%( " "

(ω ( ) ( ) ) ( ( ) ( ))

( ( ) ( ))

"

( ( ) ( ) ) −λ





()



" $D($5(

( )=

′(

)

"

∀=%

( ( ) ( ))

$D6(

"

−D

*

λ ( %)

,

λ ( %)

"

F

$D6(

()



( () () )

$ ( ,

( ( ) ( ) ) =%



(%) ⋅

F

*

! "

" "

( ) = (%) + ∆

9

$DD(



I

" ∆

)

"

=%

( ) − (%) = (λ (%))

∆ =

"

λ ( %)

F

,

( λ (%))

9

( ( ) ( ) )∆

( ) ( ) =%



$D (

( ( ) ( )) ∈ Ω ( ) = (%) + ∆



I

"

( ( ) ( ))

=%

? G1H !

*

-7

-

GD%H $

E (

0

torques

$D%(

λ(

=%

−λ (

: ( ( ) ( ) )∆ )(

∂ ∂

= % ⇔ $ + D( = $ ( +

)

)

$D&(

( ( ) ( ) ) ∆ )
V F9 #$ ! &!$! *' $) & $#$! 2 &# ! #$ ... " " 1& & + %%T GBH 2 ,> 2 V+ 7 '(#5 ) ("& $%( ) ( ) ( ) # #)6" %1* " *' $) #$0" &!$! 5 G5H V ! ) U 9 ,% "# #$!# ' #* * $* ) 7##$! # ! 7 J $. ( P / / / O%%% / ) P E/ , &4&-&45 GD%H V / 7&&$ * ('(#1 !#0" ) 6 &# (!# )" ) ( # #) 61! $!# ) () (# )61 $ ) %1* " (*' $) (P . / %%T GDDH V / 7V 27 7+ * ! $!# $' !! # ! ( $*' $) % * (.C/ D ) %%1 + GD H V / + 7V 27 8 ! &# 4!# $' ! ! # !( *' $) % * ( "( )' ! &$ $! VC C &5 T %%1 GD&H ) C C 9 ,, " .?." + %%T

Suggest Documents