An Optimized Superpixel Clustering Approach for

2 downloads 0 Views 1MB Size Report
a Laboratório de Computação Aplicada, Universidade Federal de Santa Maria, Santa .... improvements in the segmentation but happened to be inef-‐ ficient due ...
An  Optimized  Superpixel  Clustering  Approach  for   High-­‐Resolution  Chest  CT  Image  Segmentation   Rafaelo  Pinheiro  da  Rosaa,  Marcos  Cordeiro  d’Ornellasa   a  

Laboratório  de  Computação  Aplicada,  Universidade  Federal  de  Santa  Maria,  Santa  Maria-­‐RS,  Brasil  

  Abstract   Lung   segmentation   is   a   fundamental   step   in   many   image   analysis   applications   for   lung   diseases   and   abnormalities   in   thoracic   computed   tomography   (CT).   However,   due   to   the   large  variations  in  pathology  that  may  be  present  in  thoracic   CT  images,  it  is  difficult  to  extract  the  lung  regions  accurately,   especially  when  the  lung  parenchyma  contains  extensive  lung   diseases.  A  major  insight  to  deal  with  this  problem  is  the  ex-­‐ istence   of   new   approaches   to   cope   with   quality   and   perfor-­‐ mance.  This  paper  presents  an  optimized  superpixel  clustering   approach  for  high-­‐resolution  chest  CT  segmentation.  The  pro-­‐ posed   algorithm   is   compared   against   some   open   source   su-­‐ per-­‐pixel  algorithms  while  a  performance  evaluation  is  carried   out  in  terms  of  boundary  recall  and  under-­‐segmentation  error   metrics.   An   experienced   radiologist   produces   ground   truth   chest  CT  slices  segmentation  results.  The  over-­‐seg-­‐mentation   results   on   a   Computed   Tomography   Emphysema   Database   demonstrates   that   our   approach   shows   better   performance   than  other  three  state-­‐of-­‐the-­‐art  superpixel  methods.  

Despite  a  large  body  of  knowledge  in  medical  image  [6],  med-­‐ ical   image   segmentation   still   faces   many   technical   problems   and   still   remains   a   challenge   due   to   the   large   variability   of   body   parts   and   image   quality.   Accurate   3D   reconstruction   models   of   the   body   anatomy   from   CT   or   MRI   datasets   rely   on   accurate   image   segmentation   method   and   geometry   pro-­‐ cessing.   For   instance,   Figure   1   displays   a   chest   CT   slice   on   the   left  side  and  its  segmentation  counterpart.  3D  lung  modeling   involves  analyzing  2D  lung  images  and  reconstructing  a  realis-­‐ tic   3D   model.   Small   inaccuracies   in   inclusion   of   juxtapleural   nodules   could   lead   to   inaccurate   volumetric   measurement   and  estimation  of  malignancy  and  doubling  times  [7][8].    

Keywords:   Image  Segmentation;  Radiographic  Image  Interpretation;   Tomography.  

Introduction   Medical   imaging   has   developed   steadily   to   become   a   perva-­‐ sive   component   in   virtually   all   branches   of   medicine   and   a   fundamental   diagnostic   tool   in   every   physician’s   practice.   Radiologists  have  long  been  considered  the  forefront  of  imag-­‐ ing   technology,   specialized   in   a   wide   variety   of   imaging   mo-­‐ dalities   [1].   Over   the   past   years,   diagnostic   radiologists   have   turned   into   partners   with   primary   care   and   specialty   physi-­‐ cians   alike,   to   diagnose   or   treat   conditions,   enabling   effective   care   [2].   Medical   imaging   is   now   used   to   provide   interven-­‐ tional   treatments   and   diagnostic   screening.   It   allow   for   sub-­‐ stantial  information  about  abnormal  adjacent  tissues,  helping   physicians  to  identify  the  appropriate  treatment.     As  image  processing  and  analysis  techniques  have  broad  the   knowledge  and  skills  of  physicians,  the  size  of  images  has  also   increase   dramatically.   This   affected   the   storage   costs   and   computer   performance   that   is   needed   to   process   these   imag-­‐ es   [3].   Automated   medical   image   analysis   supports   unequivo-­‐ cal,   complex,   and   consistent   measures   that   accelerate   under-­‐ standing   of   diseases   [4].   It   not   only   identifies   abnormal   pat-­‐ terns   but   also   highlight   those   patterns,   which   may   lead   to   correct   diagnosis   of   anatomical   defects   and   function   disor-­‐ ders.  These  measures  have  been  used  to  support  radiologists’   workload   and   have   been   recognized   to   improve   accuracy   of   diagnosis  [5].  

  Figure  1  –  A  sample  Chest  CT  image  segmentation.     Recently,   superpixels   have   converted   into   an   essential   and   fundamental  approach  for  many  imaging  applications  includ-­‐ ing   segmentation   [9][10].   As   superpixels   are   used   as   a   pre-­‐ processing   step   to   lower   the   complexity   of   segmentation,   they  should  be  computationally  efficient  to  avoid  a  negatively   impact  in  overall  performance.   This   paper   presents   an   optimized   superpixel   clustering   ap-­‐ proach   for   high-­‐resolution   chest   CT   segmentation.   The   pro-­‐ posed   algorithm   is   compared   against   some   open   source   su-­‐ perpixel   algorithms   while   a   performance   evaluation   is   carried   out   in   terms   of   boundary   recall   and   under-­‐segmentation   er-­‐ ror   metrics.   An   experienced   radiologist   produces   ground   truth  chest  CT  slices  segmentation  results.   The   paper   sections   are   structured   in   the   following   order:   Chest   CT   Segmentation,   Superpixel   Algorithms   for   Image   Segmentation,   Methodology,   Experimental   Results   and   Dis-­‐ cussion,   and   Conclusion   and   Further   Results.   Chest   CT   Seg-­‐ mentation  section  describes  the  state  of  art  in  terms  of  seg-­‐ mentation   in   medical   imaging   with   respect   to   CT   segmenta-­‐ tion.  The  next  section  presents  a  number  of  superpixel  algo-­‐ rithms   for   image   segmentation.   A   methodology   section   dis-­‐ cusses  the  pros  and  cons  of  the  optimized  superpixel  cluster-­‐ ing  approach.  Experimental  results  and  discussion  are  carried  

out   in   the   next   section,   by   means   of   standard   performance   metrics.   Useful   conclusions   and   further   research   are   drawn   regarding  evaluation  procedures  set  forth  in  this  paper.  

Chest  CT  Segmentation   Multi-­‐slice   CT   scanning   has   changed   the   way   physicians   ac-­‐ quire,  process  and  interpret  data   originating  from  the  human   body   and   motivates   the   need   for   further   image   analysis   tech-­‐ niques.   With   respect   to   chest   CT,   lung   segmentation   is   an   important   first   step   for   quantitative   lung   CT   image   analysis   and  computer  aided  diagnosis  (CAD).  Appropriate  and  precise   lung  segmentation  allows  for  the  quantification  and  detection   of   lung   malformations   and   abnormalities.   Segmentation   of   lobes   is   essential   to   discover   parenchymal   diseases   and   to   quantify  its  extension.  Several  methods  for  chest  CT  segmen-­‐ tation,   mainly   with   respect   to   lung   segmentation   have   been   proposed   in   the   literature.   Most   of   them   are   based   on   the   fact  that  a  healthy  parenchyma  displays  a  large  difference  in   attenuation  between  the  lung  parenchyma  and  the  surround-­‐ ings.     For   instance,   an   adaptive   border-­‐matching   algorithm   was   proposed   in   [11][12].   Nevertheless,   the   algorithm   fails   in   some   particular   cases   due   some   errors   in   the   pre-­‐ segmentation   step.   A   refined   segmentation   approach   was   discussed   in   [13]   and   [14],   which   yield   significant   accuracy   improvements  in  the  segmentation  but  happened  to  be  inef-­‐ ficient   due   to   some   registration   and   classification   processes.   A   segmentation   based   on   the   rib   curvature   was   proposed   in   [15],  yielding  more  accurate  segmentation  results.  All  of  the-­‐ se   approaches   have   shortcomings   that   make   them   impracti-­‐ cal  for  high-­‐definition  automatic  processing  of  lung  CT  imag-­‐ es.     A  novel  approach  to  compute  3D  supervoxels  for  radiological   image   datasets   was   proposed   in   [16].   It   allows   coping   with   the  high  levels  of  noise  and  low  contrast  encountered  in  clini-­‐ cal  multimodality  data.  Recently,  a  novel  approach  to  patho-­‐ logical  lung  segmentation  using  the  keypoint  sampling  of  su-­‐ pervoxels   in   CT   scan   was   proposed.   Adapting   the   state-­‐of-­‐ heart   Simple   Linear   Iterative   Clustering   (SLIC)   method   to   gen-­‐ erate  supervoxel  for  CT  images  creates  the  near  optimal  grid   for  the  keypoint  sampling  [17].  

Superpixel  Algorithms  for  Image  Segmentation   Several  algorithms  for  image  segmentation  use  the  pixel-­‐grid   as   the   underlying   representation   [18][19].   The   pixel-­‐grid,   however,  is  not  a  commonplace  for  medical  imaging,  being  an   image   processing   artifact   in   the   medical   imaging   segmenta-­‐ tion   workflow.   Therefore,   it   is   more   natural   to   deal   with   meaningful   entities   obtained   from   a   suitable   low-­‐level   group-­‐ ing  process.  Superpixels  have  some  properties:   •   •   •   •  

superpixel  should  adhere  to  object  boundaries;   it   is   rather   efficient,   reducing   the   complexity   of   im-­‐ ages   from   thousands   of   pixels   to   a   regular   mesh   of   few  hundred  superpixels;   superpixels   are   perceptually   meaningful   since   all   pixels  inside  a  superpixel  are  alike;   Since   the   superpixels   are   the   results   of   an   over-­‐ segmentation   procedure,   most   structures   are   pre-­‐ served  in  the  image.  

Superpixel  algorithms  are  classified  in  graph-­‐based  algorithms   and   gradient-­‐ascent   based   algorithms.   The   most   common   superpixel   implementations   are   normalized   cuts   (NC00)[20],   Turbopixels   (TP09)   [21],   QuickShift   (QS08)   [22],   and   Simple   Linear  Iterative  Clustering  (SLIC12)  [23]:   •  

•  

•  

•  

NC00:   Normalized   Cuts   is   a   computationally   de-­‐ manding   segmentation   method   based   on   pairwise   regional  affinities.  The  normalized  cuts  algorithm  is  a   graph-­‐based   algorithm   using   graph   cuts   to   optimize   a  global  energy  function.   TP09:  Turbopixels  is  a  fast  geometric-­‐flow  based  ap-­‐ proach  to  over-­‐segmentation  of  an  image.  After  ini-­‐ tial   superpixel   centers   have   been   chosen,   each   su-­‐ perpixel  grows  similar  to  a  wave-­‐front  propagation.     QS08:  QuickShift  is  applied  to  model  shifting  means   in  a  univariate  setting.  QuickShift  is  a  2D  segmenta-­‐ tion   similar   to   meanshift,   a   robust   method   for   image   segmentation  [24].   SLIC12:   Simple   Linear   Iterative   Clustering   is   rather   simple  and  new  algorithm.  SLIC  implements  local  K-­‐ means   clustering   to   generate   superpixel   segmenta-­‐ tion  with  K  superpixels.  

Methodology   The  Algorithm   The   algorithm   presented   in   this   paper   is   an   optimized   version   of   the   original   SLIC   algorithm   [25].   The   original   version   is   con-­‐ figured   through   two   parameters:   the   first   is   related   to   the   desired  number  of  superpixels   k  and  the  second   m  is  due  to   compactness.  For  gray  scale  images,  the  clusters  are  formed   by   pixels   that   depend   on   attributes   such   as   intensity   I   and   pixel  position.   During   the   initialization   step,   k   initial   clusters   are   positioned   so   as   to   occupy   regularly   sampled   spaces.   To   this   end,   each   superpixels   have   equal   size,   S = N K ,   were   N   is   the   number   of   image   pixels   and   S   S   is   the   superpixel   size.   In   order  to  decrease  the  chance  that  the  center  of  a  superpixel   stands   on   the   edge   or   noise,   the   centers   of   the   clusters   are   moved   to   the   lowest   gradient   values   using   a   3 x 3   mask.   In   the   assignment   step,  each   image   pixel   is   labeled   as   belonging   to   a   certain   cluster.   The   labeling   procedure   is   performed   based  on  the  distance  of  the  pixel  of  interest  with  the  nearest   cluster,   within   a   2 S × 2 S   limited   region,   enabling   an   en-­‐ hanced   performance   when   compared   to   other   conventional   cluster  algorithms.    

D  determines  the  nearest  cluster  center  for  each  pixel.  Even   when  all  images  have  both  the  same  dimensions  (512  x  512)   and   the   same   variations   in   gray   scale   (0-­‐255),   these   values   can   vary   for   each   cluster,   which   could   lead   to   problems   in   calculating   the   distance.   In   order   to   reduce   the   chance   of   wrong   classification   of   several   pixels,   spatial   and   intensity   distances   must   be   normalized   with   respect   to   the   maximum   value   in   each   cluster.   Therefore,   Equation   (3)   shows   the   Eu-­‐ clidean  Distance:  

dc = ( I j − I i )2                                                                    (1)  

ds = ( x j − x i )2 + ( y j − y i )2                                              (2)  

2

2

⎛d ⎞ ⎛d ⎞ D = ⎜ c ⎟ + ⎜ s ⎟                                                          (3)   ⎝ Nc ⎠ ⎝ Ns ⎠ Once   all   clusters   must   assume   maximum   values   of   the   sam-­‐ pled   equivalent   range   size   in   the   initial   step,   N s = S .   For   the   definition   of   the   maximum   intensity   variance   value   for   each   cluster,  the  parameter   m  is  used.  Thus,  applying  these  values   into   the   equation   and   performing   the   necessary   simplifica-­‐ tions,  the  calculation  of  distance   D  is  given  by  Equation  (4):  

D = d c2 + f d s2                                                              (4)   where   f = ( m s )2 .   For   higher   m   values,   spatial   distances   start   to   have   an   impact   in   the   equation,   generating   more   compact  superpixels.  For  smaller  values,  the  intensities  over-­‐ lap,  allowing  superpixels  adhere  to  object  edges.   In   the   final   step,   an   update   is   carried   out   to   determine   the   new   cluster   edges,   based   on   an   average   of   feature   vectors   [ I , x , y ]   for   each   pixel   in   the   cluster.   Thus,   the   error   E   be-­‐ tween   the   new   cluster   center   locations   and   previous   cluster   center   locations   is   calculated.   Assignment   and   update   steps   are   iteratively   repeated   until   the   error   converges.   A   subjec-­‐ tive  evaluation  states  that  10  iterations  are  good  enough  for   most  images  [23].   Algorithm  Optimizations   ESLIC  optimizations  are  described  as  follows:   •   •  

•  

•  

The  optimized  version  (ESLIC)  is  tweaked  to  work  on   grey-­‐scaled   images.   Therefore,   similarity   measures   are  greatly  simplified.   The   original   implementation   makes   use   of   f   pa-­‐ rameter   in   the   calculation   of   Euclidean   distance,   to   control   compactness   and   adherence.   Experiments   have   shown   that   this   parameter   may   not   be   taken   into   account   for   chest   CT   slices,   which   are   grey-­‐ scaled  images.  To  check  whether  it  may  or  may  not   be  included  when  calculating  the  distance,  the  algo-­‐ rithm  checks  if  the  absolute  difference  between  the   maximum   number   of   pixels   with   the   same   intensity   within   the   cluster   and   the   total   number   of   pixels   in   this   cluster   is   less   than   a   specified   threshold   value,   i.e.,   max− tp < T .  In  this  paper  T  was  set  to  100.   It  was  observed  that  5  iterations  suffice  for  our  chest   CT   dataset.   In   a   qualitative   evaluation,   it   was   ob-­‐ served  that  the  optimized  algorithm  produces  suita-­‐ ble   results,   besides   improving   algorithm   perfor-­‐ mance.     At   the   end   of   SLIC   processing,   it   is   normal   to   get   some   pixels   unlabeled,   allowing   them   to   be   discon-­‐ nected  from  the  set  of  clusters.  This  is  corrected,  in   the  original  version,  by  a  connected  components  la-­‐ beling  algorithm.  It  was  found,  during  the  algorithm   optimization,   that   this   condition   does   not   apply   for   the  chest  CT  dataset.  Therefore,  the  post-­‐processing   step   was   suppressed   in   the   optimized   implementa-­‐ tion.  

Experimental  Results  and  Discussion   A  performance  evaluation  of  the  ESLIC  algorithm  is  exhibited   by  comparing  its  accuracy  against  SLIC,  NC00,  QS08,  and  TP09   algorithm   versions,   both   of   which   encode   a   compactness  

constraint.   The   ESLIC   algorithm   was   implemented   in   Java.   While,   in   this   paper,   only   comparisons   with   original   algo-­‐ rithms   and   extensions   have   been   made,   computer   bench-­‐ marks  were  performed  in  C  using  a  commodity  computer.   Evaluation  Metrics   Superpixels   are   known   to   be   an   image   over-­‐segmentation   procedure  whose  goal  is  to  represent  the  image  in  such  way   as   to   reduce   intra-­‐class   pixel   spectral   variability.   Therefore,   every   superpixel   is   inside   a   meaningful   image   subset.   Super-­‐ pixel  quantitative  evaluation  methods  and  metrics  are  exten-­‐ sively  described  in  the  literature  [18][21].  Boundary  recall  and   under-­‐segmentation  error  are  standard  metrics  for  boundary   adherence.   Boundary  Recall   The  standard  metric  for  boundary  recall  ( BR )  computes  the   portion  of  ground  truth  edges  matches  at  least  one  superpix-­‐ el   boundary.   High   levels   of   boundary   recall   means   that   su-­‐ perpixels   accurately   follow   the   edges   of   the   objects   in   the   segmented  ground  truth  image.  Given  a  ground  truth  bound-­‐ ary   G ,  the  algorithms’  boundary  image   S  and  a  maximum   distance   d = 1 .   Then   TP   (True   Positive)   is   the   amount   of   boundary   pixels   in   G   for   an   existing   boundary   pixel   in   S   with   range   d .   FN   (False   Negatives)   is   the   number   of   boundary   pixels   in   G   for   whose   does   not   exist   a   boundary   pixel  in   S  in  range   d .  The  Boundary  recall  metric  ( BR )  is   given  by  Equation  (5):    

BR ( S ,G ) =

TP ( S ,G )                              (5)   TP ( S ,G ) + FN ( S ,G )

Under-­‐segmentation  Error   Under-­‐segmentation  ( USE )  occurs  when  a  sensible  gap  amid   two  consecutive  lines  is  narrow  so  that  there  is  an  overlap  in   local   and   global   projection   file.   That   notion   is   someway   op-­‐ posing  to   BR .    High   USE  values  relates  to  algorithms  with   high   BR   values.   USE   measures   how   well   ground   truth   segments   are   recovered   by   grouping   superpixels.   In   other   words,   USE  impose  penalties  to  superpixels  that  do  not  fit  a   ground   truth   segment   boundary   [21].   Equation   (6)   displays   the  under-­‐segmentation  metric  ( USE ):     USE ( S ,G ) =

1 N



⎞ min S j ∩ G i , S j − G i ⎟ (6)   G i ∈G ⎝ S j ∩G i ≠0 ⎠      

∑⎜ ∑

{

}

Dataset   The   Computed   Tomography   Emphysema   Database   (CTED)   was  chosen  to  evaluate  the  performance  of  ESLIC  algorithm.   CTED  can  be  used  free  of  charge  for  research  and  educational   1 purposes .   The   database   base   contains   115   high-­‐resolution   CT  slices  as  well  as  160  square  patches,  which  were  manually   annotated   by   experienced   chest   radiologist   and   a   CT   experi-­‐ enced  pulmonologist.  Slices  were  reconstructed  using  a  high-­‐ spatial   resolution   algorithm.   These   slices   belongs   to   a   study   group   consists   of   39   subjects   (9   never-­‐smokers,   10   smokers,   and   20   smokers   with   chronic   obstructive   pulmonary   disease).   The   512x512   slices   were   acquired   in   the   upper,   middle,   and   lower  part  of  the  lung  of  each  subject  [26].  

                                                                                                                                    1

 image.diku.dk/emphysema_database/  

Comparisons   Although   CTED   provides   the   dataset,   it   does   not   provide   ground  truth  segmentation  for  CT  slices.  A  decision  was  made   to  produce  a  set  of  ground  truth  segmentation  CT  slices  by  a   CT   experienced   radiologist.   Segmented   SLIC12   slices,   with   100   superpixels   and   compactness   set   to   20,   were   shown   to   the   radiologist,   which   evaluated   the   quality   of   segmentation   and  ordered  the  results,  producing  the  ground  truth  set  used   in   this   paper.   Segmentation   results   were   compared   on   the   basis   of   boundary   recall   and   under-­‐segmentation   error,   re-­‐ garding  the  available  ground  truth.   Figure   2   displays   comparisons   with   respect   to   boundary   re-­‐ call.   In   this   plot,   ESLIC   exceeds   QS08   and   TP09.   It   is   also   high-­‐ er  than  NC00  when  50  superpixels  are  considered.  However,   as   the   number   of   superpixels   increases,   NC00   produces   bet-­‐ ter   results.   Figure   3   shows   the   results   obtained   with   under-­‐ segmentation   error   metric.   It   can   be   concluded   from   this   plot   that  ESLIC  exceeds  the  other  algorithms  after  900  superpixels.   In   the   range   [100-­‐800]   superpixels,   TP09   is   superior   to   the   others   algorithm   versions.   While   informative,   subjective,   qualitative  comparisons  can  be  quite  misleading.  For  the  sake   of   clarity,   figure   4   shows   a   visual   comparison,   produced   by   each  one  of  the  algorithms  considered  in  this  paper.  

  Figure  2  –  Plot  of  BR  with  respect  to  number  of  superpixels.  

  Figure  4  –  Segmentation  results  on  CT  sample  for  SLIC12   ESLIC,  NC00,  QS08,  and  TP09.  

Conclusion  and  Further  Work   Although   the   proposed   segmentation   technique   based   on   SLIC12  achieves  results  that  are  comparable  only  to  some  of   the   results   published   in   the   bibliography,   the   proposed   methodology   has   large   room   for   improvement.   ESLIC   was   tweaked  and  tuned  up  for  performance  reasons.  NC00,  QS08,   TP09,   and   SLIC12   algorithms   were   compared   against   ESLIC   with   respect   to   boundary   recall   and   under-­‐segmentation   er-­‐ ror.  Results  have  shown  that  the  proposed  algorithm  is  supe-­‐ rior,   with   respect   to   under-­‐segmentation   error,   to   the   other   algorithms.   When   considering   boundary   recall,   ESLIC   per-­‐ forms   better   than   QS08   and   TP09   but   is   outperformed   by   NC00.   The   correctness   of   the   results   is   relative   to   the   correctness   of   the   ground   truth,   established   on   CTED   dataset.   Despite   the   qualitative   and   quantitative   comparisons,   performed   using   a   ground   truth   produced   from   CTED   CT   slices   and   its   corre-­‐ spondent   metadata,   there   is   no   reason   to   believe   that   they   are   unreliable.   The   characterization   and   proper   labeling   of   the  slices  becomes  a  problem  that  can  take  advantage  of  the   large  range  of  solutions  and  can  be  tackled  in  the  future.    

References   [1]  Smith  NB  and  Webb  A.  Introduction  to  Medical  Imaging  –   Physics,   Engineering   and   Clinical   Applications,   Cambridge   University  Press,  2011.   nd

[2]  Suetens  P.  Fundamentals  of  Medical  Imaging.  2    Edition,   Cambridge  University,  U.K.,  2013.   [3]  Rockall  A,  Hatrick,  A,  Armstron  P,  and  Wastie  M.  Diagnos-­‐ th tic  Imaging,  7  Edition,  Wiley-­‐Blackwell,  2013.     Figure  3  –  Plot  of  USE  with  respect  to  number  of  superpixels.  

[4]  Rekik,   I,   Carpenter,   TK,   Wardlaw,   JM   &   Allassonnière,   S   2012,  Medical  Image  Analysis  Methods  in  MR/CT-­‐Imaged   Acute-­‐Subacute   Ischemic   Stroke   Lesion:   Segmentation,   Prediction  and  Insights  Into  Dynamic  Evolution  Simulation   Models.   A   Critical   Appraisal.   NeuroImage:   Clinical,   vol   1,   no.  1,  pp.  164-­‐178.   [5]  Rodríguez-­‐González   A,   Torres-­‐Niño   J,   Valencia-­‐Garcia   R,   Mayer   MA,   and   Alor-­‐Hernandez   G.   Using   Experts   Feed-­‐ back   in   Clinical   Case   Resolution   and   Arbitration   as   Accura-­‐ cy   Diagnosis   Methodology.   Comput   Biol   Med.   2013   Sep.   43(8):975-­‐86.   [6]  Jones   JL,   Xie   X,   and   Essa   E.   Combining   Region-­‐Based   and   Imprecise   Boundary-­‐Based   Cues   for   Interactive   Medical  

Image   Segmentation.   Int   J   Numer   Method   Biomed   Eng.   2014  Dec;30(12):1649-­‐66.   [7]  Pu,   J.,   Roos,   J.E.,   Rubin,   G.   D.,   Napel,   S.,   and   Paik,   D.   S.   (2008).   Adaptive   Border   Marching   Algorithm:   Automatic   Lung   Segmentation   on   Chest   CT   Images.   Computerized   Medical  Imaging  and  Graphics,  Vol.  32(6),  pp.452-­‐462.   [8]  Zhou  S,  Cheng  Y,  and  Tamura  S.  Automated  Lung  Segmen-­‐ tation   and   Smoothing   Techniques   for   Inclusion   of   Juxta-­‐ pleural  Nodules  and  Pulmonary  Vessels  on  Chest  CT  Imag-­‐ es.  Biomedical  Signal  Processing  and  Control,  Volume  13,   September  2014,  62-­‐70.   [9]  Bergh   M,   Boix   X,   Roig   G,   Capitani   B,   and   Gool   L.   SEEDS:   Superpixels   Extracted   via   Energy-­‐driven   Sampling.   Euro-­‐ pean  Conference  on  Computer  Vision,  pages  13–26,  2012.   [10]  Tang   D,   Fu   H,   and   Cao   X.   Topology   Preserved   Regular   Superpixel.   International   Conference   on   Multimedia   and   Expo,  pages  765–768,  2012.   [11]  Brown   MS,   McNitt-­‐Gray   MF,   Mankovich   NJ,   Goldin   JG,   Hiller  J  et  al.  Method  for  Segmenting  Chest  CT  Image  Data   Using   an   Anatomical   Model:   Preliminary   Results.   IEEE   Transactions  on  Medical  Imaging  16(6)  (1997)  828–839.   [12]  Pu  J,  Roos  J,  Yi  CA,  Napel  S,  Rubin  GD,  and  Paik  DS.  Adap-­‐ tive   Border   Marching   Algorithm:   Automatic   Lung   Segmen-­‐ tation  on  Chest  CT  images.  Computerized  Medical  Imaging   and  Graphic  32(6)  (2008)  452–462   [13]  Sluimer   I,   Schilham   A,   Prokop   M,   Ginneken   B.Computer   analysis   of   Computed   Tomography   Scans   of   the   Lung:   A   survey.  IEEE  Transactions  on  Medical  Imaging  25(4)  (2006)   385–405.   [14]  Rikxoort  EM,  Hoop  B,  Viergever  MA,  Prokop  M,  Ginneken   B.   Automatic   Lung   Segmentation   From   Thoracic   Comput-­‐ ed  Tomography  Scans  Using  a  Hybrid  Approach  With  Error   Detection.  Medical  Physics  36(7)  (2009)  2934–2947.   [15]  Prasad   MN,   Brown   MS,   Ahmad   S,   Abtin   F,   Allen   J   et   al.   Automatic   Segmentation   of   Lung   Parenchyma   in   the   Pres-­‐ ence   of   Diseases   Based   on   Curvature   of   Ribs.   Academic   Radiology  15(9)  (2008)  1173–1180.   [16]  Holzer,  M,  Donner,  R.  Over-­‐Segmentation  of  3D  Medical   Image   Volumes   Based   on   Monogenic   Cues,   in   Zuzana   Kúkelová  &  Jan  Heller,  ed.,  'Proceedings  of  the  CVWW'14'   ,  pp.  35-­‐42  .   [17]  A.  Mansoor  ,  U.  Bagci  and  D.  Mollura     Near-­‐Optimal  Key-­‐ point   Sampling   for   Fast   Pathological   Lung   Segmenta-­‐ tion",    Proc.  IEEEEMBC,    pp.6032  -­‐6035  2014.   [18]  Zhang  Y,  Hartley  R,  Mashfor  J,  and  Burn  S.  Superpixels  via   Pseudo-­‐boolean   Optimization.   International   Conference   on  Computer  Vision,  pages  1387–1394,  2011.   [19]  Conrad   C,   Mertz   M,   and   Mester   R.   Contour-­‐relaxed   Su-­‐ perpixels.   In:   Energy   Minimization   Methods   in   Computer   Vision   and   Pattern   Recognition,   LNCS   8081,   280–293,   2013.   [20]  Shi   J,   and   Malik   J.   Normalized   Cuts   and   Image   Segmenta-­‐ tion.   IEEE   Transactions   on   Pattern   Analysis   and   Machine   Intelligence  (PAMI),  2000;  pp.  888–905.   [21]  Levinshtein  A,  Stere  A,  Kutulakos  KN,  Fleet  DJ  et  al.  Tur-­‐ boPixels:   Fast   Superpixels   Using   Geometric   Flows.   Trans-­‐ actions   on   Pattern   Analysis   and   Machine   Intelligence,   31(12):2290–2297,  2009.   [22]Vedaldi  A,  and  Soatto  S.  Quick  Shift  and  Kernel  Methods   for  Mode  Seeking.  In:  ECCV,  LNCS  5305,  705-­‐718,  2008.  

[23]  Achanta,   R,   Shaji   A,   Smith   K,   Lucchi   A,   Fua   P   et   al.   SLIC   Superpixels   Compared   to   State-­‐of-­‐the-­‐art   Superpixel   Methods.   Transactions   on   Pattern   Analysis   and   Machine   Intelligence,  volume  34,  number  11,  2274  –  2281,  2012.   [24]  D.   Comaniciu   and   P.   Meer.   Mean   shift:   A   Robust   Ap-­‐ proach   Toward   Feature   Space   Analysis.   IEEE   Trans.   Pat-­‐ tern  Anal.  Machine  Intell.,  24:603–619,  2002   [25]  Achanta   R,   Shaji,   A,   Smith   K,   Lucchi   A,   Fua   P,   and   Süsstrunk  S.  SLIC  Superpixels.  Technical  report,  École  Poly-­‐ technique  Fédérale  de  Lausanne,  2010.   [26]  Sørensen   L,   Shaker   SB,   and   Bruijne.   Quantitative   Analysis   of   Pulmonary   Emphysema   using   Local   Binary   Pat-­‐ terns,  IEEE   Transactions   on   Medical   Imaging   29(2):   559-­‐ 569,  2010.   Address  for  correspondence     Rafaelo  Pinheiro  da  Rosa   [email protected]   Av.  Roraima,  1000   Prédio  7  –  Anexo  B-­‐  Sala  388   UFSM  -­‐  Campus  Universitário   97105-­‐900  Santa  Maria-­‐RS  -­‐  Brasil  

Suggest Documents