Waters and Atlantis are trademarks of Waters Corporation. 1. Introduction ... in
retention of polar bases with Atlantis™ HILIC Silica columns. The reason for ...
A P P L I C AT I O N S N O T E B O O K
www.waters.com
Introduction Most chromatographers have experienced problems retaining and separating polar compounds using conventional reversed-phase (RP) chromatography. These difficult-to-analyze compounds either pass through the column unretained or, if retained at all, co-elute at the beginning of the chromatogram. Although today’s sensitive and selective mass spectrometers (MS) may help identify these early co-eluting compounds, MS ion suppression often occurs if these analytes are not sufficiently separated from the solvent front. Waters Atlantis™ columns are designed for these types of challenging separations. Atlantis™ columns are available in two fully LC/MS compatible chemistries: dC18 and HILIC Silica.
Atlantis™dC18 Columns – The Ideal Reversed-Phase Column Waters spent two years designing a new and unique stationary phase material that would offer the perfect balance of RP retention for polar and non-polar compounds. Atlantis™ dC18 columns exhibit superior retention of polar compounds as compared to conventional RP columns while not exhibiting excessive retention of hydrophobic compounds. Stationary phase physical attributes such as endcapping, silica pore size, bonded phase ligand density and ligand type were all studied and optimized in order to create a column that exhibits superior peak shape, low pH stability, resistance to dewetting (hydrophobic collapse) and enhanced polar compound retention.
Atlantis™ HILIC Silica Columns – Hydrophilic Interaction Chromatography for Very Polar Basic Compounds Another result of the Atlantis™ dC18 columns stationary phase creation project was the realization that no single RP material can retain all polar, water-soluble compounds. Another mode of retention and separation needed to be considered for very polar compounds such as actives, metabolites, and peptides. Hydrophilic Interaction Chromatography (HILIC) is a variation of normal-phase chromatography that uses RP solvents. HILIC is also referred to as “aqueous normal phase” or “reverse reversed-phase” since elution is in the order of increasing hydrophilicity and the organic portion of the mobile phase (typically acetonitrile) is the weak solvent and the aqueous portion is the strong eluting solvent. Retention Mechanisms in Hydrophilic Interaction Chromatography (HILIC)
Atlantis™ dC18 Columns—an Intelligent Design
Designing the Ideal Column Endcapping
Ligand Type
Peak Shape Stability Dewetting Retention
Pore Size
Ligand Ligand Density Density
Optimizing key stationary phase attributes results in the optimal combination of peak shape, low pH stability, resistance to dewetting and polar compound retention.
One result of this stationary phase creation project was a thorough understanding of the stationary phase’s role in polar compound retention. Only by studying and creating such a stationary phase can all the desirable characteristics of an ideal RP column be combined. Atlantis™ dC18 columns are compatible with aqueous mobile phases, provide enhanced low pH stability, and are suitable for separating polar compounds as well as standard RP applications. Atlantis™ dC18 columns are available in a wide range of column configurations ranging from nanoscale to preparative including Intelligent Speed (IS™) columns for fast, high-throughput analysis and Optimum Bed Density (OBD™) isolation and purification columns which provide analytical column performance in preparative column dimensions.
The combination of partitioning and weak cation-exchange results in retention of polar bases with Atlantis™ HILIC Silica columns.
The reason for developing Atlantis™ HILIC Silica columns was to offer a simple, rugged stationary phase which provided improved LC/ESI-MS response, direct SPE solvent compatibility and complementary selectivity to RP. This complementary selectivity is important to AR&D and drug metabolism scientists since the impurity or metabolite is often more polar and present at much lower concentrations than the parent compound. With Atlantis™ HILIC Silica columns, these very polar compounds elute later than the higher concentration hydrophobic parent compound, thus minimizing the MS ion suppression that can occur at the beginning of the chromatogram.
For More Information For more information about the Atlantis™ family of columns please visit the Waters website at www.waters.com.
Atlantis™ Columns Brochure Literature Code 720000793EN
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
1
Click anywhere. Type desired page number. Click OK. Table of Contents
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Compound Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 List of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Troubleshooting and Problem Solving Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-88 Care and Use Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89-94 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95-96 Compound Index 2’-Deoxyguanosine.........................56, 58, 59, 60 2,4,5-Trihydroxybutyrophenone ...........................44 2,6-Di-tert-butyl-4-hydroxymethylphenol ..................44 2-Acetamidophenol ...........................................16 2-Acetylfuran ..............................................63, 64 2-Amino-7chloro-5-oxo-5H-[1]benzopyrano [2,3-b]pyridine-3-carbonitrile..................68, 69, 70, ......................................................... 71, 72, 73 2-Bromofluorene ................68, 69, 70, 71, 72, 73 2-’Deoxyadenosine............................................56 2’-Deoxycytidine................................................56 3,4-Dihydroxybenzylamine (DHBA) ......................32 3,4-Dihydroxyphenylacetic acid (DOPAC) ......30, 31 3,4-Dihydroxyphenylalanine (DOPA) ....................31 3-Aminofluoranthene ......................68, 69, 70, 71, ................................................................72, 73 3-Methoxy-4-hydroxyphenylglycol (MHPG) ............31 4-Hydroxy-3-methoxymandelic acid (VMA)............31 4-Hydroxy-3-methoxyphenylacetic acid (HVA) .................................................30, 31 4-Hydroxybenzoic acid......................................19 5-Fluorocytosine .......................22, 52, 53, 54, 55 5-Fluorouracil .................................52, 53, 54, 55 5-Hydroxy-3-indoleacetic acid (5-HIAA) ................30 6α-Methyl-17α-hydroxyprogesterone.......68, 69, 70, ..........................................................71, 72, 73 8-Hydroxy-2’-Deoxyguanosine ................58, 59, 60 8-Bromoguanosine...............................68, 69, 70, ..........................................................71, 72, 73 A6677............................................................62 Acenaphthene...................................................67 Acephate.....................................................7, 74 Acetaminophen ..........................................16, 34 Acetanilide.............................16, 63, 64, 67, 68, .............................................69, 70, 71, 72, 73 Acetic acid.......................................................57 Acetophenone ............................................63, 64 Acetylcholine.......................................................8 Acetylsalicylic acid ............................................16 Acrylamide.........................................................9 Acyclovir .............................................10, 11, 42 Adenine.....................................................22, 54 Adenosine........................................................56 Albuterol..............................................23, 24, 25 Allantoin...........................................................12 Amitrole ...........................................................43 Amoxicillin..................................................14, 15 Angiotensin I.....................................................62 Angiotensin II ....................................................62 Arbutin.............................................................18 Asulam ......................................................21, 43 Atenolol .....................................................26, 27 Bamethan............................................23, 24, 25 Benzocaine ......................................................17
2
Benzophenone ...........................................63, 64 Bradykinin ........................................................62 Butacaine.........................................................17 Butylated hydroxyanisole ....................................44 Butylated hydroxytoluene ....................................44 Butyrophenone............................................63, 64 Caffeine.....................16, 28, 39, 77, 86, 87, 88 Catechin ..........................................................28 Catechin gallate................................................28 Chlorpheniramine........................................34, 39 Chlorsulfuron.....................................................43 Chlorthalidone ..................................................38 Choline..............................................................8 Choline-d9 (I.S.) ..................................................8 Cinoxacin .........................46, 47, 48, 49, 50, 51 Ciprofloxacin ....................................................40 Clonidine .........................................................33 Corticosterone ............................................78, 79 Cortisone ...................................................78, 79 Cytidine ...........................................................56 Cytochrome C ..................................................35 Cytosine........................................52, 53, 54, 55 Dextromethorphan .......................................34, 36 DHBA..............................................................32 Diazepam ........................................................37 Dibutyl phthalate................................................66 Dimethyl phthalate .............................................66 Dioctyl phthalate................................................66 Diphenhydramine ..............................................34 Dopamine .....................................29, 30, 31, 32 Enrofloxacin......................................................40 Epicatechin.......................................................28 Epicatechin gallate ............................................28 Epigallocatechin................................................28 Epigallocatechin gallate .....................................28 Epinephrine ...................................29, 30, 31, 32 Ergocalciferol....................................................86 Estradiol.....................................................78, 79 Estrone ......................................................78, 79 Fenoprofen.................................................75, 76 Flurbiprofen ................................................75, 76 Folic acid...................................................86, 87 Fumaric acid.....................................................57 Furosemide.......................................................38 Gallic Acid ................................................19, 28 Gallocatechin gallate.........................................28 Gentisic acid ....................................................19 Ginsenoside Rb2 ..............................................41 Ginsenoside Rc.................................................41 Ginsenoside Rd.................................................41 Ginsenoside Rg1 ..............................................41 Guaiacol glyceryl ether ......................................34 Guanine ....................................................42, 54 Guanosine .................................................22, 56
Guanosine-5’-monophosphate .............................22 Heptanophenone........................................63, 64 Hexanophenone .........................................63, 64 Homocysteine ...................................................84 Hydrochlorothiazide...........................................38 Hydrocortisone..............................67, 68, 69, 70, ..........................................................71, 72, 73 Hydroxylated Diazepam Metabolite.....................37 Ibuprofen ...................................................75, 76 Imazethapyr......................................................43 Insulin B Chain..................................................62 Isophthalic acid.................................................65 Ketoprofen .................................................75, 76 L-ascorbic acid............................................86, 87 L2275.............................................................62 Labetolol ..........................................................26 Lactic acid........................................................57 Lauryl Gallate ...................................................44 Lidocaine .........................................................17 Maleic acid ...............................................39, 57 Malic acid .......................................................57 Melittin.............................................................62 Methamidophos............................................7, 74 Methionine .......................................................84 Metoprolol .................................................26, 27 Morphine .........................................................45 Morphine 3-ß-D-Glucuronide ...............................45 N-Dealkylated Dextromethorphan Metabolite........................................................36 Nalidixic acid ...................46, 47, 48, 49, 50, 51 Naphtho(2,3-a)pyrene..........................68, 69, 70, ..........................................................71, 72, 73 Neomycin ........................................................13 Niacin .............................................................86 Nicotinic acid ............................................86, 87 Norepinephrine..............................29, 30, 31, 32 Octanophenone .........................................63, 64 Octyl Gallate....................................................44 Oxalic acid ......................................................57 Oxolinic acid ....................46, 47, 48, 49, 50, 51 Oxprenolol .......................................................26 Paclitaxel..........................................................61 Perylene ...........................68, 69, 70, 71, 72, 73 Phenacetin........................................................16 Phenol .............................................................77 Phenylalanine....................................................20 Phenylephrine....................................................39 Phenylpropanolamine.........................................39 Phthalic acid.....................................................65 Picloram...........................................................43 Pindolol............................................................26 Prednisolone...............................................78, 79 Procaine...........................................................17 Progesterone...............................................78, 79
Propiophenone ...........................................63, 64 Propranolol.................................................26, 27 Propyl Gallate...................................................44 Protocatechuic acid ...........................................19 Pseudophendrine...............................................34 Pyridoxal....................................................86, 87 Pyridoxine............................................86, 87, 88 Pyruvic acid......................................................57 Renin Substrate..................................................62 Retinol..............................................................86 Riboflavin ...................................................86, 87 Serotonin (5-HT) ..........................................30, 31 Streptomycin .....................................................13 Substance P......................................................62 Succinic acid....................................................57 Sulfadiazine.........................................80, 81, 82 Sulfadimethoxine.........................................80, 81 Sulfadimidine..............................................80, 81 Sulfadmethazine................................................82 Sulfamerazine ......................................80, 81, 82 Sulfamethazine ...........................................82, 83 Sulfamethoxazole ...........................80, 81, 82, 83 Sulfanilamide ....................................................83 Sulfathiazole ..................................80, 81, 82, 83 Sulfisoxazole ..............................................80, 81 Syringic acid ....................................................19 Tartaric acid......................................................57 Terephthalic acid ...............................................65 Tert-butylhydroquinone ........................................44 Tetracaine.........................................................17 Theobromine.....................................................77 Theophylline.........................................63, 64, 77 Thiamine....................................................86, 87 Thiourea...........................................................22 Thymidine.........................................................56 Thymine.....................................................22, 54 Tocopherol .......................................................86 Triamcinolone....................68, 69, 70, 71, 72, 73 Tryptophan .......................................................20 Tyrosine............................................................20 Uracil...............................52, 53, 54, 55, 72, 73 Uridine.............................................................56 Valerophenone ...........................................63, 64 Vancomycin......................................................85 Vanillic Acid......................................................19 Vitamin A .........................................................86 Vitamin B1 .................................................86, 87 Vitamin B11...............................................86, 87 Vitamin B2 .................................................86, 87 Vitamin C...................................................86, 87 Vitamin D2 .......................................................86 Vitamin E..........................................................86
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Click anywhere. Type desired page number. Click OK. List of Applications Acephate in River Water................................................................7
Fluoroquinolone Antibiotics in Beef Kidney......................................40
Acetylcholine and Choline .............................................................8
Ginsenosides .............................................................................41
Acrylamide ..................................................................................9
Guanine and Acyclovir: HILIC vs. Reversed-Phase ...........................42
Acyclovir – Isocratic ....................................................................10
Herbicides by LC/MS/MS .........................................................43
Acyclovir – Gradient ...................................................................11
Lipid Soluble Antioxidants ............................................................44
Allantoin....................................................................................12
Morphine and Morphine-3-β-D-Glucuronide....................................45
Aminoglycoside Antibiotics...........................................................13
Nalidixic Acid Antibiotics.............................46, 47, 48, 49, 50, 51
Amoxicillin – Isocratic ..................................................................14
Nucleic Acid Bases .................................................52, 53, 54, 55
Amoxicillin – Gradient.................................................................15
Nucleosides...............................................................................56
Analgesics.................................................................................16
Organic Acids ...........................................................................57
Anesthetics.................................................................................17
Oxidative Stress Markers – ACN, pH 3.0 ........................58, 59, 60
Arbutin ......................................................................................18
Paclitaxel...................................................................................61
Aromatic Acids...........................................................................19
Peptides ....................................................................................62
Aromatic Amino Acids.................................................................20
Phenones – 2.1 x 20 mm IS™ Column ....................................63, 64
Asulam in River Water.................................................................21
Phthalic Acids ............................................................................65
Atlantis™ dC18100% Aqueous QC Batch Test .................................22
Phthalic Esters.............................................................................66
Bamethan and Albuterol .................................................23, 24, 25
Polar & Non-Polar Compounds ..............67, 68, 69, 70, 71, 72, 73
ß-Blockers............................................................................26, 27
Polar Pesticides...........................................................................74
Catechins..................................................................................28
Profens................................................................................75, 76
Catecholamines ......................................................29, 30, 31, 32
Purine Alkaloids..........................................................................77
Clonidine ..................................................................................33
Steroids ..............................................................................78, 79
Cold Medicine Products ..............................................................34
Sulfonamides ..........................................................80, 81, 82, 83
Cytochrome C Tryptic Digest........................................................35
Thiols ........................................................................................84
Dextromethorphan and N-Dealkylated Metabolite ...........................36
Vancomycin ...............................................................................85
Diazepam and Hydroxylated Metabolite .......................................37
Water and Fat Soluble Vitamins....................................................86
Diuretics ....................................................................................38
Water Soluble Vitamins .........................................................87, 88
Drugs for Rhinitis .........................................................................39
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
3
Problem Solving and Troubleshooting Using Atlantis™ dC18 Columns Problem Little or no retention of polar compounds
Impact
Solution and Benefit
l
l
l
Re-run samples using separate methods for polar compounds Increased method development time and labor
l
l
Method requires 100% aqueous mobile phase for desired separation
Sudden loss of analyte retention observed when using highly aqueous mobile phase
l
l
l l l
Short column lifetime in acidic mobile phases
l l l
Retaining polar compounds on a conventional C column results in increased or infinite retention
l
18
of non-polar compounds
l
l
Severe peak tailing for polar bases is observed
l
l
Column bleed is observed on MS
l l
Loss of retention is observed
Run organic modifier through column to rewet and regenerate column Increased labor and solvent costs Decreased throughput Reproducibility issues High cost due to frequent column replacement Increased instrument downtime Retention time reproducibility issues
Multiple columns are required to separate analytes with a wide range of polarities Increased method development time, labor and column costs Decreased throughput Method fails system suitability guidelines for peak tailing Increased method development time Frequent cleaning of MS source Incorrect or inconsistent results
l
l
l l
l
l
l
l l
l
l
l
l
Column to column reproducibility is inconsistent (e.g., selectivity, retention, etc.)
l
l
4
Increased labor costs due to individual column QC testing Revalidate/redevelop method with each new batch of columns
l
l
Polar compounds are retained longer with Atlantis™ dC18 columns One Atlantis™ dC18 column and method can be used for polar and non-polar compounds Decreased labor costs Atlantis™ dC18 packing material is tested with highly polar analytes in 100% aqueous conditions, thereby ensuring its utility in aqueous conditions Atlantis™ dC18 columns do not lose retention in 100% aqueous mobile phases Less time spent rewetting columns resulting in lower labor costs Increased throughput
The proprietary difunctional bonding chemistry of Atlantis™ dC18 columns results in low pH stability and longer column lifetime Decreased costs associated with column replacement and instrument maintenance One Atlantis™ dC18 column and method can be used for polar and non-polar compounds Easier and faster method development Increased throughput
Atlantis™ dC18 columns are optimally endcapped and provide excellent peak shapes using MS compatible mobile phases Easier and faster method development Atlantis™ dC18 columns do not exhibit MS detectable column bleed Decreased instrument downtime and maintenance costs The stringent Atlantis™ dC18 packing material QC batch test separates highly polar analytes in 100% aqueous mobile phase conditions Decreased method revalidation and development time
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Problem Solving and Troubleshooting Using Atlantis™ HILIC Silica Columns Problem Polar metabolites or contaminants not retained by reversed-phase HPLC
Impact
Solution and Benefit
l
l
l l
Severe peak tailing for polar bases is observed on reversed-phase column
l
l
Evaporation and reconstitution step in sample preparation is too time consuming
l
l
Re-run samples using alternate, non-MS compatible chromatographic techniques Metabolites or contaminants are not detected Increased method development time Method fails system suitability guidelines for peak tailing Increased method development time Increased labor costs and higher cost per analysis Decreased sample throughput
l
l
l
l
l l
Evaporation and reconstitution step in sample preparation results in poor analyte recoveries
l
l
l
Insufficient MS sensitivity due to highly aqueous reversed-phase mobile phases
l
l
Poor polar stationary phase column lifetime (e.g., amino, diol, etc.)
l l
Unstable or mobile analytes are lost and/or not detected Evaporated sample does not completely reconstitute Method fails recovery and limits of detection requirements Samples need to be concentrated and re-analyzed Low concentration metabolites or contaminants not detected Frequent column replacement Retention time reproducibility issues
l
l l
l
l
l
l
Polar bonded phase bleed is observed on MS, UV and/or ELSD
l l l
Noisy baselines resulting in poor sensitivity Incorrect false positive peaks Frequent system cleaning
l
l l
Column to column reproducibility is inconsistent (e.g., selectivity, retention, etc.)
l
l
Difficult separation requires complementary chromatographic selectivity
l l
Increased labor costs due to individual column QC testing Revalidate/redevelop method with each new batch of columns Multiple dedicated LC systems required Separation techniques must be developed independently
l
l
l l
l
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Atlantis™ HILIC Silica columns retain polar metabolites that cannot be retained by reversed-phase HPLC Faster and easier method development
Atlantis™ HILIC Silica columns provide superior peak shapes for polar bases Faster and easier method development Evaporation and reconstitution step is not necessary with Atlantis™ HILIC Silica columns since the mobile phases used are compatible with sample preparation organic solvents Lower analysis costs Increased throughput Evaporation and reconstitution step is not necessary with Atlantis™ HILIC Silica columns since the mobile phases used are compatible with sample preparation organic solvents Greater analyte recoveries Lower limits of detection
Highly volatile mobile phases used with Atlantis™ HILIC Silica columns provide increased ESI-MS sensitivity Lower limits of detection
Atlantis™ HILIC Silica columns do not have an unstable polar bonded phase Decreased costs associated with frequent column replacement Atlantis™ HILIC Silica columns do not exhibit detectable column bleed Increased sensitivity Decreased instrument downtime and maintenance costs Atlantis™ HILIC Silica columns are tested under actual HILIC conditions Decreased method revalidation and development time
Atlantis™ HILIC Silica columns use reversed-phase solvents Single LC system running reversed-phase and HILIC separations can be easily automated Greater flexibility, lower instrumentation costs, faster method development
5
Retaining Polar Compounds START HERE 1
base
Is the polar compound an acid, neutral or base?
neutral
2
2
Can it be retained by reversed-phase?
Can it be retained by reversed-phase?
Yes
Atlantis™ dC18 or XTerra®
No
Sufficient Mass Spec sensitivity?
Yes
Atlantis™ dC18
No
Yes
3
acid
Alternate separation technique such as ion exchange, ion-pair, etc.
No Atlantis™ HILIC Silica
NOTE: Atlantis™ dC18 = High aqueous, Low pH
To learn more about polar compound retention, contact your local Waters representative or visit us online at www.waters.com/atlantis
6
Atlantis™ HILIC Silica = High organic, Low pH XTerra® = High aqueous, High pH
©2004 Waters Corporation.Waters and Atlantis and XTerra are trademarks of Waters Corporation.
Acephate in River Water Oasis® HLB Extraction Method
LC Conditions: Column: Part Number: Mobile Phase: Flow Rate: Injection Volume: Temperature: Instrument:
Atlantis dC18, 2.1 x 100 mm, 3 µm 186001295 15% MeOH in H2O 0.2 mL/min 20 µL 25 ˚C Alliance® HT 2795
MS Conditions: Instrument: Ion Source: Source Temp: Desolvation Temp: Cone Gas: Desolvation Gas: Collision Gas:
Quattro micro Electrospray positive 150 ˚C 450 ˚C 50 L/hr 500 L/hr Argon
™
Oasis® HLB Extraction Cartridge, 6 cc/200 mg Prepare Sample: 5 g ammonium sulfate/20 mL sample Condition/Equilibrate: 1 mL DCM1/1mL mthanol/1 mL water Load: 20 mL sample2
™
Wash: 1 mL water Elute: 2 mL 10:90 methanol/DCM Evaporate and Reconstitute: 250 µL water 1
Compound methamidophos acephate
MRM 142>112 184>143
Cone(V) 27 20
2
Coll.Energy(eV) 15 10
200ng/L spiked river water
Acephate H 3 CS
O
O
P
C N H
H CO 3
methylene chloride 25 mL maximum sample size
100
MRM 184 >143
acephate
CH 3
%
- contact Acephate and systematic organophosphorous insecticide - highly polar, water soluble
0 100
MRM 142 >112
methamidophos %
Acephate/Methamidophos Daughter Ion Spectra
Time
0
1
2
3
4
5
6
200ng/L spiked river water - same injection as MRM data
Acephate/Methamidophos Recovery Data 113
100
125
External standard calculation (n=5) acephate
%
143
112
Methamidophos 184
0
100
110
120
130
150
160
170
180
m/z 190
142
125
112
140
methamidophos
143
%
Spike Level (ng/L) 50 200 400 800
Acephate Recovery1 50% 62% 66% 60%
RSD 25% 9.8% 12% 6.8%
Spike Level (ng/L) 50 200 400 800
Recovery1
RSD
92% 91% 90% 105%
12% 5.4% 15% 12%
110 0
110
120
130
140
150
160
170
180
m/z 190
1 Calculated against standard prepared in matrix. Matrix suppression was approximately 40%. Without Oasis® HLB cleanup, matrix supression was approximately 80%.
©2004 Waters Corporation. Waters, Oasis, Alliance, Quattro micro and Atlantis are trademarks of Waters Corporation.
7
Acetylcholine and Choline LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Sample Diluent: Temperature: Instrument: MS Conditions: Ionization Mode: Capillary (kV): Cone (V): Extractor: RF Lens: Source Temp (°C): Desolvation Temp (°C): Cone Gas Flow (L/Hr): Desolvation Gas Flow (L/Hr): SIR m/z:
Atlantis™ HILIC Silica 2.1 x 50 mm, 3 µm 186002011 H2O ACN 200 mM NH4COOH, pH 3.0 0.3 mL/min 9% A; 86% B; 5% C 20 µL 60:40 IPA:ACN with 0.2% HCOOH Ambient Alliance® HT 2795 with Waters ZQ™
H3C N
+
H C 3
CH3
CH3
N
O
H C 3
H 3C O
Acetylcholine D 3C
D3C
3
OH
CD 3
Choline-d9 (I.S.)
3.0x105
50 700 146.2 103.9 113.1
CH
Choline
+ N
ES+ 1.0 15 (ACh); 30 (Ch, Ch-d9) 3V 0.3 V 150 350
OH
+
(ACh) (Ch) (Ch-d9)
Acetylcholine 100 fg/µL
2.0x105
1.0x105 1.4x106
Intensity
Choline 1,000 fg/µL
2.0x105
1.0x107 Choline-d9 (I.S.) 5,000 fg/µL
5.0x106
2.00
4.00
6.00
Minutes
8
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
Acrylamide LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Isocratic Mobile Phase Composition: Flow Rate: Injection Volume: Temperature: Instrument:
99.5% A; 0.5% B 0.2 mL/min 20 µL 26° C Alliance® 2695, Quattro Premier™
MS Conditions: Ionization Mode: Capillary (kV): Cone (V): Extractor: RF Lens: Source Temperature (°C):
ES+ 3.5 20 5V 0.0 V 120
MS Conditions: The mass detector was calibrated between m/z 19 to m/z 2000 with unit resolution.
Atlantis™ dC18 2.1 x 150 mm, 3 µm 186001299 0.1% CH3COOH MeOH
Desolvation Temp (°C): Desolvation Gas Flow (L/hr): Cone Gas Flow (L/hr): Gas Cell Pressure:
MS/MS Analysis Function (MRM of 4 mass pairs) Transition Dwell Time Collision Energy 71.7 > 43.9 0.4 11.0 71.7 > 54.8 0.4 10.0 74.7 > 44.9 0.4 11.0 74.7 > 57.8 0.4 10.0
Delay 0.01 0.01 0.01 0.01
The 74.7>57.8 and 71.7>44.9 for for the 13C3-Acrylamide Internal Standard at 50 ppb.
450 800 50 1.1 x 10-2 mbar
4.2 x 10 3
Acrylamide
2 pg on column (20 mL of 0.1 ppb)
S/N = 10.8 71.7 > 54.8 71.7 > 43.9
O Smooth (Mn,1x2)
CH2
H2 N
1.00
2.00
3.00
Acrylamide Acrylamide
4.00
2.4 x 10 3
Acrylamide
S/N = 10.5
3.5 x 10
4
50 pg on column (20 µL of 2.5 ppb)
2.50
3.00
3.50
4.00
71.7 > 54.8 71.7 > 43.9
Smooth (Mn,1x2)
1.00
2.00
3.00
4.00
Minutes
©2004 Waters Corporation. Waters, Alliance, Quattro Premier and Atlantis are trademarks of Waters Corporation.
9
Acyclovir - Isocratic LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 50 mm, 3 µm 186001329 H2O ACN 100 mM HCOONH4, pH 3.0 1.0 mL/min 87% A; 3% B; 10% C 5 µL 10 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 2996 PDA
Acyclovir
USP Tailing = 1.34
V0 = 1.0
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
Minutes
10
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Acyclovir - Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 50 mm, 3 µm 186001329 H2O ACN 100 mM HCOONH4, pH 3.0 1.0 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 5.0 85 5 10 5 µL 10 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 2996 PDA
Acyclovir
USP Tailing = 1.00
V0 = 1.0
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
11
Allantoin LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ HILIC Silica 4.6 x 50 mm, 3 µm 186002027 100 mM NH4COOH, pH 3.0 ACN 1.0 mL/min
H N
NH
H2N
O O
5% A; 95% B 5 µL 75:25 ACN:H2O 250 µg/mL 30° C UV @ 205 nm Alliance® 2695 with 2996 PDA
N H
O
Allantoin
V0 = 1.15
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
12
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Aminoglycoside Antibiotics LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
NH2
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm 186002062 H2O ACN 0.50% Hexafluorobutyric acid in H2O 3.0 mL/min Time Profile (min) %A %B %C 0.0 75 5 20 3.0 20 60 20 10 µL 0.1 mg/mL 35° C Evaporative Light Scattering Alliance® 2695 with 2420 ELSD
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
H3C
NH
HN O
O
OH
O HO O
HO
O
NH
HO
HO
OH H2N
NH OH
NH
CH3
Streptomycin
NH2 O
O H2N HO
NH2
HO
OH
Compounds: 1. Streptomycin 2. Neomycin
NH2 OH
Neomycin
2
1
V0
0.00
0.50
1.00
1.50
2.00
2.50
3.00
Minutes
©2004 Waters Corporation. Waters, Alliance, IS and Atlantis are trademarks of Waters Corporation.
13
Amoxicillin—Isocratic LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow rate: Isocratic Mobile Phase Composition: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 50 mm, 3 µm 186001329 H2O ACN 100 mM HCOONH4, pH 3.0 1.0 mL/min 87% A; 3% B; 10% C 10 µL 40 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 2996 PDA Amoxicillin
V0 = 1.0
0.00
1.00
USP Tailing = 1.19
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
14
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Amoxicillin—Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 50 mm, 3 µm 186001329 H2O ACN 100 mM HCOONH4, pH 3.0 1.0 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 5.0 85 5 10 10 µL 40 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 2996 PDA
Amoxicillin
USP Tailing = 1.01
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
15
Analgesics LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
O
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 1% HCOOH, pH 2.3 1.0 mL/min Time Profile (min) %A %B %C 0.0 75 15 10 10.0 30 60 10 10 µL 30° C UV @ 260 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
O
OH
O
HN
O
O
Acetylsalicylic acid
Acetaminophen
Phenacetin
HO
O H N
N
N
HN O
O
O
N
N
2-Acetamidophenol Acetanilide
Compounds: 1. Acetaminophen 2. Caffeine 3. 2-Acetamidophenol 4. Acetanilide 5. Acetylsalicyic acid 6. Phenacetin
USP Tailing 1.00 0.99 0.98 1.00 0.96 0.96
Caffeine
Sample Concentrations (µg/mL) 16 18 55 22 55 18
1
6 2
4
3
V0 = 1.83
0.00
1.00
5
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
16
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Anesthetics LC Conditions: Column: Part Number: Mobile Phase A:
Atlantis™ dC18 4.6 x 150 mm, 5 µm
O
186001344 H2O
Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
N
MeOH 100 mM HCOONH4, pH 3.75 1.4 mL/min Time Profile (min) %A %B %C 0.0 65 25 10 5.0 40 50 10
O H2N O
NH2
Benzocaine
10.0 40 50 10 20 µL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
O
Butacaine
H2N
NH
N
O N
O
O
Lidocaine
Procaine
Compounds: 1. Procaine 2. Lidocaine 3. Butacaine 4. Benzocaine 5. Tetracaine
Sample Concentrations (µg/mL) 7 9 59 59 59
USP Tailing 1.07 1.04 1.04 0.98 1.20
N O HN O
Tetracaine
4
3
1
5 2
V0 = 1.37
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
17
Arbutin LC Conditions: Column: Part Number: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 2.0 mL/min 10 mM HCOONH4, pH 3.75 5 µL 175 µg/mL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
Arbutin
USP Tailing = 0.96
V0 = 0.98
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
18
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Aromatic Acids LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
OH
O
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 10.0 65 25 10 10 µL 30° C UV @ 285 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
O
OH
HO OH
OH O
HO
OH
4-Hydroxybenzoic Acid
O
Gallic Acid
OH
Vanillic Acid O OH
HO
OH
HO OH
OH
O
Gentisic Acid
Protocatechuic Acid O HO
OH
O O
Compounds: USP Tailing 1. Gallic acid 0.87 2. Protocatechuic acid 1.03 3. Gentisic acid 1.02 4. 4-Hydroxybenzoic acid 1.10 5. Vanillic acid 1.08 6. Syringic acid 1.09
Syringic acid
Sample Concentrations (µg/mL) 17 40 80 67 33 17
2 5 6 1
V0 = 0.98
4
3
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
19
Aromatic Amino Acids LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 50 mm, 3 µm 186001329 H2O MeOH 100 mM HCOONH4, pH 3.0 1.0 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 10.0 10 80 10 10 µL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
Compounds: 1. Tyrosine 2. Phenylalanine 3. Tryptophan
USP Tailing 1.18 1.13 1.11
O
O
OH
OH
NH2
NH2
HO
Phenylalanine
Tyrosine O
OH HN
NH2
Tryptophan
Sample Concentrations (µg/mL) 150 200 30
3
1
V0 = 1.18
0.00
1.00
2
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
20
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Asulam in River Water LC Conditions: Column: Part number: Mobile Phase A: Mobile Phase B: Gradient:
Oasis® MCX Extraction Method Oasis MCX Extraction Cartridge, 6 cc/150 mg (LP) Part Number: 186000255
Atlantis d C18, 2.1 x 100 mm, 3 µm 186001295 15 mM HCOONH4, pH 4.5 ACN Time Profile (min) %A %B 0.0 90 10 19.0 10 90 0.2 mL/min 20 µL Alliance® 2695 Separations Module ™
Flow rate: Injection volume: Instrument:
®
Prepare Sample: acidify to pH 2.7 Condition: 5 mL methanol/1 mL water Load: 250 mL sample (5 mL/min) Wash: 2 mL 5% MeOH/water
MS Conditions: Instrument: Ion Source: Mode: Source Temp: Desolvation Temp: Cone Gas: Desolvation Gas: Collision Gas:
Quattro Premier™ Electrospray positive and negative Multiple Reaction Monitoring 150 ˚C 450 ˚C 50 L/Hr 500 L/hr Argon
Elute: 2.5 mL MeOH/MTBE/NH4OH(22:75:3) Evaporate and Reconstitute: 250 µL 20% acetonitrile
O
MRM (ESI+) 231>156
Cone(V) 30
Coll. Energy (eV) 10
MRM (ESI+) 229>197
Cone(V) 25
Coll. Energy (eV) 15
H2 N
S O
NH COOCH3
Asulam
250 ng/L Spiked River Water
ESIAsulam Recovery 1 (n=4) 50 ng/L 81% (14%RSD) 250 ng/L 78% (7.6%RSD) 1000 ng/L 71% (12%RSD)
ESI+
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
time
Minutes
©2004 Waters Corporation. Waters, Oasis, Alliance, Quattro Premier and Atlantis are trademarks of Waters Corporation.
21
Atlantis™ dC18 100% Aqueous QC Batch Test LC Conditions: Column: Part Number: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 1.2 mL/min
H N
HN
N
F
10 mM HCOONH4, pH 3.0 7 µL Ambient UV @ 254 nm Alliance® 2690 with 2996 PDA
NH2
O
USP Tailing 1.11 1.09 1.13 1.11 1.03
Adenine
5-Fluorocytosine
Sample Concentrations (µg/mL) 35 35 12 71 43
N
N
NH2
Thiourea
Guanosine-5’-monophosphate
Compounds: 1. Thiourea 2. 5-Fluorocytosine 3. Adenine 4. Guanosine-5’-monophosphate 5. Thymine
N
H N
O NH
H3C O
Thymine
1
2 4 5
3
V0 = 1.20
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
Minutes
22
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Bamethan and Albuterol—LC/MS LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Diluent: Sample Concentration: Temperature: Instrument:
MS Conditions: Ionization Mode: Capillary (kV): Cone (V): Extractor: RF Lens: Source Temperature (°C): Desolvation Temperature (°C): Cone Gas Flow (L/Hr): Desolvation Gas Flow (L/Hr): SIR m/z:
Atlantis™ HILIC Silica 2.1 x 50 mm, 3 µm 186002011 H2O ACN 200 mM NH4COOH, pH 3.0 0.2 mL/min Time Profile (min) %A %B %C 0.0 0 95 5 5.0 45 50 5 10 µL 75:25 ACN:MeOH with 0.2% HCOOH 100 ng/mL Albuterol, 50 ng/mL Bamethan Ambient Alliance® HT 2795, Waters ZQ™
H3C
ES+ 3.5 20 3V 0.3 V 100 250 50 450 209.9 (Bamethan) 239.9 (Albuterol)
OH
NH
HO C3H
HO
NH
CH3 CH3
OH
OH
Bamethan
Albuterol
Bamethan 2.0x10
6
intens
1.5x10 6
1.0x10 6
5.0x10 5
0.0
Albuterol
500000
intens
400000 300000 200000 100000
0 0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
23
Bamethan and Albuterol—LC/UV HILIC vs. Reversed-Phase HILIC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Conditions: Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
Reversed Phase Conditions: Column: Atlantis™ dC18 4.6 x 50 mm, 3 µm Part Number: 186001329 Mobile Phase A: H2O Mobile Phase B: ACN Mobile Phase C: 100 mM NH4COOH, pH 3.0 Flow Rate: 1.4 mL/min Isocratic Mobile Phase Conditions: 82% A; 8% B: 10%C Injection Volume: 2 µL Injection Solvent: 75:25 H2O:ACN Sample Concentration: 125 µg/mL Temperature: 30° C Detection: UV @ 280 nm Instrument: Alliance® 2695 with 2996 PDA
Atlantis™ HILIC Silica 4.6 x 50 mm, 3 µm 186002027 100 mM NH4COOH, pH 3.0 ACN 2.0 mL/min 10% A; 90% B 2 µL 75:25 ACN:MeOH 125 µg/mL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
H3C
2
1
OH
NH
HO C3H
HO
HILIC
NH
1. Bamethan
0.00
0.50
CH3
OH
OH
V0 = 0.5
CH3
2. Albuterol
Atlantis™ HILIC Silica
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
4.00
4.50
5.00
2
ReversedPhase
1
V0 = 0.65
0.00
0.50
1.00
1.50
2.00
Atlantis™ dC18
2.50
3.00
3.50
Minutes
24
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Bamethan and Albuterol in Plasma—LC/MS LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Instrument:
MS Conditions: Ionization Mode: Capillary (kV): Cone (V): Extractor: RF Lens: Source Temperature (°C): Desolvation Temperature (°C): Cone Gas Flow (L/Hr): Desolvation Gas Flow (L/Hr): SIR m/z:
Atlantis™ HILIC Silica 2.1 x 50 mm, 3 µm 186002011 H2O ACN 200 mM NH4COOH, pH 3.0 0.2 mL/min Time Profile (min) %A %B %C 0.0 0 95 5 5.0 45 50 5 10 µL 50 pg/µL Albuterol 10 pg/µL Bamethan Ambient Alliance® HT 2795 with Waters ZQ™
H3C
ES+ 3.5 20 3V 0.3 V 100 250 50 450 209.9, 239.9 OH
NH
HO C3H
HO
NH
CH3 CH3
OH
OH
1. Bamethan
2. Albuterol
Oasis® HLB Extraction Method Oasis® HLB µElution Plate 186001828BA Condition/Equilibrate:* 200 µL methanol/200 µL water Load: 75 µL spiked plasma sample 75 µL internal standard with 2% ammonium hydroxide Wash: 200 µL 5% methanol in water 1
Elute: 75 µL 40% acetonitrile/60% isopropanol with 2% formic acid
2
100
Inject eluent directly onto column: NO Evaporation and Reconstitution % SIR of 2 Channels ES+ 239.8 209.9 8.97e4
0 0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
25
β-Blockers LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 85 5 10 3.0 65 25 10 10.0 65 25 10 10 µL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
NH2
O N H
O
O OH
Atenolol
O
NH
OH
Oxprenolol O HO
N H
N H
O OH
Metoprolol
O
Propranolol
OH NH2
Compounds: 1. Atenolol 2. Pindolol 3. Metoprolol 4. Oxprenolol 5. Labetolol 6. Propranolol
Sample Concentrations (µg/mL) 42 21 63 42 63 21
USP Tailing 1.02 1.06 1.13 1.32 1.31 1.41
O N H
O
NH
HO
OH
HN
Pindolol
Labetolol
2
1
3 4
V0 = 0.98
6 5
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
26
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
β-Blockers— Analytical to Preparative Scale Up LC Conditions: Mobile Phase A: Mobile Phase B: Sample Concentration: Temperature: Instrument: Detection:
0.1% HCOOH in H2O ACN/1% HCOOH (90/10) 5, 25, and 25 mg/mL in DMSO/MeOH (50/50) Ambient AutoPurification™ System UV @ 280 nm
NH2
O N H
O OH
Atenolol HO N H
Compounds: 1. Atenolol (5 mg/mL) 2. Metoprolol (25 mg/mL) 3. Propranolol (25 mg/mL)
O O
N H
O OH
Metoprolol Propranolol
Column:
Atlantis™ dC18 4.6 x 100 mm, 5 µm
Part Number: Total Mass Load:
186001340 1,650 µg
Flow Rate: Gradient:
3
V0 = 1.76
2
Injection Volume:
1.0 mL/min Time Profile (min) %A 0.0 95 1.0 95 2.0 80 4.0 50 6.0 50 30 µL
%B 5 5 20 50 50
1
Column: Part Number: Total Mass Load:
Atlantis™ dC18 Prep OBD™ 30 x 100 mm, 5 µm 186001375 70,125 µg
Flow Rate: Gradient:
3
V0 = 1.73 2
Injection Volume:
42.53 mL/min Time Profile (min) %A 0.0 95 2.90 95 3.90 80 5.90 50 7.90 50 1275 µL
%B 5 5 20 50 50
1
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
Minutes
©2004 Waters Corporation. Waters, OBD, AutoPurification and Atlantis are trademarks of Waters Corporation.
27
Catechins LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O MeOH 1% HCOOH, pH 2.3 1.0 mL/min Time Profile (min) %A %B %C 0.0 70 20 10 10.0 60 30 10 20.0 30 60 10 10 µL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
Compounds: USP Tailing 1. Gallic Acid 1.05 2. Epigallocatechin 0.94 3. Catechin 1.00 4. Caffeine 0.97 5. Epigallocatechin gallate 1.08 6. Epicatechin 0.98 7. Gallocatechin gallate 0.98 8. Epicatechin gallate 0.98 9. Catechin gallate 0.99
O
OH HO
N
N
OH O
N
O
N
OH
Gallic acid
Caffeine Catechin
Epicatechin Epigallocatechin gallate
Epigallocatechin
Sample Concentrations (µg/mL) 11 43 22 11 22 43 33 22 33
Catechin gallate
Epicatechin gallate
Gallocatechin gallate
9 1
3
7 8 4
V0 = 1.83
5
6
2
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
Minutes
28
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Catecholamines—HILIC LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Injection Solvent: Analyte Concentrations:
Detection: Temperature: Instrument:
Atlantis™ HILIC Silica 4.6 x 50 mm, 5 µm 186002028 H2O ACN 200 mM NH4COOH, pH 3.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 0 95 5 5.0 25 70 5 5 µL 75:25 ACN:MeOH with 0.2% HCOOH 42 µg/mL Norepinephrine 17 µg/mL Epinephrine
OH
NH2 HO
HO OH HO
H N
CH3
HO
Norepinephrine
Epinephrine
NH2
HO HO
Dopamine
83 µg/mL Dopamine UV @ 280 nm Ambient Alliance® 2695 with 2996 PDA
Norepinephrine
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
4.50
5.00
4.50
5.00
Epinephrine
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Dopamine
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
29
Catecholamines—Isocratic LC/UV LC Conditions: Columns: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM CH3COONH4, pH 5.0 1.0 mL/min
H N HO
NH2
HO HO
5-HT
Dopamine
88% A; 2% B; 10% C 10 µL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
NH2 OH
OH
H N
HO
O
HO
HO
N H
Epinephrine
5-HIAA OH HO
Compounds: 1. Norepinephrine (NE) 2. Epinephrine (E) 3. Dopamine (DA) 4. 3,4-Dihydroxyphenylacetic acid (DOPAC) 5. Serotonin (5-HT) 6. 5-Hydroxy-3-indoleacetic acid (5-HIAA) 7. 4-Hydroxy-3-methoxyphenylacetic acid (HVA)
USP Tailing 1.21 1.20 1.21 1.00 1.10 0.97 0.97
Sample Concentrations (µg/mL) 23 9 23 23 27 45 23
NH2
HO
Norepinephrine
HO O
HO
OH
DOPAC
OH
2 1
O HO
3
HVA
O
4
H3C
6
V0 = 1.83
5
7
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00
28.00
30.00
Minutes
30
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Catecholamines—Gradient LC/UV LC Conditions: Column: Part Number: Mobile Phase A:
H N
186001344 H2O
Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
ACN 100 mM HCOONH4, pH 3.0 1.0 mL/min Time Profile (min) %A %B 0.0 90 0
OH
HO HO
Compounds: 1. Norepinephrine (NE) 2. Epinephrine (E) 3. 3,4-Dihydroxyphenylalanine (DOPA) 4. Dopamine (DA) 5. 3-Methoxy-4-hydroxyphenylglycol (MHPG) 6. 4-Hydroxy-3-methoxymandelic acid (VMA) 7. Serotonin (5-HT) 8. 3,4-Dihydroxyphenylacetic acid (DOPAC) 9. 5-Hydroxy-3-indoleacetic acid (5-HIAA) 10. 4-Hydroxy-3-methoxyphenylacetic acid (HVA)
USP Tailing 1.16 1.17 1.15 1.04 1.16 1.17 1.10 1.09 1.11 1.12
NH2
HO O
HO HO
Sample Concentrations (µg/mL) 25 20 HO 20 25 25 HO 25 30 25 25 25
OH
HO
DOPAC
Dopamine OH
O
H N OH HO O
Epinephrine
OH
OH
O
OH
OH
NH2
HO
Norepinephrine
MHPG 9
HO
DOPA
N H
2
V0 = 1.83
7
8 10
6
1 3
2.00
HO
HO
NH2
0.00
HVA
O
O
5-HIAA
NH2
HO
OH
HO
VMA O
5-HT
%C 10
5.0 90 0 10 15.0 65 25 10 20.0 65 25 10 10 µL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
O
HO
Atlantis™ dC18 4.6 x 150 mm, 5 µm
4.00
5
4
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
31
Catecholamines—LC/ECD LC Conditions: Column: Part Number: Mobile Phase:
Flow Rate: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 2.1 x 150 mm, 3 µm 186001299 3% MeOH 97% Buffer: 10.5 g/L Citric Acid 20 mg/L EDTA 20 mg/L Octanesulfonic acid 135 mg/L NaCl pH 2.9 with NaOH 0.25 mL/min 10 µL 2.0 ng/mL 40° C Electrochemical, +600 mV (Glassy Carbon vs. ISSAC) Alliance® 2695 with 2465 ECD
OH
HO
NH2
HO
H N
HO
HO
Dopamine
Epinephrine
OH HO
HO
NH2
NH 2 HO
HO
3,4-Dihydroxybenzylamine
Norepinephrine
Compounds: 1. Norepinephrine (NE) 2. Epinephrine (E) 3. 3,4-Dihydroxybenzylamine (DHBA, Internal Standard) 4. Dopamine (DA)
1.20
1
2
1.10 1.00
3
4
nA
0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
Minutes
32
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Clonidine LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Conditions: Injection Volume: Sample Diluent: Sample Concentration: Temperature: Instrument:
Atlantis™ HILIC Silica 2.1 x 50 mm, 3 µm 186002011 200 mM NH4COOH, pH 3.0 ACN 0.3 mL/min
Cl H N
5% A; 95% B 5 µL 75:25 ACN:MeOH 10 ng/mL Ambient Alliance® HT 2795 with Waters ZQ™
MS Conditions: Ionization Mode: Capillary (kV):
ES+ 2.0
Cone (V): Extractor: RF Lens: Source Temperature (oC): Desolvation Temperature (oC):
40 3V 0.3 V 150 350
Cone Gas Flow (L/Hr): Desolvation Gas Flow (L/Hr): SIR m/z:
50 700 230.2
N
N H
Cl
Clonidine
1.0x10 7
Intensity
8.0x10 6
6.0x10 6
4.0x10 6
2.0x10 6
0.0 0.00
1.00
2.00
3.00
4.00
5.00
Minutes
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
33
Cold Medicine Products O
LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 0.1% TFA ACN 1.0 mL/min Time Profile (min) %A %B 0.0 77 23 1.0 77 23 3.0 52 48 10.0 52 48 10 µL 30° C UV @ 265 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
HN
Cl
N
N
OH
Chlorpheniramine
Acetaminophen O
N O
H N
Diphenhydramine Dextromethorphan Compounds: USP Tailing 1. Acetaminophen 1.04 2. Pseudoephedrine 1.11 3. Chlorpheniramine 1.04 4. Guaiacol glyceryl ether 1.01 5. Dextromethorphan 1.00 6. Diphenhydramine 1.08
Sample Concentrations (µg/mL) 112 4 34 10 34 10
NH
OH
Pseudophendrine
O
3
O
OH
1 4
OH
5
6
Guaiacol glyceryl ether
V0 = 1.83 2
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
34
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Cytochrome C Tryptic Digest— HILIC vs. Reversed-Phase HILIC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Instrument:
100
Reversed-Phase Conditions: Column: Atlantis™ dC18 4.6 x 50 mm, 5 µm Part Number: 186001331 Mobile Phase A: 0.1% HCOOH in H2O Mobile Phase B: 0.1% HCOOH in ACN Flow Rate: 1.0 mL/min Gradient: Time Profile (min) %A %B 0.0 100 0 45.0 60 40 Injection Volume: 10 µL Sample Concentration: 1 µg/µL Temperature: 40° C Instrument: Alliance® 2690 with Waters ZQ™
Atlantis™ HILIC Silica 4.6 x 50 mm, 5 µm 186002028 90:10 ACN:NH4CH3COOH, pH 4.5 6.5 mM NH4CH3COOH, pH 4.5 1.0 mL/min Time Profile (min) %A %B 0.0 90 10 45.0 60 40 10 µL 1 µg/µL 40° C Alliance® 2690 with Waters ZQ™
204 (T2) 261 (T6,11) 361 (T18) 434 (T21)
ReversedPhase
Peak Annotation M/Z(Fragment ID)
Atlantis™ dC18
779 (T15) %
678(T14) 634 (T4)
729 (T10)
964 (T19)
1005(T12)
585 (T8) 0
634 (T4) 100
HILIC 779 (T15) %
678 (T14) 434 (T21)
Atlantis™ HILIC Silica 585 (T8)
261 (T6,11) 204 (T2)
729 (T10) 964 (T19) 1005(T12) 361 (T18) 0 0
45 Minutes
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
35
Dextromethorphan and N-Dealkylated Metabolite LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Temperature: Instrument: Sample:
Atlantis™ dC18 2.1 x 150 mm, 5 µm 186001301 0.1% HCOOH in H2O 0.1% HCOOH in ACN 0.3 mL/min Time Profile (min) %A %B 0.0 90 10 1.5 90 10 7.0 15 85 8.0 15 85 8.1 90 10 13.0 90 10 10 µL 30° C Alliance® HT 2795, Q-Tof micro™ ES+ Dextromethorphan rat microsomal incubation at 0.5 mM
CH3
CH3
O
O
H
H N
CH3
1. Dextromethorphan
NH
2. N-Dealkylated Dextromethorphan Metabolite
1
2
Minutes
36
©2004 Waters Corporation. Waters, Q-Tof micro, Alliance and Atlantis are trademarks of Waters Corporation.
Diazepam and Hydroxylated Metabolite LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Temperature: Instrument: Sample:
CH3
Atlantis™ dC18 2.1 x 150 mm, 5 µm 186001301 0.1 % HCOOH in H2O 0.1% HCOOH in ACN 0.3 mL/min Time Profile (min) %A %B 0.0 90 10 1.5 90 10 7.0 15 85 8.0 15 85 8.1 90 10 13.0 90 10 10 µL 30° C Alliance® HT 2795, Q-Tof micro™ ES+ Diazepam rat microsomal incubation at 1 mM
CH3
O
N
O
N OH
N
Cl
1. Diazepam
Cl
N
2. Hydroxylated Diazepam Metabolite
1
2
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
37
Diuretics LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.75 1.4 mL/min Time Profile (min) %A %B %C 0.0 67 23 10 10.0 35 55 10 10 µL 30° C UV @ 248 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
Chlorthalidone
Furosemide
Compounds: 1. Hydrochlorothiazide 2. Chlorthalidone 3. Furosemide
USP Tailing 0.94 0.99 0.99
Sample Concentrations (µg/mL) 70 70 60
Hydrochlorothiazide
3 2 1
V0 = 1.37
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
38
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Drugs for Rhinitis LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
O
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 1% HCOOH, pH 2.3 1.4 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 10.0 50 40 10 10 µL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
Cl
N
N
O
N
N
N
N
Caffeine
Chlorpheniramine
Maleic acid
NH2
OH
Phenylpropanolamine
Compounds: 1. Phenylephrine 2. Maleic acid 3. Phenylpropanolamine 4. Caffeine 5. Chlorpheniramine
USP Tailing 1.10 1.17 1.26 1.05 1.26
Sample Concentrations (µg/mL) 80 33 88 11 22
Phenylephrine
4
5
2 1
V0 = 1.37 3
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
39
Fluoroquinolone Antibiotics in Beef Kidney (LC/MS/MS) LC Conditions: Column: Part number: Mobile Phase A: Mobile Phase B: Flow rate: Gradient:
Oasis® MAX Extraction Method Oasis MAX Extraction Cartridge, 6 cc/150 mg, 30 µm Part Number: 186000369
Atlantis dC18, 4.6 x 150 mm, 5 µm 1860001344 0.2% NFPA* in H2O MeOH 0.8 mL/min Time Profile (min) %A %B 0.0 60 40 10.0 20 80 50 µL 30 ˚C Alliance® 2695 ™
Injection volume: Temperature: Instrument:
®
Prepare Sample: Extract 2 g of kidney with 30 mL of 50 mM phosphate buffer (pH 7.4); centrifuge at 10000 rpm for 10 min; take 5 mL allquot for SPE Condition: 1 mL methanol, 1 mL 5 N NaOH, 1 mL water N COOH N
HN
*NFPA- nonafluoropentanoic acid (NFPA) - C4F9COOH
Load: 5 mL of prepared sample
O F
Wash 1: 1 mL 5% ammonia in water
Ciprofloxacin
MS Conditions: Instrument: Ion Source: Mode: Corona: Source Temp: Desolvation Temp: Cone Gas (N2): Desolvation Gas (N2): Collision Gas:
Quattro micro™ APCI+ Multiple Reaction Monitoring 0.8 V 150 ˚C 625 ˚C 175 L/Hr 250 L/Hr Argon
H3C
N N
Wash 2: 1 mL methanol
N
F
COOH
Elute: 3 mL methanol (4% formic acid)
Enrofloxacin
9.32
flumequine
262.2 > 244.1
Compound
10µg/kg % Recovery (± % RSD)
50µg/kg % Recovery (± % RSD)
flumequin enoxacin norfloxacin
74 (± 9.1) 63 (± 5.7) 64 (± 8.1)
70 (± 17) 65 (± 13) 65 (± 9.9)
sarafloxacin ofloxacin enrofloxacin
68 (± 9.5) 72 (± 7.0) 73 (± 5.3)
71 (± 9.8) 80 (± 8.6) 76 (± 8.9)
danofloxacin lomefloxacin ciprofloxacin
64 (± 8.8) 76 (± 6.9) 70 (± 8.7)
68 (± 8.2) 76 (± 7.9) 62 (± 6.1)
7.67
enoxacin
321.2 > 303.1 7.87
norfloxacin
320.2 > 302.1 8.46
sarafloxacin
386.2 > 368.2 External standard calculation Results calculated against standards in matrix (n=5)
7.65
ofloxacin
362.2 > 344.1 8.06
enrofloxacin
360.2 > 342.1 8.02
danofloxacin
358.2 > 340.1 8.12
lomefloxacin
352.2 > 334.1 7.98
ciprofloxacin 5
40
332.2 > 314.1 6
7
8
9
10
11
12
Compound Energy(eV)
MW
(MRM)
flumequine enoxacin norfloxacin sarafloxacin ofloxacin enrofloxacin danofloxacin lomefloxacin ciprofloxacin
261 320 319 385 361 359 357 351 331
262 321 320 386 362 360 358 352 332
> > > > > > > > >
244 303 302 368 344 342 340 334 214
Cone(V)
Coll.
50 50 50 50 50 50 50 50 50
20 20 23 25 20 20 25 20 20
time
©2004 Waters Corporation. Waters, Oasis, Alliance, Quattro micro and Atlantis are trademarks of Waters Corporation.
Ginsenosides LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentrations: Temperature: Detection: Instrument:
OH
OH OH Atlantis™ dC18 4.6 x 150 mm, 5 µm HO 186001344 H2O O HO ACN 1.0 mL/min O H3C CH3 Time Profile HO CH3 (min) %A %B CH3 0.0 75 25 CH3 4.0 60 40 10.0 60 40 OH O 10 µL O 63 µg/mL each
O HO
O
H3C CH3
OH
H3C
CH3
1. Ginsenoside Rg1
1.01
3. Ginsenoside Rb2 4. Ginsenoside Rd
1.13 0.99
OH
O O
CH3
H3C
HO
CH3
OH
CH3
OH
H3C
HO
O
CH3
H
H
OH
OH
CH3
OH H CH3
HO
1.02
2. Ginsenoside Rc
OH OH
Ginsenoside Rc
CH3
HO
OH
O
CH3CH3
OH
USP Tailing
O
H3C
O
Ginsenoside Rg1
Compounds:
OH
OH
O
HO HO
OH
OH
OH
OH
30° C UV @ 203 nm Alliance® 2695 with 2996 PDA
HO
O
OH
O
O
O
H
CH3
OH
Ginsenoside Rb2
O H H3C O H CH3 OH OH
O OH OH
CH3
H3C O
OH
OH
O
HO OH
CH3 HO
O
O OH
OH
CH3
OH
O
1
O OH
OH
2
CH3
OH H C 3
CH3
OH
Ginsenoside Rd 4
3
V0 = 1.83
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
41
Guanine and Acyclovir— HILIC vs. Reversed-Phase HILIC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
Reversed-Phase Conditions: Column: Atlantis™ dC18 4.6 x 50 mm, 3 µm Part Number: 186001329 Mobile Phase A: 0.2% HCOOH in H2O Mobile Phase B: 0.2% HCOOH in ACN Flow Rate: 1.4 mL/min Gradient: Time Profile (min) %A %B %C 0.0 100 0 0 5.0 95 5 0 Injection Volume: 1 µL Sample Diluent: 0.02N NaOH Sample Concentration: 83 µg/mL Temperature: 30° C Detection: UV @ 205 nm Instrument: Alliance® 2695 with 2996 PDA
Atlantis™ HILIC Silica 4.6 x 50 mm, 3 µm 186002027 0.2% HCOOH in H2O 0.2% HCOOH in ACN 2.0 mL/min 10% A; 90% B 1 µL 60:40 ACN:0.02N NaOH 83 µg/mL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
O N
HN
H2N
O
N
N
HN
OH
N
H N 2
N
N H
O
1. Acyclovir
2. Guanine
1 2
V0 = 0.5
HILIC
Atlantis™ HILIC Silica
2 1
V0 = 0.65
0.00
0.50
ReversedPhase 1.00
1.50
Atlantis™ dC18
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
42
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Herbicides, (Five Polar Herbicides, 200 ng/mL) by LC/MS/MS LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow rate: Gradient:
Injection Volume: Instrument:
C2H5
Atlantis™ dC18, 2.1 x 100 mm, 3 µm 186001295 15mM HCOONH4, pH 4.5 ACN 200 µL/min Time Profile (min) %A %B 0.0 90 10 19.0 10 90 20 µL Alliance® 2690
COOH
N
H2 N
CH3
S
Imazethapyr (acid)
NH COOCH3
O
NH O
Asulam (base)
CH3
OCH 3 O
O S
Cl
N
NH
N
OCH 3
O
Chlorsulfuron (neutral)
Cl NH 2
HC
Picloram (acid)
Quattro Ultima™ Electrospray (ESI- and ESI+) Multiple Reaction Monitoring
N
C NH
COOH Cl
Cl
MS Conditions: Mass spectrometer Instrument:
O
H N CH3
HN
N NH2 N H
Amitrole (base)
200 ng/L Spiked River Water Sample 4 3
ESI-
Compounds 1. Amitrole (80%) 2. Picloram (75%) 3. Asulam (60%) 4. Imazethapyr (75%) 5. Chlorsulfuron (90%)
2
2.7
Compound
4.2
3.7
Picloram 3 5
ESI+
MW
Mode
(mrm)
cone (V)
Coll. Energy(ev)
241.5
ESI-
239-195
20
10
Imazethapyr
289
ESI-
288--244
25
15
Asulam
230
ESI-
229-197
30
10
Asulam
230
ESI+
231-156
30
10
Chlorsulfron
357
ESI+
358-141
20
17
Amitrole
84
ESI+
85-57
20
15
1
2.5
5.0
3.7 Minutes
©2004 Waters Corporation. Waters, Quattro Ultima and Atlantis are trademarks of Waters Corporation.
43
Lipid Soluble Antioxidants LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Mobile Phase D: Flow Rate: Gradient:
Injection Volume: Temperature:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 1% HCOOH, pH 2.3 MeOH 2.0 mL/min Time Profile (min) %A %B %C 0.0 55 17.5 10 4.0 35 27.5 10 6.0 4 45 10 15.0 4 45 10 10 µL 30° C
Detection: Instrument:
UV @ 280 nm Alliance® 2695 with 2996 PDA
Compounds: 1. Propyl gallate (PG) 2. 2,4,5-Trihydroxybutyrophenone (THBP) 3. Tert-butylhydroquinone (TBHQ) 4. Butylated hydroxyanisole (BHA) 5. 2,6-Di-tert-butyl-4-hydroxymethylphenol 6. Octyl gallate (OG) 7. Butylated hydroxytoluene (BHT) 8. Lauryl gallate (LG)
USP Tailing 1.08 1.09 1.01 1.02 1.06 1.11 0.95 1.16
Propyl gallate 2,4,5-Trihydroxybutyrophenone %D 17.5 27.5 4 4 Butylated hydroxyanisole
Tert-butylhydroquinone
Sample Concentrations (µg/mL) 10 10 19 38 38 19 38 23
Lauryl gallate
2,6-Di-tert-butyl-4-hydroxymethylphenol
6
Octyl gallate
4
8
2 1
V0 = 0.98
5 7
Butylated hydroxytoluene
3
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
Minutes
44
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Morphine and Morphine-3--β-Glucuronide— HILIC vs. Reversed-Phase HILIC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
Reversed-Phase Conditions: Column: Atlantis™ dC18 4.6 x 50 mm, 3 µm Part Number: 186001329 Mobile Phase A: H2O Mobile Phase B: ACN Mobile Phase C: 100 mM NH4COOH, pH 3.0 Flow Rate: 1.4 mL/min Isocratic Mobile Phase Conditions: 88% A: 2% B: 10% C Injection Volume: 5 µL Injection Solvent 75:25 H2O:MeOH Sample Concentration: 125 µg/mL Temperature: 30° C Detection: UV @ 280 nm Instrument: Alliance® 2695 with 2996 PDA
Atlantis™ HILIC Silica 4.6 x 50 mm, 3 µm 186002027 H2O ACN 100 mM NH4COOH, pH 3.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 0 90 10 5.0 40 50 10 5 µL 75:25 ACN:MeOH 125 µg/mL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
COOH OO
HO
1 2
HO
O
HILIC
H
OH OH
NCH3
O
HO
H
NCH3
HO
Morphine
Morphine 3-ß-D-Glucuronide
V0 = 0.5
Atlantis™ HILIC Silica
2
ReversedPhase 1
V0 = 0.65
Atlantis™ dC18
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
45
Nalidixic Acid Antibiotics by LC/MS 1.0 Minute Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Instrument:
MS Conditions: Waters ZQ™ ES+ Capillary (kV) Cone (V) Extractor RF Lens Source Temp (˚C) Desolvation Temp (˚C) Cone Gas Flow (L/Hr) Desolvation Gas FLow(L/Hr) LM Resolution HM Resolution Ion Energy Multiplier (V)
Atlantis™ dC18, 2.1 x 20 mm IS™, 3 µm 186002058 H2O MeOH 1% HCOOH in H2O 0.4 mL/min Time Profile (min) %A %B %C 0.0 50 40 10 1.0 30 60 10 2 µL 10 µg/mL 30˚ C Alliance® HT 2795 with Waters ZQ™
The top figure is the total ion current, followed by the extracted ion signals for each of the three analytes. 0.88
*The “extra” peak in the cinoxacin panel is the isotope from oxolinic acid.
3.5 5.0 3.0 0.1 150 400 50 500 15 15 0.5 650
1: Scan ES+ TIC 1.15e9
0.65
Compounds 1. Cinoxacin 2. Oxolinic Acid 3. Nalidixic Acid
1: Scan ES+ TIC 1.5e9
0.59
0 0.59 0.65
*
MW 262.2 261.2 232.2
1: Scan ES+ 263 4.05e7
Cinoxacin
Cinoxacin
0.88
O
1: Scan ES+ 263 4.05e7
O
O
O
0 O
1: Scan ES+ 262 1: Scan1.19e8 ES+
Oxolinic acid
262 1.19e8
Oxolinic acid
O
N
0.65
N
N HO
HO
O
O
Oxolinic acid
Cinoxacin
0 0.89
1: Scan ES+ 233 1.28e8
Nalidixic Nalidixic acid acid 0.00
0.20
0.40
1: Scan ES+ 233 1.28e8
0.60
0.80
N
N
OH
O
O
Nalidixic acid
1.00
Minutes
46
©2004 Waters Corporation. Waters, IS, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
Nalidixic Acid Antibiotics by LC/MS 2.0 Minute Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Instrument:
MS Conditions: Waters ZQ™ ES+ Capillary (kV) Cone (V) Extractor RF Lens Source Temp (˚C) Desolvation Temp (˚C) Cone Gas Flow (L/Hr) Desolvation Gas FLow(L/Hr) LM Resolution HM Resolution Ion Energy Multiplier (V)
Atlantis™ dC18, 2.1 x 20 mm IS™, 3 µm 186002058 H2O MeOH 1% HCOOH in H2O 0.4 mL/min Time Profile (min) %A %B %C 0.0 60 30 10 2.0 40 50 10 2 µL 10 µg/mL 30˚ C Alliance® HT 2795 with Waters ZQ™
The top figure is the total ion current, followed by the extracted ion signals for each of the three analytes.
1: Scan ES+ 1.62
TIC 2.44e9
*The “extra” peak in the cinoxacin panel is the isotope from oxolinic acid.
1: Scan ES+ TIC 2.44e9
1.15 0.98
0.98
3.5 5.0 3.0 0.1 150 400 50 500 15 15 0.5 650
Compounds 1. Cinoxacin 2. Oxolinic Acid 3. Nalidixic Acid
1: Scan ES+ 263 8.37e7
1.15*
MW 262.2 261.2 232.2
Cinoxacin 1: Scan ES+ 263 8.37e7
Cinoxacin
1: Scan ES+ 262 2.31e8
1.15
O
O
O
O
O
N
N
N HO
HO
O
O
Oxolinic acid
1: Scan ES+ 262 2.31e8
Oxolinic acid
1: Scan ES+ 233 2.74e8
1.62
Oxolinic acid
Cinoxacin
N
N
OH
Nalidixic acid 1: Scan ES+ 233 2.74e8
Nalidixic acid 0.00
0.25
0.50
O
0.75
1.00
1.25
1.50
1.75
O
O
Nalidixic acid
2.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
47
Nalidixic Acid Antibiotics by LC/MS 3.0 Minute Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Instrument:
MS Conditions: Waters ZQ™ ES+ Capillary (kV) Cone (V) Extractor RF Lens Source Temp (˚C) Desolvation Temp (˚C) Cone Gas Flow (L/Hr) Desolvation Gas FLow (L/Hr) LM Resolution HM Resolution Ion Energy Multiplier (V)
Atlantis™ dC18, 2.1 x 20 mm IS™, 3 µm 186002058 H2O MeOH 1% HCOOH in H2O 0.4 mL/min Time Profile (min) %A %B %C 0.0 60 30 10 3.0 40 50 10 2 µL 10 µg/mL 30˚C Alliance® HT 2795 with Waters ZQ™
3.5 5.0 3.0 0.1 150 400 50 500 15 15 0.5 650
The top figure is the total ion current, followed by the extracted ion signals for each of the three analytes. *The “extra” peak in the cinoxacin panel is the isotope from oxolinic acid.
1.09
1.95
1: Scan ES+ TIC 4.72e9 1: Scan ES+ TIC 4.72e9
1.33
0 1.10
Cinoxacin Cinoxacin
1.33
*
Compounds 1. Cinoxacin
MW 262.2
2. Oxolinic Acid
261.2
3. Nalidixic Acid
232.2
1: Scan ES+ 263 2.08e8
1: Scan ES+ 263 2.08e8
O
O
O
O
0 1.33
Oxolinic acid
1: Scan ES+ 262 3.11e8
O
N
N
N HO
HO
O
O
1: Scan ES+ 262 3.11e8
Oxolinic acid
O
Oxolinic acid
Cinoxacin
0
1: Scan ES+ 233 4.87e8 1: Scan ES+ 233 4.87e8
Nalidixic acid
Nalidixic acid 0 0.00
N
N
OH
O
O
Nalidixic acid 0.50
1.00
1.50
2.00
2.50
3.00
Minutes
48
©2004 Waters Corporation. Waters, IS, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
Nalidixic Acid Antibiotics by LC/MS 5.0 Minute Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Instrument:
MS Conditions: Waters ZQ™ ES+ Capillary (kV) Cone (V) Extractor RF Lens Source Temp (˚C) Desolvation Temp (˚C) Cone Gas Flow (L/Hr) Desolvation Gas FLow (L/Hr) LM Resolution HM Resolution Ion Energy Multiplier (V)
Atlantis™ dC18, 2.1 x 20 mm IS™, 3 µm 186002058 H2O MeOH 1% HCOOH in H2O 0.2 mL/min Time Profile (min) %A %B %C 0.0 60 30 10 5.0 40 50 10 5 µL 10 µg/mL 30˚C Alliance® HT 2795 with Waters ZQ™
3.5 5.0 3.0 0.1 150 400 50 500 15 15 0.5 650
The top figure is the total ion current, followed by the extracted ion signals for each of the three analytes. *The “extra” peak in the cinoxacin panel is the isotope from oxolinic acid.
1: Scan ES+ 1: Scan ES+ TIC TIC 2.94e9 2.94e9
3.54 2.44
2.05
2.44 2.05
*
Compounds 1. Cinoxacin
MW 262.2
2. Oxolinic Acid
261.2
3. Nalidixic Acid
232.2
1: Scan 1: Scan ES+ES+ 263263 1.32e8 1.32e8
Cinoxacin
O
O
O
O
Cinoxacin O
2.44
1: Scan ES+ES+ 1: Scan 262262 4.07e8 4.07e8
Oxolinic acid
O
N
N
N HO
HO
O
O
Oxolinic acid
Cinoxacin Oxolinic acid 1: Scan 1: Scan ES+ES+ 233233 2.91e8 2.91e8
3.54
Nalidixic acid
N
N
OH
O
Nalidixic acid 0.00
0.50
1.00
O
Nalidixic acid 1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
49
Nalidixic Acid Antibiotics —LC/MS LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 2.1 x 30 mm, 3 µm 186001287 H2O MeOH 1% HCOOH in H2O 0.8 mL/min with 0.2 mL/min to MS Time Profile (min) %A %B %C 0.0 75 15 10 5.0 40 50 10 10 µL 20 µg/mL 30° C UV @ 254 nm and MS ESI+ Alliance® 2795 with 2996 PDA and Waters ZQ™
Waters ZQ Settings: Source: ESI+ Capillary (kV) Cone (V) Extractor RF Lens Source Temp Desolvation Temp Cone gas Flow (L/Hr) Desolvation Gas Flow (L/Hr) LM Resolution HM Resolution Ion Energy Multiplier (V)
3
100
Scan ES+ TIC 5.35e9
3.5 50 3.0 0.1 150 400 50 500 15 15 0.5 650
Compounds 1. Cinoxacin
MW 262.2
2. Oxolinic Acid
261.2
3. Nalidixic Acid
232.2
O
%
1
O
O
O
2
O
O
N
N
N HO
HO
0
O
O
100
Oxolinic acid
Cinoxacin
Diode Array 254nm 5.22e4
%
N
N
OH
O
O
Nalidixic acid
-16 0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
50
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
Nalidixic Acid Antibiotics —Isocratic LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Mobile Phase D: Flow Rate: Isocratic MobilePhase Composition: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18, 4.6 x 20 mm IS™, 3 µm, 186002062 H2O MeOH ACN 1% HCOOH in H2O 4 mL/min 55% A, 30% B, 5% C, 10% D 5 µL 5 µg/mL 30˚ C UV @ 254 nm Alliance® 2965 with 2996 PDA
Compounds 1. Cinoxacin 2. Oxolinic Acid 3. Nalidixic Acid
O
MW 262.2 261.2 232.2
O
O
O
O
O
N
N
N HO
HO
O
O
Oxolinic acid
Cinoxacin 2
V0 = 0.09 1
3
N
N
OH
O
O
Nalidixic acid
0.00
0.50
1.00
1.50
2.00
Minutes Minutes
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
51
Nucleic Acid Bases—Gradient Effect of Polar Solvent on Retention in HILIC LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
H N
Atlantis™ HILIC Silica, 4.6 x 50 mm, 3 µm 186002027 H2O, MeOH, or IPA ACN 200 mM NH4COOH, pH 3.0 1.0 mL/min Time Profile (min) %A %B %C 0.0 5 90 5 5.0 45 50 5 2 µL 75:25 ACN:MeOH 25 µg/mL 30° C UV @ 260 nm Alliance® 2695 with 2996 PDA
H N
O N
O N
F
NH2
NH2 Cytosine
5-Fluorocytosine
O
H N
O
F
HN
NH
O
O Uracil
N H
5-Fluorouracil
Compounds 1. 5-Fluorouracil 2. Uracil 3. 5-Fluorocytosine 4. Cytosine
2 4
Initial 90 ACN: 5 H2O: 5 buffer
1
Final 50 ACN: 45 H2O: 5 buffer
3
Replace H2O with MeOH 2 1
Initial 90 ACN: 5 MeOH: 5 buffer Final 50 ACN: 45 MeOH: 5 buffer
4 3
Replace MeOH with IPA 2 1
Initial 90 ACN: 5 IPA: 5 buffer Final 50 ACN: 45 IPA: 5 buffer 4
3
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
52
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Nucleic Acid Bases— HILIC vs. Reversed-Phase HILIC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
Reversed-Phase Conditions: Column: Atlantis™ dC18 4.6 x 50 mm, 3 µm Part Number: 1860001329 Mobile Phase: 10 mM CH3COONH4 pH 5.0 Flow Rate: 1.4 mL/min Isocratic Mobile Phase Conditions: 100% A Injection Volume: 2 µL Injection Solvent: H2O Sample Concentration: 25 µg/mL Temperature: 30° C Detection: UV @ 254 nm Instrument: Alliance® 2695 with 2996 PDA
Atlantis™ HILIC Silica 4.6 x 50 mm, 3 µm 186002027 MeOH ACN 200 mM CH3COONH4, pH 5.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 3 95 2 5.0 40 50 10 2 µL 75:25 ACN:MeOH 25 µg/mL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
H N
H N
O N
O N
F
NH2
NH2 Cytosine
5-Fluorocytosine
Compounds 1. 5-Fluorouracil 2. Uracil 3. 5-Fluorocytosine 4. Cytosine
O
H N
O NH
O
O Uracil
4
2
F
HN N H
5-Fluorouracil
3
1
HILIC
V0 = 0.5
Atlantis™ HILIC Silica
4 2
Reversed-Phase
3 1
V0 = 0.65
0.20
0.40
0.60
Atlantis™ dC18 0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
53
Nucleic Acid Bases —Gradient LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
H N
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM CH3COONH4, pH 5.0 1.0 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 10.0 84 6 10 10 µL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
H N
O N
N
F
NH2
NH2 Cytosine
5-Fluorocytosine
O
H N
O
F
HN
NH
O
O Uracil
N H
5-Fluorouracil
H N
O H N USP Tailing 1.11
Sample Concentrations (µg/mL) 82
2. 5-Fluorocytosine 3. Uracil 4. 5-Fluorouracil
1.08 1.05 1.18
82 4 41
5. Guanine 6. Thymine
1.16 1.18
10 82
7. Adenine
1.25
164
Compounds: 1. Cytosine
NH
N
O
Guanine
NH2
O NH
H3C
NH2
N
HN
O
Thymine
N N
N Adenine
7 4
1 5
2
6
3
V0 = 1.83
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
54
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Nucleic Acid Bases —Isocratic LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Injection Solvent: Sample Concentration: Temperature: Detection: Instrument:
H N
Atlantis™ HILIC Silica, 4.6 x 50 mm, 3 µm 186002027 100 mM NH4COOH ACN 1.0 mL/min
H N
O N
N
F
NH2
NH2 Cytosine
12% A; 88% B 10 µL 75:25 ACN:MeOH 25 µg/mL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
O
5-Fluorocytosine
O
H N
O
F
HN
NH
O
O Uracil
N H
5-Fluorouracil
Compounds 1. 5-Fluorouracil 2. Uracil 3. 5-Fluorocytosine 4. Cytosine
2
3
1
0.00
0.50
1.00
1.50
4
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
55
Nucleosides LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 1% HCOOH, pH 2.3 1.4 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 10.0 82 8 10 10 µL 19 µg/mL 30° C UV @ 260 nm Alliance® 2695 with 2996 PDA
2’-Deoxycytidine Cytidine
2’-Deoxyadenosine
Uridine
2’-Deoxyguanosine
Compounds:
USP Tailing
1. Cytidine
1.05
2. 2’-Deoxycytidine
1.02
3. Uridine 4. Adenosine
1.08 1.07
5. 2’-Deoxyadenosine
1.08
6. Guanosine 7. 2’-Deoxyguanosine
1.09 1.10 1.10
8. Thymidine
Adenosine
Thymidine Guanosine
5 4
3
1
7 6 8 2
V0 = 1.37
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
56
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Organic Acids LC Conditions: Column: Part Number: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 0.5 mL/min 20 mM NaH2PO4, pH 2.7 10 µL 30° C UV @ 210 nm Alliance® 2695 with 2996 PDA
Oxalic acid
Malic acid
O
OH Acetic acid Pyruvic acid
H
Succinic acid
Compounds: 1. Oxalic acid 2. Pyruvic acid 3. Tartaric acid 4. Malic acid 5. Lactic acid 6. Acetic acid 7. Maleic acid 8. Fumaric acid 9. Succinic acid
Sample Concentrations (µg/mL) 25 30 15 61 243 243 3 3 158
USP Tailing 1.35 1.12 1.13 1.19 1.24 1.30 1.24 1.23 1.26
Lactic acid Tartaric acid
Maleic acid
Fumaric acid
3
1 7 8
V0 = 3.51 5 4
6
2
0.00
2.00
4.00
6.00
9
8.00
10.00
12.00
14.00
16.00
18.00
20.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
57
Oxidative Stress Markers —5% ACN, pH 3.0 LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.0 1.4 mL/min
2’-Deoxyguanosine
85% A; 5% B; 10% C 10.0 µL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
Compounds: 1. 2’-Deoxyguanosine 2. 8-Hydroxy-2’-deoxyguanosine
USP Tailing 1.04 0.99
Sample Concentrations (µg/mL) 75 75
8- Hydroxy-2’-Deoxyguanosine
1
2
V0 = 1.37
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
58
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Oxidative Stress Markers —5% MeOH, pH 5.0 LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 100 mm, 3 µm 186001337 H2O MeOH 100 mM CH3COONH4, pH 5.0 1.0 mL/min
2’-Deoxyguanosine
85% A; 5% B; 10% C 10 µL 30° C UV @ 285 nm Alliance® 2695 with 2996 PDA
Compounds: 1. 2’-Deoxyguanosine 2. 8-Hydroxy-2’-deoxyguanosine
USP Tailing 1.12 1.11
Sample Concentrations (µg/mL) 75 75
8- Hydroxy-2’-Deoxyguanosine
1
2
V0 = 1.83
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
59
Oxidative Stress Markers —10% MeOH, pH 5.0 LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O MeOH 100 mM CH3COONH4, pH 5.0 1.0 mL/min
2’-Deoxyguanosine
80% A; 10% B; 10% C 20 µL 30° C UV @ 285 nm Alliance® 2695 with 2996 PDA
Compounds: 1. 2’-Deoxyguanosine
USP Tailing 1.15
Sample Concentrations (µg/mL) 75
1.11
75
2. 8-Hydroxy-2’-deoxyguanosine
8- Hydroxy-2’-Deoxyguanosine
1
2
V0 = 1.83
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
60
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Paclitaxel LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.0 1.4 mL/min 30% A; 60% B; 10% C 2 µL 0.25 µg/mL 30° C UV @ 238 nm Alliance® 2695 with 2996 PDA
Paclitaxel
V0 = 1.38 USP Tailing = 1.01
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
61
Peptides LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 50 mm, 5 µm 186001331 0.02% TFA in H2O 0.016% TFA in ACN 0.75 mL/min Time Profile (min) %A %B 0.0 100 0 25.0 50 50 20 µL 40° C 18 µg UV @ 220 nm Alliance® 2690 with 2996 PDA
Injection Volume: Temperature: Total Mass Load: Detection: Instrument:
Compounds: 1. L2275 2. A6677 3. Bradykinin 4. Angiotensin II 5. Angiotensin I 6. Substance P 7. Renin Substrate 8. Insulin B Chain 9. Melittin
7
4
5
6
8 9
3
V0 = 0.79
1 2
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
Minutes
62
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Phenones— 2.1 x 20 mm IS™ Column LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
O
Atlantis™ dC18 2.1 x 20 mm IS™, 3 µm 186002058 0.1% HCOOH in Water 0.1% HCOOH in ACN 0.6 mL/min Time Profile (min) %A %B 0.0 100 0 4.0 0 100 5 µL 20 µg/mL 30° C UV @ 254 nm Alliance® 2795 with 996 PDA
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
O
H N
H3C N
N
N
O
O
O
CH3
Theophylline
2-Acetylfuran
O
CH3
Acetophenone
Propiophenone
Butyrophenone
O
O
O
Heptanophenone
O
Benzophenone
6. Butyrophenone 7. Benzophenone 8. Valerophenone
NH
Acetanilide
O
O
Octanophenone Compounds: 1. Theophylline 2. 2-Acetylfuran 3. Acetanilide 4. Acetophenone 5. Propiophenone
H3C
O
Hexanophenone
Valerophenone
9. Hexanophenone 10. Heptanophenone 11. Octanophenone
2 7
V0 = 0.17
4
1
6 8
11
9
5
10
3
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
63
Phenones— 4.6 x 20 mm IS™ Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
O
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm 186002062 0.1% HCOOH in Water 0.1% HCOOH in ACN 3.0 mL/min Time Profile (min) %A %B 0.0 100 0 4.0 0 100 10 µL 20 µg/mL 30° C UV @ 254 nm Alliance® 2795 with 996 PDA
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
O
H N
H3C N
N
N
O
O
O
CH3
Theophylline
Acetanilide
O
O
O
CH3
Acetophenone
Propiophenone
Butyrophenone
O
O
O
Heptanophenone
O
Benzophenone
6. Butyrophenone 7. Benzophenone 8. Valerophenone
NH
2-Acetylfuran
Octanophenone Compounds: 1. Theophylline 2. 2-Acetylfuran 3. Acetanilide 4. Acetophenone 5. Propiophenone
H3C
O
Hexanophenone
Valerophenone
9. Hexanophenone 10. Heptanophenone 11. Octanophenone
7 2
4
6
11
8
V0 = 0.15
1
9
5
10
3
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
64
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
Phthalic Acids Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O MeOH 100 mM HCOONH4, pH 3.75 1.4 mL/min Time Profile (min) %A %B %C 0.0 55 35 10 5.0 30 60 10 10 µL 30° C UV @ 280 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
Isophthalic acid Phthalic acid
Terephthalic acid
Compounds: 1. Phthalic acid 2. Terephthalic acid 3. Isophthalic acid
USP Tailing 1.10 1.03 1.00
Sample Concentrations (µg/mL) 43 36 43
1 2
3
V0 = 1.37
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
65
Phthalic Esters Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentrations: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 1.0 mL/min Time Profile (min) %A %B 0.0 10 90 4.0 0 100 10 0 100 10.0 µL 200 µg/mL each 30° C UV @ 285 nm Alliance® 2695 with 2996 PDA
Dibutyl phthalate
Dimethyl phthalate
Compounds:
USP Tailing
1. Dimethyl phthalate
1.06
2. Dibutyl phthalate
1.04
3. Dioctyl phthalate
0.99 Dioctyl phthalate
1
2
V0 = 1.83 3
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
66
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Polar and Non-Polar Compounds— Analytical to Preparative Scale Up Conditions: Mobile Phase A: Mobile Phase B: Sample Concentration: Temperature: Instrument: Detection:
OH
0.1% HCOOH in H2O ACN/1% HCOOH (90/10) 10 mg/mL each in DMSO Ambient AutoPurification™ System UV @ 260 nm
O
H3C
O
NH
OH
HO
Acetanilide
H
H
H
O
Hydrocortisone
Compounds: 1. Acetanilide 2. Hydrocortisone 3. Acenaphthene
Acenaphthene
Atlantis™ dC18 4.6 x 100 mm, 5 µm 186001340 1 2 2,700 µg
Column: Part Number: Total Mass Load:
Flow Rate: Gradient:
3
V0 = 1.76 Injection Volume:
Atlantis™ dC18 Prep OBD™ 19 x 100 mm, 5 µm
Column: Part Number: Total Mass Load:
186002116 48,000 µg
Flow Rate: Gradient:
1 2
3
V0 = 1.74 Injection Volume:
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
1.0 mL/min Time Profile (min) %A 0.0 95 1.0 95 14.0 0 20.0 0 90 µL
17.06 mL/min Profile Time (min) %A 95 0.0 95 3.02 16.02 0 22.02 0 1600 µL
%B 5 5 100 100
%B 5 5 100 100
22.00
Minutes
©2004 Waters Corporation. Waters, OBD, AutoPurification and Atlantis are trademarks of Waters Corporation.
67
Polar and Non-Polar Compound Test Mix— 2.1 x 20 mm IS™ Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Atlantis™ dC18 2.1 x 20 mm IS™, 3 µm 186002058 0.1% HCOOH in H2O 0.1% HCOOH in ACN 0.6 mL/min Time Profile (min) %A %B 0.0 100 0 4.0 0 100 5 µL 20 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 996 PDA
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
2-Bromofluorene 8-Bromoguanosine O CI
CN
N
O
NH2
2-Amino-7chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitrile Triamcinolone
Compounds:
USP Tailing
1. 8-bromoguanosine 2. Acetanilide
1.15 1.01
3. Triamcinolone 4. Hydrocortisone 5. 2-Amino-7-chloro-5-oxo-5H[1]benzopyrano [2,3-b]pyridine-3-carbonitrile 6. 6α-Methyl-17α-hydroxyprogesterone 7. 3-Aminofluoranthene 8. 2-Bromofluorene 9. Perylene 10. Naphtho(2,3-a)pyrene
0.99 1.01 6α-Methyl-17α-hydroxyprogesterone Perylene
3-Aminofluoranthene
1.02 0.96 1.01 1.03 1.01 1.03
Acetanilide
Naphtho(2,3-a)pyrene
4
Hydrocortisone 9 2
V0 = 0.25
8 5
1
6 7
3
10
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
68
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
Polar and Non-Polar Compound Test Mix— 4.6 x 20 mm IS™ Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm 186002062 0.1% HCOOH in H2O 0.1% HCOOH in ACN 3.0 mL/min Time Profile (min) %A %B 0.0 100 0 4.0 0 100 10 µL 20 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 996 PDA
2-Bromofluorene 8-Bromoguanosine O CI
CN
N
O
NH2
2-Amino-7chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitrile Triamcinolone
Compounds:
USP Tailing
1. 2. 3. 4. 5.
8-bromoguanosine Acetanilide Triamcinolone Hydrocortisone 2-Amino-7-chloro-5-oxo-5H[1]benzopyrano [2,3-b]pyridine-3-carbonitrile 6. 6α-Methyl-17α-hydroxyprogesterone 7. 3-Aminofluoranthene 8. 2-Bromofluorene 9. Perylene 10. Naphtho(2,3-a)pyrene
1.15 1.01 0.99 1.01
6α-Methyl-17α-hydroxyprogesterone Perylene
3-Aminofluoranthene
1.02 0.96 1.01 1.03 1.01 1.03
Acetanilide
Naphtho(2,3-a)pyrene
4
Hydrocortisone
V0 = 0.17 1
2
7
3
0.50
1.00
9
8
6
5
1.50
10
2.00
2.50
3.00
3.50
4.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
69
Polar and Non-Polar Compound Test Mix— 2.1 x 30 mm Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Atlantis™ dC18 2.1 x 30 mm, 3 µm 186001287 0.1% HCOOH in H2O 0.1% HCOOH in ACN 0.8 mL/min Time Profile (min) %A %B 0.0 100 0 0.2 100 0 3.2 0 100 4.0 0 100 2 µL Ambient UV @ 254 nm 10 pts/sec Alliance® 2795 with 2996 PDA
Injection Volume: Temperature: Detection: Sampling Rate: Instrument:
2-Bromofluorene 8-Bromoguanosine O CI
CN
N
O
3-Aminofluoranthene
NH2
2-Amino-7chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitrile Triamcinolone
Acetanilide 6α-Methyl-17α-hydroxyprogesterone Compounds: 1. 8-bromoguanosine 2. Acetanilide
USP Tailing 1.15 1.01
Sample Concentrations (µg/mL) 31 19
0.99 1.01
31 12
1.02 0.96 1.01
12 25 31
1.03 1.01 1.03
16 12 12
3. Triamcinolone 4. Hydrocortisone 5. 2-Amino-7-chloro-5-oxo-5H[1]benzopyrano [2,3-b]pyridine-3-carbonitrile 6. 6α-Methyl-17α-hydroxyprogesterone 7. 3-Aminofluoranthene 8. 2-Bromofluorene 9. Perylene 10. Naphtho(2,3-a)pyrene
Perylene
Naphtho(2,3-a)pyrene
7
Hydrocortisone
2
0.40
10
1
V0 = 0.20
0.20
9
8
6
3
0.60
0.80
1.00
1.20
4 5
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
Minutes
70
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Polar and Non-Polar Compound Test Mix— 4.6 x 150 mm Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 0.1% HCOOH in H2O 0.1% HCOOH in ACN 2.0 mL/min Time Profile (min) %A %B 8-Bromoguanosine 0.0 100 0 0.5 100 0 10.0 0 100 15.0 0 100 10 µL Ambient UV @ 254 nm Triamcinolone Alliance® 2695 with 2996 PDA
2-Bromofluorene
O CI
CN
O
N
3-Aminofluoranthene
NH2
2-Amino-7chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitrile
Acetanilide 6α-Methyl-17α-hydroxyprogesterone Compounds: 1. 8-bromoguanosine 2. Acetanilide 3. Triamcinolone 4. Hydrocortisone 5. 2-Amino-7-chloro-5-oxo-5H[1]benzopyrano [2,3-b]pyridine-3-carbonitrile 6. 6α-Methyl-17α-hydroxyprogesterone 7. 3-Aminofluoranthene 8. 2-Bromofluorene 9. Perylene 10. Naphtho(2,3-a)pyrene
USP Tailing 1.15 1.01
Sample Concentrations (µg/mL) 31 19
0.99 1.01
31 12
1.02 0.96 1.01
12 25 31
1.03 1.01 1.03
16 12 12
Perylene
Naphtho(2,3-a)pyrene
7
Hydrocortisone
9 2
V0 = 0.98
8
1 3
10
6
4 5
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
71
Polar and Non-Polar Compound Test Mix— (with Uracil), 4.6 x 150 mm Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
O
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 0.1% HCOOH in H2O 0.1% HCOOH in ACN 2.0 mL/min Time Profile (min) %A %B 0.0 100 0 0.5 100 0 10.0 0 100 15.0 0 100 10 µL Ambient UV @ 254 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
HN O
2-Bromofluorene
N H Uracil
O CI
CN
O
N
3-Aminofluoranthene
NH2
2-Amino-7chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitrile Triamcinolone
Acetanilide 6α-Methyl-17α-hydroxyprogesterone Compounds: 1. Uracil 2. Acetanilide 3. Triamcinolone 4. Hydrocortisone 5. 2-Amino-7-chloro-5-oxo-5H[1]benzopyrano [2,3-b]pyridine-3-carbonitrile 6. 6α-Methyl-17α-hydroxyprogesterone 7. 3-Aminofluoranthene 8. 2-Bromofluorene 9. Perylene 10. Naphtho(2,3-a)pyrene
USP Tailing 1.15
Sample Concentrations (µg/mL) 31
1.01 0.99 1.01
19 31 12
1.02 0.96 1.01
12 25 31
1.03 1.01 1.03
16 12 12
Perylene
Naphtho(2,3-a)pyrene
7
Hydrocortisone 9
2
1
3
V0 = 0.98
0.00
1.00
8
10
6 4
2.00
3.00
4.00
5.00
5
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
Minutes
72
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Polar and Non-Polar Compound Test Mix— (with Uracil) 4.6 x 150 mm Column Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
O
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 80 10 10 10.0 0 95 5 15.0 0 95 5 5 µL 30° C UV @ 254 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
HN O
2-Bromofluorene
N H Uracil
O CI
CN
O
N
3-Aminofluoranthene
NH2
2-Amino-7chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitrile Triamcinolone
Acetanilide 6α-Methyl-17α-hydroxyprogesterone Compounds: USP Tailing 1. Uracil 1.15 2. Acetanilide 1.01 3. Triamcinolone 0.99 4. Hydrocortisone 1.01 5. 2-Amino-7-chloro-5-oxo-5H[1]benzopyrano 1.02 [2,3-b]pyridine-3-carbonitrile 6. 6α-Methyl-17α-hydroxyprogesterone 0.96 7. 3-Aminofluoranthene 8. 2-Bromofluorene 9. Perylene 10. Naphtho(2,3-a)pyrene
Perylene
Sample Concentrations (µg/mL) 31 19 31 12
Naphtho(2,3-a)pyrene 12
1.01 1.03
25 31 16
1.01 1.03
22 22
7
Hydrocortisone
8
9
2 3
4
1
0.00
1.00
10
6
V0 = 0.98
2.00
3.00
4.00
5
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
73
Polar Pesticides LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Composition: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 2.1 x 100 mm, 3 µm 186001295 H2O ACN 0.17 mL/min 95% A; 5% B 20 µL 10 ppb 25˚ C MS(ESI+) Alliance® 2795 with Waters ZQ™
MS Conditions: ESI+ Capillary (kV) Extractor RF Lens Source Temp Desolvation Temp
3.1 3.0 0.1 150 350
Desolvation Gas Flow (L/Hr) LM Resolution HM Resolution Ion Energy Multipler (V)
500 12.5 12.5 1.0 650
Methamidophos
Acephate
SIR of 5 Masses mass (m/z) 112a 113b 142a 143b 184b
cone (V) 40 40 20 25 15
ion for methamidophos ion for acephate
a b
2
Compounds: 1. Methamidophos 2. Acephate
1
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
Minutes
74
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
Profens—Gradient 4.6 x 20 mm IS™ Column LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
CH3
O
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm 186002062 0.1% HCOOH in H2O 0.1% HCOOH in ACN 3.0 mL/min Time Profile (min) %A %B 0.0 65 35 2.0 60 40 10 µL 20 µg/mL 30° C UV @ 220 nm Alliance® HT 2795 with 2996 PDA
O O
O
OH
OH
CH3
Ketoprofen
O
Fenoprofen
CH3
OH
O CH3
CH3
OH H3C
Ibuprofen
F
Flurbiprofen
Compounds: 1. Ketoprofen 2. Fenoprofen 3. Flurbiprofen 4. Ibuprofen
2
1 3
V0 = 0.14
0.20
0.40
0.60
0.80
1.00
1.20
1.40
4
1.60
1.80
2.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
75
Profens—Isocratic 4.6 x 20 mm IS™ Column LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Isocratic Mobile Phase Conditions: Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
CH3
O
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm 186002062 0.1% HCOOH in H2O 0.1% HCOOH in ACN 3.0 mL/min
O O
O
OH
OH
CH3
Ketoprofen
65% A, 35% B 10 µL 20 µg/mL 30° C UV @ 220 nm Alliance® 2695 with 2996 PDA
O
Fenoprofen
CH3
OH
O CH3
CH3
OH H3C
Ibuprofen
F
Flurbiprofen
Compounds: 1. Ketoprofen 2. Fenoprofen 3. Flurbiprofen 4. Ibuprofen
2
1
V0 = 0.14
0.50
3
1.00
1.50
2.00
4
2.50
3.00
3.50
4.00
Minutes
76
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Purine Alkaloids LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O ACN 100 mM HCOONH4, pH 3.75 2.0 mL/min Time Profile (min) %A %B %C 0.0 85 5 10 5.0 50 40 10 10 µL 30° C UV @ 270 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
Theobromine Theophylline
O N
N
O
Compounds: 1. Theobromine 2. Theophylline 3. Caffeine 4. Phenol
USP Tailing 1.00 1.00 0.98 0.97
Sample Concentrations (µg/mL) 42 50 42 42
N
N
Phenol
Caffeine
2
1
3
V0 = 0.98 4
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
77
Steroids— 2.1 x 20 mm IS™ Column LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 2.1 x 20 mm IS™, 3 µm 186002058 H2O ACN 0.6 mL/min Time Profile (min) %A %B 0.0 80 20 4.0 36 64 5 µL 20 µg/mL 30° C UV @ 220 nm Alliance® 2795 with 2996 PDA
O
O OH
CH3
HO CH3
OH
O
H
H
CH3
CH3
H
H
H
O
H
O
Prednisolone
Cortisone
O OH
CH3
CH3 H
H
CH3
H
H
H
HO
O
Corticosterone Compounds: 1. Prednisolone
Estradiol
CH3
H3C
O
O CH3
2. Cortisone H
3. Corticosterone 4. Estradiol 5. Estrone
CH3
H
H
6. Progesterone
H
O
Estrone
0.50
H H
HO
V0 = 0.32
OH
HO
H
2
OH OH
Progesterone
3
1
5 4
1.00
1.50
6
2.00
2.50
3.00
3.50
4.00
Minutes
78
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
Steroids— 4.6 x 20 mm IS™ Column LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm 186002062 H2O ACN 3.0 mL/min Time Profile (min) %A %B 0.0 80 20 4.0 36 64 10 µL 20 µg/mL 30° C UV @ 220 nm Alliance® HT 2795 with 2996 PDA
O
O OH
CH3
HO CH3
OH
O
H
H
CH3
CH3
H
H
H
O
H
O
Prednisolone
Cortisone
O OH
CH3
CH3 H
H
CH3
H
H
H
HO
O
Corticosterone Compounds: 1. Prednisolone
Estradiol
CH3
H3C
O
O CH3
2. Cortisone H
3. Corticosterone 4. Estradiol 5. Estrone
H
CH3
H
6. Progesterone
H
O
Estrone
3
H H
HO
V0 = 0.17
OH
HO
H
2
OH OH
Progesterone
5
1
4 6
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
79
Sulfonamides— 2.1 x 20 mm IS™ Column LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
O
Atlantis™ dC18 2.1 x 20 mm IS™, 3 µm 186002058 0.1% HCOOH in H2O 0.1% HCOOH in MeOH 0.6 mL/min Time Profile (min) %A %B 0.0 100 0 4.0 50 50 10 µL 20 µg/mL 30° C UV @ 270nm Alliance® HT 2795 with 2996 PDA
NH N
H2N
NH2
S
S
N
NH
O
Sulfadiazine
N
Sulfathiazole
CH3
H3C
NH2
NH2
N
O O NH
S H3C
O
N
H3C
O O
O S
N
O
Sulfadimidine
NH2 N
NH
N
Sulfamethoxazole
H3C
O
S
N
Compounds: 1. Sulfadiazine 2. Sulfathiazole 3. Sulfamerazine 4. Sulfadimidine 5. Sulfamethoxazole 6. Sulfisoxazole 7. Sulfadimethoxine
S
O
O
NH
H3C
NH
O
S
NH2
O
Sulfamerazine
Sulfisoxazole
H3C
O NH2
N H3C
N
O S
O
NH
O
Sulfadimethoxine
1
5 2
6
3
7
4
V0 = 0.19
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
80
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
Sulfonamides — 4.6 x 20 mm IS™ Column LC Conditions: Column:
O
Atlantis™ dC18 4.6 x 20 mm IS™, 3 µm
Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
Injection Volume:
186002062 0.1% HCOOH in H2O 0.1% HCOOH in MeOH 3.0 mL /min Time Profile (min) %A %B 0.0 100 0 4.0 50 50 10 µL
Sample Concentration: Temperature: Detection: Instrument:
20 µg/mL 30° C UV @ 270 nm Alliance® HT 2795 with 2996 PDA
NH N
H2N
NH2
S
S
N
NH
O
Sulfadiazine
N
Sulfathiazole
CH3
H3C
NH2
NH2
N
O O
O
S
N
NH
S H3C
O
N
N
H3C
O O
O S
H3C
O
Sulfadimidine
NH2 N
NH
N
Sulfamethoxazole
Compounds: 1. Sulfadiazine 2. Sulfathiazole 3. Sulfamerazine 4. Sulfadimidine 5. Sulfamethoxazole 6. Sulfisoxazole 7. Sulfadimethoxine
S
O
O
NH
H3C
NH
O
S
NH2
O
Sulfamerazine
Sulfisoxazole
H3C
O NH2
N H3C
N
O S
O
NH
O
Sulfadimethoxine
1
2
5 3
7
6 4
V0 = 0.17
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
Minutes
©2004 Waters Corporation. Waters, IS, Alliance and Atlantis are trademarks of Waters Corporation.
81
Sulfonamides LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
O
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 H2O MeOH 1% HCOOH, pH 2.4 2.0 mL/min Time Profile (min) %A %B %C 0.0 75 15 10 10.0 50 40 10 5 µL 30° C UV @ 270 nm Alliance® 2695 with 2996 PDA
Injection Volume: Temperature: Detection: Instrument:
NH N
H2N
NH2
S
S
N
Sulfadiazine
Sulfathiazole
H3C
H2 N
NH2
N
O N
N
NH
O
O
S
O
O
HN S
NH
S
N O
O
O
Sulfamethoxazole
Sulfadmethazine
NH2
Compounds: 1. Sulfadiazine 2. Sulfathiazole 3. Sulfamerazine 4. Sulfamethazine 5. Sulfamethoxazole
USP Tailing 1.01 1.02 1.00 0.99 0.99
Sample Concentrations (µg/mL) 50 67 50 33 50
1
N
S N
H3C
NH
O
Sulfamerazine
2
5
3
4
V0 = 0.98
0.00
O
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
82
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Sulfonamides— Analytical to Preparative Scale Up LC Conditions: Mobile Phase A: Mobile Phase B: Sample Concentration: Temperature: Instrument:
0.1% HCOOH in H2O ACN/1% HCOOH (90/10) 1.0 mg/mL each in DMSO Ambient AutoPurification™ System
H2N
O H2 N
S
S O
NH
O
N
Sulfathiazole
Sulfanilamide
Compounds: 1. Sulfanilamide 2. Sulfathiazole 3. Sulfamethazine 4. Sulfamethoxazole
O H2N
S
H3C
H N
N
NH2
CH 3 O
O
O
N
N
The flattened peak profiles on analytical chromatogram reflects the
Atlantis™ dC18 4.6 x 100 mm, 5 µm 186001340
Total Mass Load:
280 µg
Detection:
UV @ 300 nm 1
Flow Rate: Gradient:
3
2
4
3
2
4
1
V0 = 1.76
Injection Volume:
3 mm, 5 µm Atlantis™ dC18 Prep OBD™ 19 x 100 2 186002116 3 4,800 µg 4 2 1UV @ 280 nm
Flow Rate: Gradient:
4
1
V0 = 1.74 Injection Volume: 1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
O
Sulfamethoxazole
Sulfamethazine
Column: Part Number:
S NH
CH 3
saturation of PDA detector, not column overload.
Column: Part Number: Total Mass Load: Detection:
S
O
NH2
9.00
10.00
11.00
12.00
13.00
14.00
9.00
10.00
11.00
12.00
13.00
14.00
1.0 mL/min Time
Profile
(min)
%A
%B
0.0
85
15
1.0
85
15
2.0
70
30
12.0 14.0 70 µL
30 30
70 70
17.06 mL/min Time Profile (min) %A 0.0 85 3.02 85 4.02 70 14.02 30 16.02 30 1200 µL
%B 15 15 30 70 70
Minutes
©2004 Waters Corporation. Waters, OBD, AutoPurification and Atlantis are trademarks of Waters Corporation.
83
Thiols LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow Rate: Gradient:
Injection Volume: Sample Diluent: Sample Concentration: Temperature: Instrument:
MS Conditions: Ionization Mode: Capillary (kV): Cone (V): Extractor: RF Lens: Source Temperature (°C): Desolvation Temperature (°C): Cone Gas Flow (L/Hr): Desolvation Gas Flow (L/Hr): SIR m/z:
Atlantis™ HILIC Silica 2.1 x 50 mm, 3 µm 186002011 H2O ACN 200 mM NH4COOH, pH 3.0 0.3 mL/min Time Profile (min) %A %B %C 0.0 0 95 5 5.0 45 50 5 5.0 µL 75:25 ACN:MeOH with 0.2% HCOOH 50 µg/mL Ambient Alliance® HT 2795 with Waters ZQ™
ES+ 3.0 20 3V 0.3 V 150 350 50 700 136.1 150.2
(Homocysteine) (Methionine)
OH
1.0x10 7
SH O
Intensity
1.5x10 7
NH 2 1.0x10 7
Homocysteine
5.0x10 6
0.0 0.00
1.00
2.00
3.00
4.00
5.00
6x10 7
OH 4x10 7
S
Intensity
H3C
O NH2
2x10 7
Methionine
0.0 0.00
1.00
2.00
3.00
4.00
5.00
Minutes
84
©2004 Waters Corporation. Waters, Alliance, ZQ and Atlantis are trademarks of Waters Corporation.
Vancomycin LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Mobile Phase C: Flow rate: Gradient:
Injection Volume: Sample Concentration: Temperature: Detection: Instrument:
Atlantis™ dC18 4.6 x 50 mm, 3 µm 186001329 H2O ACN 100 mM HCOONH4, pH 3.0 2.0 mL/min Time Profile (min) %A %B %C 0.0 90 0 10 5.0 78 12 10 10 µL 40 µg/mL 30° C UV @ 254 nm Alliance® HT 2795 with 2996 PDA
Vancomycin
USP Tailing = 1.03
V0 = 0.51
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
85
Water and Fat Soluble Vitamins Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
OH
Atlantis™ dC18 4.6 x 150 mm, 5 µm 186001344 0.1% TFA in H2O 0.1% TFA in ACN 1.4 mL/min Time Profile (min) %A %B 0.0 100 0 5.0 97 3 6.0 85 15 10.0 80 20 12.0 0 100 25.0 0 100 10 µL H3C 82:4:14 H2O:EtOH:MeOH 30° C H3C UV @ 268 nm Alliance® 2695 with 2996 PDA
Injection Volume: Injection Solvent*: Temperature: Detection: Instrument:
HO
O C C H C H H2
O
HC HC
OH
HO
L-ascorbic acid (Vitamin C)
N
Sample Concentration (µg/mL)* 19.61 9.81 H3C 19.61 HO 39.21 39.21 23.51 9.81 3.91
9. Retinol (vitamin A) 10. Tocopherol (vitamin E) 11. Ergocalciferol (vitamin D2)
19.62 39.23 9.83
CH
C H2
C H
C H2
CH3
H2 C
Nicotinic acid (Niacin)
HO
HC
CH2
C H OH HO H C
HO C H2
C H2C H OH
H C
N
C H
N
O
N
HC
CH3
H3C
OH
HO
N
H2C
O
Pyridoxal
N N CH3
Caffeine
C H2
OH
OH
NH
N O
H N
H2N
N
CH
N
CH2 HN HC
CH3 H CH3 H2 CH3 H CH3 2 2 O C C C C C C C C H C C H C C H CH3 CHH2 2 H H2 H2 H2 H2 2 C H2
C H
CH
CH3 N CH N
Pyridoxine
O
CH3
OH
O H3C O
Folic acid (Vitamin B11) H C C H
CH
O
O H2 H N H C C OH C H2 O
OH
Tocopherol (Vitamin E)
H3C
CH3
H2C C H2
Sample Preparation Solvents (1) H2O
H C
CH3 C H
CH3
C H
H C
CH3 C H
H2 C
C H
OH
Retinol (Vitamin A)
CH3 H C H CH3 H3C H C C H C C H 2 H3C H H CH3 C CH2 H2C CH2
H2C HC
MeOH/EtOH (50/50) MeOH
H2C
CH
H
Ergocalciferol (Vitamin D2)
CH2
C CH2 HO H C H2
(*) – Analytes were dissolved in the solvent listed above. Aliquots were then combined in a single vial to yield the concentrations and final injection solvent shown.
7
4
+
N
Thiamine (Vitamin B1)
N
H2C
(2) (3)
N
O
Riboflavin (Vitamin B2) Compounds: 1. L-ascorbic acid (vitamin C) 2. Nicotinic acid (niacin) 3. Thiamine (vitamin B1) 4. Pyridoxal 5. Pyridoxine 6. Folic acid (vitamin B11) 7. Caffeine 8. Riboflavin (vitamin B2)
NH2 H C S
N
H3C
OH
H C
5
V0 = 1.37
3
1 2
8 6
11
9 10
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
Minutes
86
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
Water Soluble Vitamins LC Conditions: Column: Part Number: Mobile Phase A: Mobile Phase B: Flow Rate: Gradient:
OH
OH
Injection Volume: Temperature: Detection: Instrument:
H3C
C H
N
O
1. L-ascorbic acid (vitamin C)
1.12
23.8
2. Nicotinic acid (niacin)
1.27
11.9
3. Thiamine (vitamin B1) 4. Pyridoxal
1.20 1.13
23.8 47.6
5. Pyridoxine
1.04
47.6
6. Folic acid (vitamin B11) 7. Caffeine 8. Riboflavin (vitamin B2)
1.10 1.10 1.14
42.9 11.9 6.0
CH3
C H2
OH
O H3C
N N CH3
O N
H3C
CH
H2C
CH3 N CH N
Caffeine
C H2
HO
OH
OH
Pyridoxine
N
USP Tailing
C H2
C H
H2 C
Thiamine (Vitamin B1)
H N
H2N
Riboflavin (Vitamin B2)
Compounds:
+
N
NH
N
Sample Concentrations (µg/mL)
NH2 H C S
N
HC
3 Atlantis™ dC18 4.6 x 150 mm, 5 µm H O HO C C O 186001344 C H C O HC H H2 0.1% TFA CH HC N OH HO ACN 1.4 mL/min L-ascorbic acid Nicotinic acid Time Profile (Vitamin C) (Niacin) (min) %A %B 0.0 100 0 4.0 97 3 N HO 6.0 85 15 CH3 HC CH2 15.0 80 20 C H OH HO C OH HO H C 10 µL H2 HC 30° C C O H2C H OH H UV @ 260 nm H C C N N O 3 Pyridoxal Alliance® 2695 with 2996 PDA
N
CH
N O
CH2 HN HC
Folic acid (Vitamin B11) H C
CH
C H
O
O H2 H N H C C OH C H2 O
OH
3
2 1 7 8
V0 = 1.37
4 5
0.00
1.00
2.00
3.00
4.00
5.00
6.00
6
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
Minutes
©2004 Waters Corporation. Waters, Alliance and Atlantis are trademarks of Waters Corporation.
87
Water Soluble Vitamins— Analytical to Preparative Scale Up LC Conditions: Mobile Phase A: Mobile Phase B: Sample Concentration: Temperature: Instrument: Detection:
100
100
Column: Part Number: Total Mass Load:
H3C
Compounds: 1. Pyridoxine (5 mg/mL) 2. Caffeine (25 mg/mL))
0.1% HCOOH in H2O ACN/1% HCOOH (90/10) 5, 25 mg/mL in water Ambient AutoPurification™ System UV @ 290 nm
N
O
CH
HO H2C
C H2
OH
H3C O
OH
Pyridoxine
Atlantis™ dC18 4.6 x 100 mm, 5 µm 186001340 3,000 µg
2
Flow Rate: Gradient:
2
1
100 %
2 1
%
1
Injection Volume:
N N CH3
CH3 N CH N
Caffeine
1.0 mL/min Time Profile (min) %A 0.0 100 1.0 100 6.0 80 16.0 60 100 µL
%B 0 0 20 40
% 0 100 0
0 100 100 %
2
Column:
Atlantis™ dC18 Prep OBD™ 19 x 100 mm, 5 µm
Part Number: Total Mass Load:
186002116 50,000 µg
Flow Rate: Gradient:
2
1
2 1
%
1
% 1
Injection Volume:
100 1
17.06 mL/min Time Profile (min) %A %B 0.0 3.02 8.02 18.02 1700 µL
100 100 80 60
0 0 20 40
2
100 1
2 1
100 % %
Column: Part Number: Total Mass Load:
Atlantis™ dC18 Prep OBD™ 30 x 100 mm, 5 µm 186001375 1 126,000 µg
Flow Rate: Gradient:
2
1
% 1 2.00
4.00
6.00
8.00
10.00
12.00
2.00
4.00
6.00
8.00
10.00
12.00
2.00
4.00
6.00
8.00
10.00
12.00
1
Injection Volume:
42.53 mL/min Time Profile (min) %A 0.0 100 3.25 100 8.25 80 18.25 60 4200 µL
%B 0 0 20 40
1
Minutes
88
©2004 Waters Corporation. Waters, OBD, AutoPurification and Atlantis are trademarks of Waters Corporation.
Atlantis™ Column Care and Use Instructions PLEASE READ CAREFULLY BEFORE USING ATLANTIS™ COLUMNS.
Cartridge Connection
Thank you for choosing a Waters Atlantis column. The manufacture of Atlantis dC18 and Atlantis™ HILIC Silica columns begins with ultrapure reagents to control the chemical composition and purity of the final product. Atlantis™ columns are manufactured in a cGMP, ISO 9002 certified plant with each step being conducted within narrow tolerances. Every column is individually tested and Certificates of Batch Analysis and a Performance Chromatogram are provided with each column. ™
™
Waters recommends the use of Waters Sentry™ guard columns to maximize column lifetime and protect the column from contaminants. Connecting the Column or Cartridge to the HPLC
Handle the cartridge with care. Do not drop or hit the cartridge on a hard surface as it may disturb the bed and affect its performance. Refer to Figure 1 for an exploded view of an Atlantis™ cartridge column with a Sentry™ guard column. 1. Unscrew end connectors from the old cartridge. Leave them connected to the inlet and outlet lines of the instrument. 2. Attach new cartridge column between connectors so that the direction of the flow arrow on the label is pointing in the direction of mobile phase flow (toward detector). 3. Fingertighten all fittings.
Column Connection
It is important to realize that extra column peak broadening can destroy a successful separation. The choice of appropriate column connectors and system tubing is discussed in detail below.
Handle the column with care. Do not drop or hit the column on a hard surface as it may disturb the bed and affect its performance.
Column Connectors and System Tubing Considerations
1. Correct connection of 1/16 inch outer diameter stainless steel tubing leading to and from the column is essential for high-quality chromatographic results. 2. When using standard stainless steel compression screw fittings, it is important to ensure proper fit of the 1/16 inch outer diameter stainless steel tubing. When tightening or loosening the compression screw, place a 5/16 inch wrench on the compression screw and a 3/8 inch wrench on the hex head of the column endfitting. Note: If one of the wrenches is placed on the column flat during this process, the endfitting will be loosened and leak.
Due to the absence of an industry standard, various column manufacturers have employed different types of chromatographic column connectors. The chromatographic performance of the separation can be negatively affected if the style of the column endfittings does not match the existing tubing ferrule setting. This section explains the differences between Waters style and Parker style ferrules and endfittings (Figure 2). Each endfitting style varies in the required length of the tubing protruding from the ferrule. The Atlantis™ column is equipped with Waters style endfittings, which require a 0.130 inch ferrule. If a non-Waters style column is presently being used, it is critical that ferrule depth be reset for optimal performance prior to installing an Atlantis™ column.
3. If a leak occurs between the stainless steel compression screw fitting and the column endfitting, a new compression screw fitting, tubing and ferrule must be assembled.
The presence of a void in the flow stream reduces column performance. This can occur if a Parker ferrule is connected to a Waters style endfitting (Figure 4).
4. An arrow on the column identification label indicates correct direction of solvent flow.
Note: A void appears if tubing with a Parker ferrule is connected to a Waters style column.
Figure 1: Installation of Atlantis™ Cartridge Column with Sentry™ Guard Column Spacer
0.25 mm (0.009 inch) Tubing
Sentry™ Guard Column
Figure 2: Waters and Parker Ferrule Types
Waters Ferrule Setting
C-Clip
Atlantis™ Cartridge Column
End Connector
Figure 3: Proper Tubing/Column Connection Tubing touches the bottom of the column endfitting, with no void between them.
Parker Ferrule Setting
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
89
Atlantis™ Column Care and Use Instructions Figure 4: Parker Ferrule in a Waters Style Endfitting
Table 1. Waters Part Numbers for SLIPFREE® Connectors SLIPFREE® Type and Tubing Length
To fix this problem: Cut the end of the tubing with the ferrule, place a new ferrule on the tubing and make a new connection. Before tightening the screw, make sure that the tubing bottoms out in the endfitting of the column. Conversely, if tubing with a Waters ferrule is connected to a column with Parker style endfitting, the end of the tubing will bottom out before the ferrule reaches its proper sealing position. This will leave a gap and create a leak (Figure 5).
0.005”
Single 6 cm Single 10 cm Single 20 cm Double 6 cm Double 10 cm Double 20 cm
Tubing Internal Diameter 0.010” 0.020”
PSL 618000 PSL 618002 PSL 618004 PSL 618001 PSL 618003 PSL 618005
PSL 618006 PSL 618008 PSL 618010 PSL 618007 PSL 618009 PSL 618001
PSL 618012 PSL 618014 PSL 618016 PSL 618013 PSL 618015 PSL 618017
Band Spreading Minimization Internal tubing diameter influences system band spreading and peak shape. Larger tubing diameters cause excessive peak broadening and lower sensitivity (Figure 7). Figure 7: Effect of Connecting Tubing on System
Note: The connection leaks if a Waters ferrule is connected to a column with a Parker style endfitting. 0.005 inches
Figure 5: Waters Ferrule in a Parker Style Endfitting
0.020 inches 0.040 inches
Diluted/Distorted Sample Band
There are two ways to fix the problem: 1. Tighten the screw a bit more. The ferrule moves forward, and reaches the sealing surface. Do not overtighten since this may break the screw. 2. Cut the tubing, replace the ferrule and make a new connection. Alternatively, replace the conventional compression screw fitting with an all-in-one PEEK fitting (Waters part number PSL613315) that allows resetting of the ferrule depth. Another approach is to use a Thermo Hypersil Keystone, Inc. SLIPFREE® connector to ensure the correct fit. The fingertight SLIPFREE® connectors automatically adjust to fit all compression screw type fittings without the use of tools (Figure 6). Figure 6: Single and Double SLIPFREE® Connectors
Measuring System Bandspread Volume This test should be performed on an HPLC system with a single wavelength UV detector (not a Photodiode Array (PDA)). 1. Disconnect column from system and replace with a zero dead volume union. 2. Set flow rate to 1 mL/min. 3. Dilute a test mix in mobile phase to give a detector sensitivity 0.5 - 1.0 AUFS (system start up test mix can be used which contains uracil, ethyl and propyl parabens; Waters part number WAT034544). 4. Inject 2 to 5 µL of this solution. 5. Using 5 sigma method measure the peak width at 4.4% of peak height: Band Spread (µL) = Peak Width (min) x Flow Rate (µL/min) = 0.1 min x 1000 µL/min = 100 µL
90
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Atlantis™ Column Care and Use Instructions Figure 8: Determination of System Bandspread Volume Using 5-Sigma Method
System optimization, especially in a system that contains a flow splitter, can have dramatic effects on sensitivity and resolution. Optimization includes using correct-depth ferrules and minimizing tubing diameter and lengths. System optimization results in a doubling of sensitivity and resolution of the metabolite in an LC/MS/MS system (Figure 10). Figure 10: Non-Optimized vs. Optimized LC/MS/MS System
7.00
In a typical HPLC system, the Bandspread Volume should be 100 µL ± 30 µL.
7.50
8.00
Non-optimized LC/MS/MS System
7.00
7.50
In a microbore (≤2.1mm i.d.) system, the Bandspread Volume should be no greater than 20 to 40 µL.
System Modification Recommendations
Measuring Gradient Delay Volume
1. Use a microbore detector flowcell with ≤2.1 mm i.d. columns.
1. Replace the column with a zero dead volume union.
8.00
Optimized System
Note: Detector sensitivity is reduced with the shorter flowcell pathlength in order to achieve lower bandspread volume.
2. Prepare eluent A (pure solvent, such as methanol) and eluent B (solvent plus sample, such as 5.6 mg/mL propylparaben in methanol).
2. Minimize injector sample loop volume.
3. Equilibrate the system with eluent A until a stable baseline is achieved.
3. Use 0.009 inch (0.25 mm) tubing between pump and injector.
4. Switch to 100% eluent B.
4. Use 0.009 inch (0.25 mm) tubing for rest of connections in standard systems and 0.005 inch (0.12 mm) tubing for narrowbore (≤2.1 mm i.d.) systems.
5. Record the half height of the step and determine dwell volume (Figure 9). Figure 9: Determination of Dwell Volume
6. Detector time constants should be shortened to less than 0.2 seconds.
1.0
Waters Small Particle Size (3 µm) Columns – Fast Chromatography
0.8
0.6 Height
5. Use perfect (pre-cut) connections (with a variable depth inlet if using columns from different suppliers).
Dwell Volume
Waters columns with 3 µm particles provide faster and more efficient separations without sacrificing column lifetime. This section describes five parameters to consider when performing separations with columns containing 3 µm particles.
0.4
0.2
0.0 Volume (µL)
The dwell volume should be less than 1 mL. If the dwell volume is greater than 1 mL, see System Modification Recommendations section on how to reduce system volume. Use of Smaller i.d. Columns A 3.0 mm i.d. narrow-bore column usually requires no system modifications. A 2.1 mm i.d. microbore column, however, requires modifications to the HPLC system to eliminate excessive system bandspread volume. Without proper system modifications, excessive system bandspread volume causes peak broadening and has a large impact on peak width as peak volume decreases. Impact of Bandspread Volume on 2.1 mm i.d. Column Performance System with 70 µL bandspread: 10,000 plates System with 130 µL bandspread: 8,000 plates (same column)
Note: Columns that contain 3 µm particles have smaller outlet frits to retain packing material. These columns should not be backflushed. 1. Flow Rate — Compared to columns with 5 µm particles, columns with 3 µm particles have higher optimum flow rates and are used when high efficiency and short analysis times are required. These higher flow rates, however, lead to increased backpressure. Note: Use a flow rate that is practical for your system. 2. Backpressure — Backpressures for columns with 3 µm particles are higher than for 5 µm columns with the same dimensions. Waters suggests using a shorter column to compensate for increased backpressure and to obtain a shorter analysis time. 3. Temperature — Use a higher temperature to reduce backpressure caused by smaller particle sizes. The recommended temperature range for Atlantis™ columns is 20°C to 45°C. See Column Usage section for a discussion of elevated temperature use with Atlantis™ columns. 4. Sampling Rate — Use a sampling rate of about 10 points per second. 5. Detector Time Constant — Use a time constant of 0.1 seconds for fast analyses.
Note: Flow splitters after the column will introduce additional bandspreading.
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
91
Atlantis™ Column Care and Use Instructions Column Performance Validation
Column Installation Procedure
Each Atlantis column comes with Certificates of Batch Analysis and a Performance Test Chromatogram. The Certificates of Analysis are specific to each batch of packing material and includes the gel lot batch number, analysis of unbonded particles, analysis of bonded particles (Atlantis™ dC18), and chromatographic results and conditions. The Performance Test Chromatogram is specific to each individual column and contains information such as gel lot batch number, column serial number, USP plate count, USP tailing factor, capacity factor and chromatographic results and conditions.
Note: The flow rates given in the procedure below are for a typical 4.6 mm i.d. column. Scale the flow rate up or down accordingly based upon the column i.d., length, particle size and backpressure of the Atlantis™ column being installed. See Scaling Up/Down section for calculating flow rates when changing column i.d. and/or length.
These data should be stored for future reference.
3. When the mobile phase is flowing freely from the column outlet, attach the column to the detector. This prevents entry of air into the detector and provides more rapid baseline equilibration.
™
Initial Column Efficiency Determination 1. Perform an efficiency test on the column before using it. Waters recommends using a suitable solute mixture, as found in the “Performance Test Chromatogram”, to analyze the column upon receipt. 2. Determine the number of theoretical plates (N) and use for periodic comparison. 3. Repeat the test periodically to track column performance over time. Slight variations may be obtained on two different HPLC systems due to the quality of the connections, operating environment, system electronics, reagent quality, column condition and operator technique. Column Equilibration Atlantis™ columns are packed and shipped in 100% acetonitrile. It is important to ensure solvent compatibility before changing to a new solvent. Atlantis dC18 - Equilibrate with a minimum of 10 column volumes of the mobile phase to be used (refer to Table 2 for a listing of standard column volumes). ™
1. Purge the pumping system and connect the inlet end of the column to the injector outlet. 2. Set the pump flow to 0.1 mL/min. and increase to 1 mL/min over 5 minutes.
4. When the mobile phase is changed, gradually increase the flow rate of the new mobile phase from 0.0 mL/min to 1.0 mL/min in 0.1 mL/min increments. 5. Once a steady backpressure and baseline have been achieved, the column is ready to be used (or equilibrated). Note: If mobile phase additives are present in low concentrations (e.g., ion-pairing reagents), 100 to 200 column volumes may be required for complete equilibration. In addition, mobile phases that contain formate (e.g., ammonium formate, formic acid, etc.) may also require slightly longer initial column equilibration times. Please see additional equilibration information for Atlantis™ HILIC Silica columns in the HILIC Getting Started section. Column Usage To ensure the continued high performance of Atlantis™ columns and cartridges, follow these guidelines: Guard columns
Atlantis™ HILIC Silica – Upon receipt, equilibrate with 50 column volumes of 50:50 acetonitrile:water with 10 mM final buffer concentration (refer to Table 2 for a listing of standard column volumes). Prior to the first injection, equilibrate with 20 column volumes of initial mobile phase conditions. See HILIC Getting Started section for additional information.
Use a Waters Sentry™ guard cartridge of matching chemistry and particle size between the injector and main column. It is important to use a high-performance matching guard column to protect the main column while not compromising or changing analytical resolution.
Table 2. Standard column volumes in mL (multiply by 10 for flush solvent volumes)
1. Sample impurities often contribute to column contamination. Use Waters Oasis® or Sep-Pak® solid-phase extraction cartridges/columns of the appropriate chemistry to clean up the sample before analysis.
Column Volume (mL) Column Length
1.0
2.1
30
50
15 mm
–
0.1
–
–
–
–
–
–
–
–
20 mm
–
0.1
0.1
–
0.3
–
–
–
–
–
30 mm
–
0.1
0.2
–
0.5
–
2.4
8
–
–
50 mm
0.1
0.2
0.3
–
0.8
2.4
4
14
35
98
100 mm
0.1
0.4
0.7
1.2
1.7
5
8
28
70
–
150 mm
0.1
0.5
1.0
1.8
2.5
7
12
42
106
294
250 mm
–
0.9
1.8
–
4
–
20
70
176
490
300 mm
–
–
–
–
–
14
24
85
212
589
92
Column internal diameter (mm) 3.0 3.9 4.6 7.8 10 19
Sample Preparation
2. For reversed-phase separations (Atlantis™ dC18) prepare the sample in mobile phase or a solvent that is weaker (less organic modifier) than the mobile phase. For Hydrophilic Interaction Chromatography (HILIC) separations (Atlantis™ HILIC Silica), the samples must be prepared in 100% organic solvents (e.g., acetonitrile). See HILIC Getting Started section for additional information. 3. If the sample is not dissolved in the mobile phase, ensure that the sample, solvent and mobile phases are miscible in order to avoid sample and/or buffer precipitation. 4. Filter sample through a 0.2 µm membrane to remove particulates. If the sample is dissolved in a solvent that contains an organic modifier (e.g., acetonitrile, methanol, etc.) ensure that the membrane material does not dissolve in the solvent. Contact the membrane manufacturer with solvent compatibility questions.
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Atlantis™ Column Care and Use Instructions pH Range
Scaling Up/Down Isocratic Methods
Atlantis dC18 - The pH range for Atlantis dC18 columns is 2 to 7. ™
The following formulas will allow scale up or scale down, while maintaining the same linear velocity (retention time), and provide new sample loading values:
™
Atlantis HILIC Silica - The pH range for Atlantis HILIC Silica columns is 1 to 6. ™
™
Column lifetime will vary depending upon the temperature, type and concentration of buffer used. A listing of recommended and non-recommended buffers is given in Table 3. Please use this as a guideline when developing methods.
If column i.d. and length are altered:
Note: Operating at the upper end of the pH range in combination with elevated temperatures will lead to shorter column lifetime.
Where:
Table 3: Buffer recommendations for using Atlantis™ columns from pH 1 to 7 Additive or Buffer
Buffer range (±1 pH unit)
pKa
Volatility
Used for Mass Spec?
TFA
0.3
Volatile
Yes
Ion pair additive, can suppress MS signal. Used in the 0.01-0.1% range.
Formic Acid
3.75
Volatile
Yes
Maximum buffering obtained when used with Ammonium Formate salt. Used in 0.1-1.0% range.
Acetic Acid
4.76
Volatile
Yes
Maximum buffering obtained when used with Ammonium Acetate salt. Used in 0.1-1.0% range.
Formate (NH4COOH)
3.75
2.75 – 4.75
Volatile
Yes
Used in the 1-10mM range. Note: sodium or potassium salts are not volatile.
Acetate (NH4CH2COOH)
4.76
3.76 – 5.76
Volatile
Yes
Used in the 1-10mM range. Note: sodium or potassium salts are not volatile.
Phosphate 1
2.15
1.15 – 3.15
Non-volatile
No
Traditional low pH buffer, good UV transparency. Not recommended for HILIC
Phosphate 2
7.2
6.20 – 8.20
Non-volatile
No
Above pH 7, reduce temperature/concentration and use guard column to maximize lifetime. Not recommended for HILIC
F2 = F1(r2/r1)2
or
Load2 = Load1(r2/r1)2(L2/L1)
or
Inj vol1 = Inj vol2 (r2/r1)2 (L2/L1)
r = Radius of the column, in mm F = Flow rate, in mL/min L = Length of column, in mm 1 = Original, or reference column
Comments
2 = New column HILIC Getting Started Equilibration of Atlantis™ HILIC Silica Columns 1. Upon receipt, equilibrate in 50% acetonitrile/50% aqueous buffer (10 mM final buffer concentration) for 50 column volumes. 2. Prior to first injection, equilibrate with 20 column volumes of initial mobile phase conditions. 3. When running gradients, equilibrate with 10 column volumes between injections.
* Phosphate salt buffers are not recommeded for HILIC (phosphoric acid is OK).
Failure to appropriately equilibrate the column could result in drifting retention times.
Solvents To maintain maximum column performance, use high quality chromatography grade solvents. Filter all aqueous buffers prior to use. Pall Gelman Laboratory Acrodisc® filters are recommended. Solvents containing suspended particulate materials will generally clog the outside surface of the inlet distribution frit of the column. This will result in higher operating pressure and poorer performance. Degas all solvents thoroughly before use to prevent bubble formation in the pump and detector. The use of an on-line degassing unit is also recommended. This is especially important when running low pressure gradients since bubble formation can occur as a result of aqueous and organic solvent mixing during the gradient. Pressure Atlantis™ columns can tolerate pressures of up to 6,000 psi (400 bar or 40 Mpa) although pressures greater than 4,000 – 5,000 psi should be avoided in order to maximize column and system lifetimes. Temperature
HILIC Mobile Phase Considerations 1. Always maintain at least 5% polar solvent in the mobile phase or gradient (e.g., 5% water, 5% methanol or 3% methanol/2% aqueous buffer, etc.). This ensures that the Atlantis™ HILIC Silica particle is always hydrated. 2. Maintain at least 40% organic solvent (e.g., acetonitrile) in your mobile phase or gradient. 3. Avoid phosphate salt buffers to avoid precipitation in HILIC mobile phases (phosphoric acid is OK). 4. Buffers such as ammonium formate or ammonium acetate will produce more reproducible results than additives such as formic acid or acetic acid. If an additive (e.g., formic acid) must be used instead of a buffer, use 0.2% (v:v) instead of 0.1%. 5. For best peak shape, maintain a buffer concentration of 10 mM in your mobile phase/gradient at all times. Injection Solvents for HILIC
Temperatures between 20˚C – 45˚C are recommended for operating Waters Atlantis columns in order to enhance selectivity, lower solvent viscosity and increase mass transfer rates. However, any temperature rise above ambient will have a negative effect on lifetime which will vary depending on the pH and buffer conditions used. ™
1. If possible, injection solvents should be 100% organic solvent. Water must be eliminated or minimized. Choose weak HILIC solvents such as acetonitrile, isopropanol, methanol, etc. 2. A generic injection solvent is 75:25 acetonitrile:methanol. This is a good compromise between analyte solubility and peak shape. 3. Avoid water and dimethylsulfoxide (DMSO) as injection solvents. These solvents will produce very poor peak shapes.
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
93
Atlantis™ Column Care and Use Instructions 4. Exchange water or DMSO with acetonitrile by using reversed-phase solid phase extraction. If this is not possible, dilute the water or DMSO with organic solvent. Additional HILIC Recommendations 1. For initial scouting conditions, run a gradient from 95% acetonitrile to 50% acetonitrile. If no retention occurs, run isocratically with 95:3:2 acetonitrile:methanol:aqueous buffer. 2. Alternate polar solvents such as methanol, acetone or isopropanol can also be used in place of water in the mobile phase to increase retention. 3. Be sure that your needle wash solvent/purge solvent contains the same high organic solvent concentration as your mobile phase, else peak shapes will suffer. Column Cleaning, Regenerating and Storage
Storage Atlantis™ dC18 – For periods longer than four days, store the column in 100% acetonitrile. Do not store columns in buffered eluents. If the mobile phase contained a buffer salt, flush the column with 10 column volumes of HPLC grade water (see Table 2 for common column volumes) and replace with 100% acetonitrile for storage. Failure to perform this intermediate step could result in precipitation of the buffer salt in the column when 100% acetonitrile is introduced. Atlantis™ HILIC Silica – For periods longer than four days, store the column in 95:5 acetonitrile: water. Do not store columns in buffered eluents. If the mobile phase contained a buffer salt, flush the column with 10 column volumes of 95:5 acetonitrile:water (see Table 2 for common column volumes) prior to storage.
Cleaning and Regeneration
Completely seal column to avoid evaporation and drying out of the bed.
A sudden increase in pressure or shift in retention or resolution may indicate contamination of the column.
Note: If a column has been run with a formate-containing mobile phase (e.g., ammonium formate, formic acid, etc.) and is flushed to remove the buffer, slightly longer equilibration times may be required after the column is re-installed and run again with a formate-containing mobile phase.
Atlantis™ dC18 – Flush with a neat organic solvent to remove the non-polar contaminant(s). If this flushing procedure does not solve the problem, purge the column with a sequence of progressively more non-polar solvents. For example, switch from water to tetrahydrofuran to methylene chloride. Return to the standard mobile phase conditions by reversing the sequence. Atlantis™ HILIC Silica – Flush with 50:50 acetonitrile:water to remove the polar contaminant(s). If this flushing procedure does not solve the problem, purge the column with 5:95 acetonitrile:water.
Troubleshooting Changes in retention time, resolution, or backpressure are often due to column contamination. See the Column Cleaning, Regeneration and Storage section of this Care and Use Manual. Information on column troubleshooting problems may be found in HPLC Columns Theory, Technology and Practice, U.D. Neue, (Wiley-VCH, 1997) or the Waters HPLC Troubleshooting Guide (Literature Code 720000181EN).
Guard columns require replacement at regular intervals as determined by sample contamination. When system backpressure increases above a set pressure limit, it is usually an indication that the guard column should be replaced. A sudden appearance of split peaks is also indicative of a need to replace the guard column.
94
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Ordering Information— Atlantis™ dC18 Columns Atlantis™ dC18 Analytical Columns Hardware Type
Dimensions
NanoEase NanoEase™ NanoEase™ NanoEase™ NanoEase™ NanoEase™ NanoEase™ NanoEase™ NanoEase™ Column Column Column Column Column Column Column Guard Guard Direct Connect Direct Connect Guard Guard IS™ Column IS™ Column Column Column Column Column Column Column Column Column IS™ Column IS™ Column
0.075 x 50 mm 0.075 x 100 mm 0.075 x 150 mm 0.100 x 50 mm 0.100 x 100 mm 0.100 x 150 mm 0.150 x 50 mm 0.150 x 100 mm 0.150 x 150 mm 0.320 x 50 mm 0.320 x 100 mm 0.320 x 150 mm 1.0 x 50 mm 1.0 x 50 mm 1.0 x 150 mm 1.0 x 150 mm 2.1 x 10 mm 2.1 x 10 mm 2.1 x 15 mm 2.1 x 15 mm 2.1 x 20 mm 2.1 x 20 mm 2.1 x 20 mm 2.1 x 20 mm 2.1 x 30 mm 2.1 x 30 mm 2.1 x 50 mm 2.1 x 50 mm 2.1 x 100 mm 2.1 x 100 mm 2.1 x 150 mm 2.1 x 150 mm 3.0 x 20 mm 3.0 x 20 mm
™
Atlantis™ dC18 Analytical Columns Particle Size
Part No.
3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm
186002194 186002195 186002197 186002207 186002208 186002209 186002466 186002467 186002468 186002304 186002305 186002306 186001279 186001281 186001283 186001285 1860013771 1860013791 186002064 186002065 1860013812 1860013832 186002058 186002059 186001287 186001289 186001291 186001293 186001295 186001297 186001299 186001301 186002060 186002061
Hardware Type
Dimensions
Particle Size
Part No.
Column Column Column Column Column Column Column Guard Guard Cartridge Column Cartridge Column Column Column Column Column Guard Guard IS™ Column IS™ Column Column Column Column Column Column Column Column Column Column Column Column
3.0 x 50 mm 3.0 x 50 mm 3.0 x 100 mm 3.0 x 100 mm 3.0 x 150 mm 3.0 x 150 mm 3.0 x 250 mm 3.9 x 20 mm 3.9 x 20 mm 3.9 x 50 mm 3.9 x 50 mm 3.9 x 100 mm 3.9 x 100 mm 3.9 x 150 mm 3.9 x 150 mm 4.6 x 20 mm 4.6 x 20 mm 4.6 x 20 mm 4.6 x 20 mm 4.6 x 30 mm 4.6 x 30 mm 4.6 x 50 mm 4.6 x 50 mm 4.6 x 75 mm 4.6 x 75 mm 4.6 x 100 mm 4.6 x 100 mm 4.6 x 150 mm 4.6 x 150 mm 4.6 x 250 mm
3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 5 µm
186001389 186001391 186001303 186001305 186001307 186001309 186001311 1860013133 1860013153 1860013854 1860013874 186001393 186001395 186001317 186001319 1860013213 1860013233 186002062 186002063 186001325 186001327 186001329 186001331 186001333 186001335 186001337 186001340 186001342 186001344 186001346
1
Requires Sentry Guard Holder
WAT097958
2
Requires Sentry Guard Holder
186000262
3
Requires Sentry Guard Holder
WAT046910
4
Requires Cartridge End Fittings
WAT037525
Part No.
5
Requires Cartridge Guard Holder
289000779
1860023005 1860024525 186002298 186002299 186002453 186002454 1860013616 1860013636 186001365 186001367 186001369 186001371 186001373 186001375 186002417 186002418
6
Requires Cartridge Guard Holder
186000709
Atlantis™ dC18 Preparative Columns Hardware Type Guard Guard Column Column Column Column Guard Guard Column Column Column Column Column Column Column Column
Dimensions 10 x 10 mm 10 x 10 mm 10 x 50 mm 10 x 100 mm 10 x 150 mm 10 x 250 mm 19 x 10 mm 19 x 10 mm 19 x 50 mm 19 x 100 mm 19 x 150 mm 19 x 250 mm 30 x 50 mm 30 x 100 mm 30 x 150 mm 30 x 250 mm
Particle Size 5 µm 10 µm 5 µm 5 µm 10 µm 10 µm 5 µm 10 µm 5 µm 5 µm 10 µm 10 µm 5 µm 5 µm 10 µm 10 µm
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
Atlantis™ dC18 Method Validation Kits Dimensions
Particle Size
4.6 x 150 mm 4.6 x 150 mm 4.6 x 250 mm
3 µm 5 µm 5 µm
Part No. 186002312 186002311 186002313
95
Ordering Information— Atlantis™ HILIC Silica Columns Atlantis™ HILIC Silica Analytical Columns
Atlantis™ HILIC Silica Method Validation Kits
Hardware Type
Dimensions
Particle Size
Part No.
Dimensions
Particle Size
Column Column Guard Guard Direct Connect Direct Connect Column Column Column Column Column Column Column Column Column Column Column Column Guard Guard Guard Guard Column Column Column Column Column Column Column Column Column
1.0 x 50 mm 1.0 x 50 mm 2.1 x 10 mm 2.1 x 10 mm 2.1 x 15 mm 2.1 x 15 mm 2.1 x 30 mm 2.1 x 30 mm 2.1 x 50 mm 2.1 x 50 mm 2.1 x 100 mm 2.1 x 100 mm 2.1 x 150 mm 2.1 x 150 mm 3.0 x 50 mm 3.0 x 50 mm 3.0 x 100 mm 3.0 x 100 mm 3.9 x 20 mm 3.9 x 20 mm 4.6 x 20 mm 4.6 x 20 mm 4.6 x 30 mm 4.6 x 30 mm 4.6 x 50 mm 4.6 x 50 mm 4.6 x 100 mm 4.6 x 100 mm 4.6 x 150 mm 4.6 x 150 mm 4.6 x 250 mm
3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 3 µm 5 µm 5 µm
186002003 186002004 1860020051 1860020061 186002007 186002008 186002009 186002010 186002011 186002012 186002013 186002014 186002015 186002016 186002017 186002018 186002019 186002020 1860020213 1860020223 1860020233 1860020243 186002025 186002026 186002027 186002028 186002029 186002030 186002031 186002032 186002033
4.6 x 150 mm 4.6 x 150 mm 4.6 x 250 mm
3 µm 5 µm 5 µm
96
1
Requires Sentry Guard Holder
WAT097958
2
Requires Sentry Guard Holder
186000262
3
Requires Sentry Guard Holder
WAT046910
4
Requires Cartridge End Fittings
WAT037525
5
Requires Cartridge Guard Holder
289000779
6
Requires Cartridge Guard Holder
186000709
Part No. 186002315 186002314 186002316
©2004 Waters Corporation.Waters and Atlantis are trademarks of Waters Corporation.
visit us on the internet: http://www.waters.com SALES OFFICES: AUSTRALIA
(61) 2 9933 1777
DENMARK
(45) 46 598080
ITALY
(39) 02 274211
SINGAPORE
AUSTRIA AND EXPORT
FINLAND
(358) 9 506 4140
JAPAN
(81) 3 3471 7191
SPAIN
FRANCE
(33) 1 30 48 72 00
KOREA
(82) 28202700
SWEDEN
GERMANY
(49) 6196 40 06 00
MEXICO
(5255) 5524 76 36
SWITZERLAND
INDIA AND INDIA
THE NETHERLANDS
31 (0) 76 508 72 00
TAIWAN
NORWAY
UNITED KINGDOM
(Central Europe, and Middle East)
(43) 1 8771807 BELGIUM
(32) 2 7261000 BRAZIL
(55) 11 5543 7788 CANADA
800 252 4752 CHINA
852 29 64 1800
SUBCONTINENT
(91) 80 2 8371900 IRELAND
(353) 1 448 1500
(47) 638 46 050
(65) 6278 7997 (34) 93 600 93 00
ALL OTHER COUNTRIES WATERS CORPORATION 34 Maple Street Milford MA 01757
508 478 2000/800 252 4752
(46) 8 555 11 500 (41) 62 889 2030 (886) 2 2543 1898 (44) 208 238 6100
PUERTO RICO
(787) 747 8445
The quality management system of Waters' manufacturing facilities in Taunton, Massachusetts and Wexford, Ireland complies with the International Standard ISO 9002 Quality Management and Quality Assurance Standards. Waters' quality management system is periodically audited by the registering body to ensure compliance.
©2004 Waters Corporation. Waters, Atlantis, Alliance, AutoPurification and ZQ are trademarks of Waters Corporation. All trademarks used are acknowledged. All rights reserved.
720000472EN