A New Heuristic for the Sum Coloring Problem ½ Introduction

0 downloads 0 Views 165KB Size Report
E = E − Edgestar(NodeStar(r)). The reduced problem has the same shape precisely that the original, while replacing the graph G = (V,E) by the graph G = (V ,E ).
               

          

        

                          !"!      

  #     # 



                    

     

        

                

     

     

    !                

"

     #                     "           $       

     !" #$  % "$!$ &'(% %       &'()  

  

         *   %     *   %        +    , -.  *          %                                         /01 /21          3    4                    4     +     4   5  *  %     % 5           6       * 4          &  )         %        %   &  )      %  7   *     8 /!1          *       6    *            &  ) * *    %  

2!00

     

     

+                 

          /1 /$1 /91    : %    ;           3       

     / ⎧ ⎪ ⎨

max ct .x (IP ) ⎪ A.x ≤ b ⎩ x ∈ {0, 1}n

6 x = (x1 , ...., xn)t c = (c1 , ...., cn)t  b = (b1 , ...., bm )t A = ai,j   1 ≤ i ≤ m  1 ≤ j ≤ n +    %     > ⎧ ⎪ ⎨

max ct .x (SC) w t .A.x ≤ w t b ⎪ ⎩ x ∈ {0, 1}n

6  w = (w1, ...., wm)t ≥ 0

   

      G = (V, E)     S ⊆ V    *   7  +    %             +          

             ?     +      3                      /!!1  (                %    6       G = (V, E) * V = {1, ..., n}            @           % i ∈ V * > Nodestar(i) = {j : {i, j} ∈ E} di = card(N odestar(i)) d0 = |E| =

   

2!02

          

+              %          xi   % i ∈ V  * xi = 1       %     4        +       %     *      > ⎧  max x0 = (xi : i ∈ V ) (IP ) ⎪ xi + xj ≤ 1, {i, j} ∈ E ⎩ xi binary, i ∈ V ⎪ ⎨

+    54         & ) *                                        & ) * 4          4   *> 

(di xi : i ∈ V ) ≤ d0

+         & ) > ⎧  ⎪ x0 = (xi : i ∈ ⎨ max  (di xi : i ∈ V ) ≤ d0 (SC) ⎪ ⎩

V)

xi binary, i ∈ V

    

6        5    (≤)   & ) %  h ∈ H &    xi    *   *   dhi ≥ 0)  *    > 

(dhi xi : i ∈ V ) ≤ dh0

+     * wh           % > 

( (dhi : i ∈ V ) − dh0 ) wh = dh0

     & )  *   5 !       3                       

         :               &)        xr      5  &    %3  )   7              A  +     xr 4   !               

2!0

     

  A    7      5 !   

 xr       *   > dr = min(di )

   4 

 r ∈ V 4 Nodestar(r) = min(Nodestar(i) : i ∈ V )   xr = 1 

      !

+  xr = 1     & ) 5 xj = 0      xj   xr + xj ≤ 1 +        & )  *                *      *      V     E   % 4   *> V  = V − Nodestar(r) E = E − Edgestar(NodeStar(r)) 

+            *    G = (V, E)   G = (V , E )   *            *  > di = di − |N odestar(i) ∩ Nodestar(r)| d0 = d0 − Sizestar(Nodestar(r))

) *+, - %

! + di  A      0 ; i = 1  V  = V  2    : & ) j > i   {i, j} ∈ E  j ∈ V  &)    % 7 %         & )   % 7 %     % 7   V   ; i = min{q : q > i et q ∈ V }  i    %      & %)  %  V    > V   *    :   B *  i := i      0

 ! "         #

 w      

       -    G = (V, E) *   w = (w1 , ...., wm)t *  m = d0 &     ) 6 % :    *  >

2!0$

          

" #  

; &)     %     & )   * 

    xr = 1   %  j ∈ Nodestar(r)  1 ≤ k ≤ m   ak,j = 1  wk = 0    1 ≤ j ≤ n   1 ≤ k ≤ m " 

  xr = 1  j ∈   &) *  mk=1 a = dj &       m k,j t     % 7) *  w .A.x = l=1 wl .al,1.x1 +...+ml=1 wl.al,n .xn&C) +   xr = 1  xj = 0 +       7 *      *     k ∈ {1, ..., m}  ak,j = 1 *    3   & )      &C)    *   wk = 0 "

# $

+    &)          > di =



wk =0 (ak,i )

 d0 =



wk =0

wk

     *      *             %       %&'

! 0 2 

; w = (1, ...., 1)t  V  = ∅          wA = w =0(ak,.) ( i = index(min(wA) : (wA)i = 0)  xi = 1  V  = V  ∪ {i}    j ∈ ,  &)  ak,j = 1  wk = 0  mk=1 wk = 0   B *     0

"" (  #  

k

6            &'() *      ( /!!1   4   +4  /!01 +            >              6   ?              B;B "0    '    &         

2!09

     

   /!1) +             +  !      *               d0  *    dm  %  +  XS  XF  XDBG       %        4   (       &'() % 



d0

dm

XS

XF

XDBG



&'(

')*+

*,'

(-

(-

(-



(+

'.)*

*-/

'/

'*

'/

)&

*,/

&&-

&&/.*

'-+

'-+

'-+

))

*.&

)/&--

(/,&

)/&

).(

)/&

)'

*).

&&/.*

(/((

)'(

)'(

)'(

 #

+*

/'(

'-&

)+

)+

)+

&

(/*

&',/,

&(+-+

.//

./&

.//

)

/*.

',).

&',+,

'/.

'.&

'/.

'

/)&

',+'

&',/,

'/-

'/-

'/-

0 

(-

&*/

).*

'(

'(

'(

1 &

)&&

)-

*&--

&)-

&)-

&)-

1 )

)&&

)'/

'.*&

&)+

&))

&)+

1 '

)-/

//./

'.*-

&)'

&)'

&)'

&23  .

)()

')*+

,.

2

&),

&'(

'23  *

*-.

'.)*

(*

2

&.)

&,'

)2  *

&*,

.*&

'+

2

/(

+*

'2  '

./

&&-

&&

2

)'

)+

*2  '

+,

)/&--

&'

2

'+

',

 &)-

&)-

/'(

&'

2

&+

))

 &

&,+

',).

&)&

2

&--

&--

 .

&(/

',+'

&.,

2

(+

((

 & 2 4  5  

$       %& ; G = (V, E)        &  )   , -.  &  )     :          v∈V c(v)        (G) = minc v∈V c(v) +            (     &  )       (    &() +         (      X1 , X2, ..., Xk    4-       Xi     1 ≤ i ≤ k   (G) = i∈(1,...,k) i.card(Xi ) *  card(X1 ) ≥ card(X2 ) ≥ .... ≥ card(Xk ) )      

+      3         

     +   *  3   

2!0


- ! 0 2  $

6 V = ∅  &'()   %   V  

4 V = V \V       V  7    *  0 @ *

) #  

B                    * * %  0""0 !9 (. &0 D)  !(   6   ?     '    /!1 +         +  0      *                      χ(G)   *    LBth  UBkok          s(G)kok  /!21 (G)      &  )  s(G)      (       

(G)

% 





χ(G)

LBth

U Bkok

s(G)kok

 #

+*

/-)

&&

&),

)*'

&&

)*'

6 //

'/

.(-

+

.+

&'(

(

&'(

(

 ).-

&)(

'(+

(

&./

'*+

(

'*'

&-

% &&

 .--

&)(

&&+-

)-

'&(

+/)

)-

+..

))

 &)-

&)-

&)+/

,

&./

*/-

,

**/

,

$  '

&&

)-

*

&+

)&

*

)&

*

$  *

)'

+&

.

''

*.

.

*.

.

$  .

*+

)'/

/

/)

,'

/

,'

/

$  /

,.

+..

+

&&/

&(,

+

&(,

+

$  +

&,&

)'/-

(

)&,

'()

(

'(&

(

 ) 2              7848 -+9

'          *        &'()        %     %    +            %            &  ) B    *             8   

 5     

2!0=

     

(   /!1  3 -,      .   .  + +> B      '              !"&0)> !=2-0"0 &!EE=) /01   +     (      . &!EE)    3        %    B    F  0> $ =9"-=
2!0E

/!21 G * L 4 4  L3 3  L*  B       *         ,,(J"

Suggest Documents