Advanced Machine Learning for classification of EEG ...

0 downloads 0 Views 94KB Size Report
biomarker. J. Marin1, A. Soria-Frisch1, D. Ibañez1, S. Dunne1, C. Grau1, G. Ruffini1, J. Rodrigues-Brazète2,3, ... Khodayari-‐Rostamabad, Ahmad, Gary M. Hasey, Duncan J. MacCrimmon, James P. Reilly, and. Hubert de Bruin (2010). "A pilot ...
Advanced Machine Learning for classification of EEG traits as Parkinson’s biomarker J. Marin1, A. Soria-Frisch1, D. Ibañez1, S. Dunne1, C. Grau1, G. Ruffini1, J. Rodrigues-Brazète2,3, R. Postuma2,3, J.-F. Gagnon2,3, J. Montplaisir2,3, A. Pascual-Leone4 1 Starlab Barcelona SL, Barcelona, Spain 2 Centre d'Études Avancées en Médecine du Sommeil, Hopital du Sacre-Coeur, Montreal, Canada 3 Department of Psychiatry, Université de Montréal, Canada 4 Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA  

Abstract     We  aim  to  develop  non-­‐invasive,  low-­‐cost  preclinical  markers  for  synucleinopathies  (Parkinson’s   Disease  -­‐  PD  or    Dementia  with  Lewy  Bodies  -­‐  DLB)  with  impact  on  neuroprotection.  In  a  first  stage   we  have  applied  Machine  Learning  techniques  to  the  analysis  of  the  spontaneous,  waking  EEG  of   REM  Sleep  Behavior  Disorder  (RBD)  patients.  We  know  that  patients  with  RBD  may  evolve  towards   PD  and  other  synucleinopathies  (i.e.  DLB)  providing  a  useful  guide  in  the  search  for  biomarkers.   EEG  has  proven  to  be  sensitive  to  brain  alterations  related  to  both  RBD  and  PD  patients,  and  it  is   known  that  patients  with  either  RBD  or  de  novo  PD  without  obvious  cognitive  alterations  show   similar  EEG/MEG  alterations  (mainly  slowing  of  the  EEG)  while  awake.   In  the  work  described  herein  we  achieve  the  classification  of  patients  according  to  their  ultimate   diagnosis,  differentiating  among  different  patient  groups.  We  have  analyzed  EEG  data  from  a   study  of  RBD  patients  at  the  Center  for  Advanced  Research  in  Sleep  Medicine  of  Montréal.  The   EEG  was  recorded  from  8  patients  who  years  later  evolved  to  PD,  8  patients  who  later  evolved  to   LBD,  10  patients  with  RBD  who  did  not  convert,  and  17  healthy  controls.  It  is  worth  mentioning   that  80%  of  the  PD  and  DLB  patients  developed  disease  at  a  follow-­‐up  of  8  years.     Support  Vector  Machines  were  applied  to  different  feature  types.  Absolute  Band  Power  features   extracted  each  4  seconds  outperform  the  other  ones.  After  non-­‐parametric  feature  selection  of   the  5  most  discriminative  channel-­‐band  combinations,  classification  was  applied.  A  procedure  for   performance  estimation  close  to  operational  conditions,  which  is  denoted  as  leave-­‐pair-­‐subjects-­‐ out,  has  been  employed  for  evaluation  of  the  implemented  system.  Excellent  performance  levels,   AUC  93.75-­‐99%,  were  obtained  for  all  realized  group  comparisons.     In  conclusion,  we  believe  that  these  results  support  the  idea  that  classification  of  EEG  shows  great   potential  as  a  preclinical  biomarker.  Our  results  confirm  the  existent  literature,  where  EEG  slowing   characterizes  RBD  and  PD/DLB  patients.  Furthermore  we  have  attained  this  characterization  at  the   individual  subject  level  for  the  first  time  by  employing  machine  learning.  Given  that  EEG  was   acquired  8  years  before  disease  development  in  a  majority  of  cases,  we  believe  that  the  utilization   of  the  developed  system  for  conversion  prognosis  of  synucleinopathies  (PD  or  DLB)  will  have  real   impact  on  both  early  treatment  and  drug  development.        

Keywords   Parkinson’s  biomarkers,  machine  learning,  neuroprotection   References   N.   Japkowicz   and   M.   Shah   (2011).   “Evaluating   Learning   Algorithms:   A   classification   perspective”,   Cambridge  University  Press     Livia  Fantini,  M.,  Gagnon,  J.  F.,  Petit,  D.,  Rompré,  S.,  Décary,  A.,  Carrier,  J.,  &  Montplaisir,  J.  (2003).   Slowing   of   electroencephalogram   in   rapid   eye   movement   sleep   behavior   disorder.   Annals   of   neurology,  53(6),  774-­‐780.   Iranzo,  A.,  Isetta,  V.,  Molinuevo,  J.  L.,  Serradell,  M.,  Navajas,  D.,  Farre,  R.,  &  Santamaria,  J.  (2010).   Electroencephalographic   slowing   heralds   mild   cognitive   impairment   in   idiopathic   REM   sleep   behavior  disorder.  Sleep  medicine,  11(6),  534-­‐539.   Liang,   Sheng-­‐Fu,   Hsu-­‐Chuan   Wang,   and   Wan-­‐Lin   Chang   (2010).   "Combination   of   EEG   complexity   and  spectral  analysis  for  epilepsy  diagnosis  and  seizure  detection."  EURASIP  Journal  on  Advances   in  Signal  Processing  2010  :  62.   Chaovalitwongse,   Wanpracha   Art,   Rebecca   S.   Pottenger,   Shouyi   Wang,   Ya-­‐Ju   Fan,   and   Leon   D.   Iasemidis  (2011).  "Pattern-­‐and  Network-­‐Based  Classification  Techniques  for  Multichannel  Medical   Data   Signals   to   Improve   Brain   Diagnosis."   Systems,   Man   and   Cybernetics,   Part   A:   Systems   and   Humans,  IEEE  Transactions  on  41,  no.  5  :  977-­‐988.   Khodayari-­‐Rostamabad,   Ahmad,   Gary   M.   Hasey,   Duncan   J.   MacCrimmon,   James   P.   Reilly,   and   Hubert   de   Bruin   (2010).   "A   pilot   study   to   determine   whether   machine   learning   methodologies   using  pre-­‐  treatment  electroencephalography  can  predict  the  symptomatic  response  to  clozapine   therapy."  Clinical  Neurophysiology  121,  no.  12  :  1998-­‐2006.   A.   Airola;   T.   Pahikkala,   W.   Waegeman,   B.   De   Baets,   and   T.   Salakoski.   “A   comparison   of   AUC   estimators   in   small-­‐sample   studies”,   Journal   of   Machine   Learning   Research   -­‐   Proceedings   Track,   8,   3  –  13  (2010)   Fawcett,   T.   (2004).   ROC   graphs:   Notes   and   practical   considerations   for   researchers.   Machine   learning,  31,  1-­‐38.   J.   A.   Hanley   and   B.   J.   McNeil   (1982).   “The   meaning   and   use   of   the   area   under   the   receiver   operating  characteristic  (ROC)  curve”,  in  Radiology,  143,  29  –  36     Iranzo,  A.,  Tolosa,  E.,  Gelpi,  E.,  Molinuevo,  J.  L.,  Valldeoriola,  F.,  Serradell,  M.,  ...  &  Santamaria,  J.   (2013).   Neurodegenerative   disease   status   and   post-­‐mortem   pathology   in   idiopathic   rapid-­‐eye-­‐ movement  sleep  behaviour  disorder:  an  observational  cohort  study.  The  Lancet  Neurology,  12(5),   443-­‐453.   Acknowledgement  

The   described   work   has   been   partially   funded   by   The   Michael   J.   Fox   Foundation   for   Parkinson’s   Research  under  Rapid  Response  Innovation  Awards  2013.   Contact  details  of  the  presenter   Aureli  Soria-­‐Frisch,  +34  93  2540366,  aureli.soria-­‐[email protected]  

Suggest Documents