A MODULAR TRANSFORMATION FOR A ...

3 downloads 0 Views 148KB Size Report
We are thus able to unify and extend several modular transformations in lit- ... M. S. Mahadeva Naika and J. H. Han General Modular Transformations for Theta.
A MODULAR TRANSFORMATION FOR A GENERALIZED THETA FUNCTION WITH MULTIPLE PARAMETERS S. BHARGAVA, M. S. MAHADEVA NAIKA AND M. C. MAHESHKUMAR

Abstract. We obtain a modular transformation for the theta function ∞ ∞ X X

q a(m

2

+mn)+cn2 +λm+µn+ν

ζ Am+Bn z Cm+Dn .

−∞ −∞

We are thus able to unify and extend several modular transformations in literature.

References [1] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson, Chapter 16 of Ramanujan’s Second Notebook, Theta functions and q-series, Mem. Am. Math. Soc. 53, no. 315(1985), American Mathematical Society, Providence, 1985. [2] C. Adiga, M. S. Mahadeva Naika and J. H. Han General Modular Transformations for Theta Functions, Indian J. Math., Vol. 49 (2) (2007), 239-251. [3] H. F. Baker, An Introduction to the Theory of Multiply Periodic Functions, Cambridge University Press, (1907). [4] R. Bellmen, A Brief Introduction to the theta functions, Holt, Rinehart and Winston, (1961). [5] S. Bhargava, Unification of the Cubic Analogues of Jacobian Theta Functions, J. Math. Anal. Appl. 193(1995), 543−558. [6] S. Bhargava and N. Anitha, A Triple Product Identity for the three − parameter Cubic Theta Function, Indian Journal of Pure and Applied Math. 36(9)(2005), 471−479. [7] S. Bhargava and S. N. Fathima, Unification of Modular Transformations for Cubic Theta Functions, New Zealand J. Mathematics, 33(2004), 121−127. [8] J. M. Borwein and P. B. Borwein, A Cubic Counterpart of Jacobi’s Identity and the AGM, Trans. Amer. Math. Soc. 323(1991), 691−701. [9] S. Cooper, Cubic Theta Functions, J. Computational and Applied Math. 160(2003), 77−94. [10] E. Hecke, Mathematische Werks, G¨ ottingen: Vordenhoeck und Ruprecht, 1959. [11] E. Hecke, Dirichlet Series, Modular Functions and Quadratic Forms, Princeton: The Institute for Advanced Studies, 1938. 2000 Mathematics Subject Classification. Primary 33E05, Secondary 05A30, 33D15. Key words and phrases. Cubic Theta function, Modular transformation. This paper was typeset using AMS-LATEX. 1

2

S. BHARGAVA, M. S. MAHADEVA NAIKA AND M. C. MAHESHKUMAR

[12] M. D. Hirschhorn, F. G. Garvan and J. M. Borwein, Cubic Analogues of the Jacobian Theta Function θ(z, q), Canadian J. 45(1993), 673−694. ¨ ber die analytische Theorie der quadratischen Formen, Ann. Math., 36 (1935), [13] C. L. Siegel, U 527. [14] C. L. Siegel, Indefinite quadratische Formen und Funktionentheorie, I, Math. Ann., 124 (1951), 17; II, 364.

(S. BHARGAVA) Department of studies in Mathematics, University of Mysore, Manasagangotri, Mysore-570 006, INDIA. E-mail address: [email protected] (M. S. MAHADEVA NAIKA AND M. C. MAHESHKUMAR) Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 001, INDIA E-mail address: [email protected], [email protected]