ATLAS document - CERN Document Server

1 downloads 0 Views 659KB Size Report
May 15, 2018 - [16] M. Wobisch, K. Chakravarthula, R. Dhullipudi, L. Sawyer, and M. ...... J. Lorenz112, N. Lorenzo Martinez5, M. Losada22, P.J. Lösel112,.
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

arXiv:1805.04691v1 [hep-ex] 12 May 2018

Submitted to: Phys. Rev. D

CERN-EP-2017-282 May 15, 2018

Measurement of dijet √ azimuthal decorrelations in p p collisions at s = 8 TeV with the ATLAS detector and determination of the strong coupling The ATLAS Collaboration

A measurement of the rapidity and transverse momentum dependence of dijet azimuthal decorrelations is presented, using the quantity R∆φ . The quantity R∆φ specifies the fraction of the inclusive dijet events in which the azimuthal opening angle of the two jets with the highest transverse momenta is less than a given value of the parameter ∆φmax . The quantity √ R∆φ is measured in proton–proton collisions at s = 8 TeV as a function of the dijet rapidity interval, the event total scalar transverse momentum, and ∆φmax . The measurement uses an event sample corresponding to an integrated luminosity of 20.2 fb−1 collected with the ATLAS detector at the CERN Large Hadron Collider. Predictions of a perturbative QCD calculation at next-to-leading order in the strong coupling with corrections for non-perturbative effects are compared to the data. The theoretical predictions describe the data in the whole kinematic region. The data are used to determine the strong coupling αS and to study its running for momentum transfers from 260 GeV to above 1.6 TeV. An analysis that combines data at all momentum transfers results in αS (mZ ) = 0.1127+0.0063 −0.0027 .

© 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Contents 1

Introduction

2

2

Definition of R∆φ and the analysis phase space

4

3

Theoretical predictions

4

4

ATLAS detector

6

5

Measurement procedure

7

6

Measurement results

10

7

Selection of data points for the αS extraction

11

8

Determination of αS

12

9

Summary

16

Appendix

18

A Effects of top quark contributions on the pQCD predictions

18

B Data tables

18

C Definition of χ 2

23

D On the compatibility of the R∆φ data and the world average of αS (m Z )

23

E On the compatibility of the RGE and the slope of the αS (Q) results

24

1 Introduction In high-energy particle collisions, measurements of the production rates of hadronic jets with large transverse momentum pT relative to the beam direction can be employed to test the predictions of perturbative quantum chromodynamics (pQCD). The results can also be used to determine the strong coupling αS , and to test the pQCD predictions for the dependence of αS on the momentum transfer Q (the “running” of αS ) by the renormalization group equation (RGE) [1, 2]. Previous tests of the RGE through αS determinations in hadronic final states have been performed using data taken in ep collisions (5 < Q < 60 GeV) [3–5], in e+ e− annihilation (10 < Q < 210 GeV) [6, 7], in p p¯ collisions (50 < Q < 400 GeV) [8, 9], and in pp collisions (130 < Q < 1400 GeV) [10–14]. The world average value is currently αS (mZ ) = 0.1181 ± 0.0011 [15]. Recent αS results from hadron collisions are limited by theoretical uncertainties related to the scale dependence of the fixed-order pQCD calculations. The most precise αS (mZ ) result from hadron collision data is αS (mZ ) = 0.1161+0.0041 −0.0048 [8], obtained from inclusive jet cross-section data, using pQCD predictions

2

Table 1: The values of the parameters and the requirements that define the analysis phase space for the inclusive dijet event sample.

Variable pTmin max yboost ∗ ymax pT1 /HT

Value 100 GeV 0.5 2.0 > 1/3

beyond the next-to-leading order (NLO). However, using the cross-section data in αS determinations, the extracted αS results are directly affected by our knowledge of the parton distribution functions (PDFs) of the proton, and their Q dependence. The PDF parameterizations depend on assumptions about αS and the RGE in the global data analyses in which they are determined. Therefore, in determinations of αS and its Q dependence from cross-section data the RGE is already assumed in the inputs. Such a conceptual limitation when using cross-section data can largely be avoided by using ratios of multi-jet cross sections in which PDFs cancel to some extent. So far, the multi-jet cross-section ratios R∆R [9] and R3/2 [10] have been used for αS determinations at hadron colliders. In this article, αS is determined from dijet azimuthal decorrelations, based on the multi-jet cross-section ratio R∆φ [16]. The RGE predictions are tested up to Q = 1.675 TeV. The decorrelation of dijets in the azimuthal plane has been the subject of a number of measurements at the Fermilab Tevatron Collider [17] and the CERN Large Hadron Collider (LHC) [18, 19]. The variable ∆φdijet investigated in these analyses is defined from the angles in the azimuthal plane (the plane perpendicular to the beam direction) φ1,2 of the two highest-pT jets in the event as ∆φdijet = |φ1 − φ2 |. In exclusive high-pT dijet final states, the two jets are correlated in the azimuthal plane with ∆φdijet = π. Deviations from this (∆φdijet < π) are due to additional activity in the final state, as described in pQCD by processes of higher order in αS . Due to kinematic constraints, the phase space in 2 → 3 processes is restricted to ∆φdijet > 2π/3 [20] and lower ∆φdijet values are only accessible in 2 → 4 processes. Measurements of dijet production with 2π/3 < ∆φdijet < π (∆φdijet < 2π/3) therefore test the pQCD matrix elements for three-jet (four-jet) production. The quantity R∆φ is defined as the fraction of all inclusive dijet events in which ∆φdijet is less than a specified value ∆φmax . This quantity can be exploited to extend the scope of the previous analyses towards studies of the rapidity dependence of dijet azimuthal decorrelations. Since R∆φ is defined as a ratio of multi-jet cross sections for which the PDFs cancel to a large extent, it is well-suited for determinations of αS and for studies of its running. √ The quantity R∆φ has so far been measured in p p¯ collisions at a center-of-mass energy of s = 1.96 TeV at the Fermilab Tevatron Collider [21]. This article presents the first measurement of R∆φ in pp collisions, √ based on data at s = 8 TeV taken with the ATLAS detector during 2012 at the LHC, corresponding to an integrated luminosity of 20.2±0.4 fb−1 [22]. The data are corrected to “particle level” [23], and are used to extract αS and to study its running over a range of momentum transfers of 262 < Q < 1675 GeV.

3

2 Definition of R∆φ and the analysis phase space The definitions of the quantity R∆φ and the choices of the variables that define the analysis phase space are taken from the proposal in Ref. [16]. Jets are defined by the anti-k t jet algorithm as implemented in fastjet [24, 25]. The anti-k t jet algorithm is a successive recombination algorithm in which particles are clustered into jets in the E-scheme (i.e. the jet four-momentum is computed as the sum of the particle four-momenta). The radius parameter is chosen to be R = 0.6. This is large enough for a jet to include a sufficient amount of soft and hard radiation around the jet axis, thereby improving the properties of pQCD calculations at fixed order in αS , and it is small enough to avoid excessive contributions from the underlying event [26]. An inclusive dijet event sample is extracted by selecting all events with two or more jets, where the two leading-pT jets have pT > pTmin . The dijet phase space is further specified in terms of the variables yboost and y ∗ , computed from the rapidities, y1 and y2 , of the two leading-pT jets as yboost = (y1 + y2 )/2 and y ∗ = |y1 − y2 |/2, respectively.1 In 2 → 2 processes, the variable yboost specifies the longitudinal boost between the dijet and the proton–proton center-of-mass frames, and y ∗ (which is longitudinally boost-invariant) represents the absolute value of the jet rapidities in the dijet center-of-mass max and y ∗ < y ∗ . The variable H is defined frame. The dijet phase space is restricted to |yboost | < yboost T max ∗ . Furthermore, the as the scalar sum of the jet pT for all jets i with pTi > pTmin and |yi − yboost | < ymax max , and y ∗ leading-pT jet is required to have pT1 > HT /3. The values of the parameters pTmin , yboost max ensure that jets are well-measured in the detector within |y| < 2.5 and that contributions from non-perturbative corrections and pileup (additional proton-proton interactions within the same or nearby bunch crossings) are small. The requirement pT1 > HT /3 ensures (for a given HT ) a well-defined minimum pT1 which allows single-jet triggers to be used in the measurement. It also reduces the contributions from events with four or more jets, and therefore pQCD corrections from higher orders in αS . The values of all parameters are specified in Table 1. The quantity R∆φ is defined in this inclusive dijet event sample as the ratio R∆φ (HT, y ∗, ∆φmax ) =

d 2 σdijet (∆φdijet 900

Trigger type single-jet single-jet multi-jet multi-jet

Integrated luminosity [pb−1 ] 9.6 ± 0.2 36 ± 1 546 ± 11 (20.2 ± 0.4) · 103

ET threshold. In events which pass L2, a full event reconstruction is performed by the EF. The jet EF constructs topological clusters [50] from which jets are then formed, using the anti-k t jet algorithm with a radius parameter of R = 0.4. These jets are then calibrated to the hadronic scale. Events for this analysis are collected either with single-jet triggers with different minimum ET requirements or with multi-jet triggers based on a single high-ET jet plus some amount of HT (the scalar ET sum) of the multi-jet system. The trigger efficiencies are determined relative to fully efficient reference triggers, and each trigger is used above an HT threshold where it is more than 98% efficient. The triggers used for the different HT regions in the offline analysis are listed in Table 3. Single-jet triggers select events if any jet with |η| < 3.2 is above the ET thresholds at L1, L2, and the EF. Due to their high rates, the single-jet triggers studied are highly prescaled during data-taking. Multi-jet triggers select events if an appropriate high-ET jet is identified and the HT value, summed over all jets at the EF with |η| < 3.2 and ET > 45 GeV, is above a given threshold. The additional HT requirement significantly reduces the selected event rate, and lower prescales can be applied. The integrated luminosity of the data sample collected with the highest threshold triggers is 20.2±0.4 fb−1 . The detector response for the measured quantities is determined using a detailed simulation of the ATLAS detector in Geant 4 [51, 52]. The particle-level events, subjected to the detector simulation, were produced by the Pythia event generator [53] (version 8.160) with CT10 PDFs. The Pythia parameters were set according to the AU2 tune [54]. The “particle-level” jets are defined based on the four-momenta of the generated stable particles (as recommended in Ref. [23], with a proper lifetime τ satisfying cτ > 10 mm, including muons and neutrinos from hadron decays). The “detector-level” jets are defined based on the four-momenta of the simulated detector objects.

5 Measurement procedure The inclusive dijet events used for the measurement of R∆φ were collected between April and December √ 2012 by the ATLAS detector in proton–proton collisions at s = 8 TeV. All events used in this measurement are required to satisfy data-quality criteria which include stable beam conditions and stable operation of the tracking systems, calorimeters, solenoid, and trigger system. Events that pass the trigger selections described above are included in the sample if they contain at least one primary collision vertex with at least two associated tracks with pT > 400 MeV, in order to reject contributions due to cosmic-ray events Í and beam background. The primary vertex with highest p2T of associated tracks is taken as the event vertex. Jets are reconstructed offline using the anti-k t jet algorithm with a radius parameter R = 0.6. Input to the jet algorithm consists of locally calibrated three-dimensional topological clusters [50] formed from sums

7

of calorimeter cell energies, corrected for local calorimeter response, dead material, and out-of-cluster losses for pions. The jets are further corrected for pileup contributions and then calibrated to the hadronic scale, as detailed in the following. The pileup correction is applied to account for the effects on the jet response from additional interactions within the same proton bunch crossing (“in-time pileup”) and from interactions in bunch crossings preceding or following the one of interest (“out-of-time pileup”). Energy is subtracted from each jet, based upon the energy density in the event and the measured area of the jet [55]. The jet energy is then adjusted by a small residual correction depending on the average pileup conditions for the event. This calibration restores the calorimeter energy scale, on average, to a reference point where pileup is not present [56]. Jets are then calibrated using an energy- and η-dependent correction to the hadronic scale with constants derived from data and Monte Carlo samples of jets produced in multi-jet processes. A residual calibration, based on a combination of several in situ techniques, is applied to take into account differences between data and Monte Carlo simulation. In the central region of the detector, the uncertainty in the jet energy calibration is derived from the transverse momentum balance in Z+jet, γ+jet or multi-jet events measured in situ, by propagating the known uncertainties of the energies of the reference objects to the jet energies. The energy uncertainties for the central region are then propagated to the forward region by studying the transverse momentum balance in dijet events with one central and one forward jet [57]. The energy calibration uncertainty in the high-pT range is estimated using the in situ measurement of the response to single isolated hadrons [58]. The jet energy calibration’s total uncertainty is decomposed into 57 uncorrelated contributions, of which each is fully correlated in pT . The corresponding uncertainty in jet pT is between 1% and 4% in the central region (|η| < 1.8), and increases to 5% in the forward region (1.8 < |η| < 4.5). The jet energy resolution has been measured in the data using the bisector method in dijet events [59–61] and the Monte Carlo simulation is seen to be in good agreement with the data. The uncertainty in the jet energy resolution is affected by selection parameters for jets, such as the amount of nearby jet activity, and depends on the η and pT values of the jets. Further details about the determinations of the jet energy scale and resolution are given in Refs. [58, 59, 62]. The angular resolution of jets is obtained in the Monte Carlo simulation by matching particle-level jets with p detector-level jets, when their distance in ∆R = (∆y 2 + ∆φ2 ) is smaller than the jet radius parameter. The jet η and φ resolutions are obtained from a Gaussian fit to the distributions of the difference between the detector-level and particle-level values of the corresponding quantity. The difference between the angular resolutions determined from different Monte Carlo simulations is taken as a systematic uncertainty for the measurement result, which is about 10–15% for pT < 150 GeV and decreases to about 1% for pT > 400 GeV. The bias in jet η and φ is found to be negligible. All jets within the whole detector acceptance, |η| < 4.9, are considered in the analysis. Data-quality requirements are applied to each reconstructed jet according to its properties, to reject spurious jets not originating from hard-scattering events. In each HT bin, events from a single trigger are used and the same trigger is used for the numerator and the denominator of R∆φ . In order to test the stability of the measurement results, the event sample is divided into subsamples with different pileup conditions. The R∆φ results for different pileup conditions are compatible within the statistical uncertainties without any systematic trends. The measurement is also tested for variations resulting from loosening the requirements on the event- and jet-data-quality conditions, and the observed variations are also consistent within the statistical uncertainties. The distributions of R∆φ (HT, y ∗, ∆φmax ) are corrected for experimental effects, including detector resolutions and inefficiencies, using the simulation. To ensure that the simulation describes all relevant distributions, including the pT and y distributions of the jets, the generated events are reweighted, based

8

R∆φ(HT, y*, ∆φmax)

10

10

ATLAS

∆φmax = 7π/8 ∆φmax = 5π/6 ∆φmax = 3π/4 ∆φmax = 2π/3

1

NLO pQCD LO pQCD + non-perturb. correct.

√s = 8 TeV -1

L = 0.010−20.2 fb

-1

-2

µR = µF = HT / 2 0.0 < y* < 0.5 0.5

1

MMHT2014 PDFs 1.0 < y* < 2.0

0.5 < y* < 1.0 2

4

0.5

1

2

4

0.5

1

2

4

HT [TeV] Figure 1: The measurement of R∆φ (HT, y ∗, ∆φmax ) as a function of HT in three regions of y ∗ and for four choices of ∆φmax . The inner error bars indicate the statistical uncertainties, and the sum in quadrature of statistical and systematic uncertainties is displayed by the total error bars. The theoretical predictions, based on pQCD at NLO (for ∆φmax = 7π/8, 5π/6, and 3π/4) and LO (for ∆φmax = 2π/3) are shown as solid and dashed lines, respectively. The shaded bands display the PDF uncertainties and the scale dependence, added in quadrature.

on the properties of the generated jets, to match these distributions in data, and to match the HT dependence of the observed inclusive dijet cross section as well as the R∆φ distributions and their HT dependence. To minimize migrations between HT bins due to resolution effects, the bin widths are chosen to be larger than the detector resolution. The bin purities, defined as the fraction of all reconstructed events that are generated in the same bin, are 65–85% for ∆φmax = 7π/8 and 5π/6, and 50–75% for ∆φmax = 3π/4 and 2π/3. The bin efficiencies, defined as the fraction of all generated events that are reconstructed in the same bin, have values in the same ranges as the bin purities. The corrections are obtained bin by bin from the generated Pythia events as the ratio of the R∆φ results for the particle-level jets and the detector-level jets. These corrections are typically between 0% and 3%, and never outside the range from −10% to +10%. Uncertainties in these corrections due to the modeling of the migrations by the simulation are estimated from the changes of the correction factors when varying the reweighting function. In most parts of the phase space, these uncertainties are below 1%. The results from the bin-by-bin correction procedure were compared to the results when using a Bayesian iterative unfolding procedure [63], and the two results agree within their statistical uncertainties. The uncertainties of the R∆φ measurements include two sources of statistical uncertainty and 62 sources of systematic uncertainty. The statistical uncertainties arise from the data and from the correction factors. The systematic uncertainties are from the correction factors (two independent sources, related to variations of the reweighting of the generated events), the jet energy calibration (57 independent sources), the jet energy resolution, and the jet η and φ resolutions. To avoid double counting of statistical fluctuations, the HT dependence of the uncertainty distributions is smoothed by fitting either linear or quadratic functions in log(HT /GeV). From all 62 sources of experimental correlated uncertainties, the dominant systematic uncertainties are due to the jet energy calibration. For ∆φmax = 7π/8 and 5π/6 the jet energy calibration

9

ATLAS -1

L = 0.010−20.2 fb

0.5 < y* < 1.0 MMHT2014 PDFs αs(mZ) = 0.118

1.0 < y* < 2.0 Theory uncert. PDF uncert.

1

√s = 8 TeV

LO

µR = µF = HT / 2

NLO

R∆φ / R∆φ = K

-1

1

∆φmax = 3π/4

1.5

∆φmax = 5π/6

1.5

∆φmax = 7π/8

1 1.5

∆φmax = 2π/3

Data / (O(α2s) pQCD + non-pert. correct.)

0.0 < y* < 0.5

1.5

1 0.5 0.5

1

2

0.5

1

2

0.5

1

2

HT [TeV] Figure 2: The ratios of the R∆φ measurements and the theoretical predictions obtained for MMHT2014 PDFs and αS (mZ ) = 0.118. The ratios are shown as a function of HT , in different regions of y ∗ (columns) and for different ∆φmax (rows). The inner error bars indicate the statistical uncertainties and the sum in quadrature of statistical and systematic uncertainties is displayed by the total error bars. The theoretical uncertainty is the sum in quadrature of the uncertainties due to the PDFs and the scale dependence. The inverse of the NLO K-factor is indicated by the dashed line.

uncertainties are typically between 1.0% and 1.5% and always less than 3.1%. For smaller values of ∆φmax they can be as large as 4% (for ∆φmax = 3π/4) or 9% (for ∆φmax = 2π/3). A comprehensive documentation of the measurement results, including the individual contributions due to all independent sources of uncertainty, is provided in Ref. [46].

6 Measurement results The measurement results for R∆φ (HT, y ∗, ∆φmax ) are corrected to the particle level and presented as a function of HT , in different regions of y ∗ and for different ∆φmax requirements. The results are listed in Appendix B in Tables 6–9, and displayed in Figure 1, at the arithmetic center of the HT bins. At fixed (y ∗ , ∆φmax ), R∆φ (HT, y ∗, ∆φmax ) decreases with increasing HT and increases with increasing y ∗ at fixed (HT , ∆φmax ). At fixed (HT , y ∗ ), R∆φ decreases with decreasing ∆φmax . Theoretical predictions based on NLO pQCD (for ∆φmax = 7π/8, 5π/6, and 3π/4) or LO (for ∆φmax = 2π/3) with corrections for non-perturbative effects, as described in Section 3, are compared to the data. The ratios of data to the theoretical predictions are displayed in Figure 2. To provide further information

10

about the convergence of the pQCD calculation, the inverse of the NLO K-factors are also shown (defined NLO /RLO ). In all kinematical regions, the data as the ratio of predictions for R∆φ at NLO and LO, K = R∆φ ∆φ are described by the theoretical predictions, even for ∆φmax = 2π/3, where the predictions are only based on LO pQCD and have uncertainties of about 20% (dominated by the dependence on µr and µf ). The data for ∆φmax = 7π/8 and 5π/6 allow the most stringent tests of the theoretical predictions, since for these ∆φmax values the theoretical uncertainties are typically less than ±5%.

7 Selection of data points for the αS extraction The extraction of αS (Q) at different scales Q = HT /2 is based on a combination of data points in different kinematic regions of y ∗ and ∆φmax , with the same HT . The data points are chosen according to the following criteria. 1. Data points are used only from kinematic regions in which the pQCD predictions appear to be most reliable, as judged by the renormalization and factorization scale dependence, and by the NLO K-factors. 2. For simplicity, data points are only combined in the αS extraction if they are statistically independent, i.e. if their accessible phase space does not overlap. 3. The preferred data points are those for which the cancellation of the PDFs between the numerator and the denominator in R∆φ is largest. 4. The experimental uncertainty at large HT is limited by the sample size. If the above criteria give equal preference to two or more data sets with overlapping phase space, the data points with smaller statistical uncertainties are used to test the RGE at the largest possible momentum transfers with the highest precision. Based on criterion (1), the data points obtained for ∆φmax = 2π/3 are excluded, as the pQCD predictions in Nlojet++ are only available at LO. Furthermore, it is observed that the points for ∆φmax = 3π/4 have a large scale dependence, which is typically between +15% and −10%. For the remaining data points with ∆φmax = 7π/8 and 5π/6 at larger y ∗ (1 < y ∗ < 2), the NLO corrections are negative and (with a size of 5–23%) larger than those at smaller y ∗ , indicating potentially larger corrections from not yet calculated higher orders. The conclusion from criterion (1) is therefore that the pQCD predictions are most reliable in the four kinematic regions 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1, for ∆φmax = 7π/8 and ∆φmax = 5π/6, where the NLO K-factors are typically within ±5% of unity. The requirement of statistically independent data points according to criterion (2) means that the data points from different y ∗ regions can be combined, but not those with different ∆φmax . The choice whether to use the data with ∆φmax = 7π/8 or 5π/6 (in either case combining the data for 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1) is therefore based on criteria (3) and (4). The cancellation of the PDFs, as addressed in criterion (3), is largest for those data points for which the phase space of the numerator in Eq. (1) is closest to that of the denominator. Since the numerator of R∆φ is a subset of the denominator, this applies more to the data at larger values of ∆φmax . For those points, the fractional contributions from different partonic subprocesses (gg → jets, gq → jets, qq → jets), and the ranges in the accessible proton momentum fraction x are more similar for the numerator and denominator, resulting in a larger cancellation of PDFs in R∆φ . This argument, based on the third

11

αs(Q)

0.11

ATLAS

0.1

αs from R∆φ

0.09

L = 0.010−20.2 fb √s = 8 TeV

-1

0.08 RGE for αs(mZ) = 0.1127

αs(mZ)

0.07

0.12 0.1 0.08

αs(mZ) = 0.1127 0.2

0.5

1

2

Q = HT / 2 [TeV] Figure 3: The αS results determined from the R∆φ data for ∆φmax = 7π/8 in the y ∗ regions 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1.0 in the range of 262 < Q < 1675 GeV. The inner error bars indicate the experimental uncertainties and the sum in quadrature of experimental and theoretical uncertainties is displayed by the total error bars. The αS (Q) results (top) are displayed together with the prediction of the RGE for the αS (mZ ) result obtained in this analysis. The individual αS (Q) values are then evolved to Q = mZ (bottom).

criterion, leads to the same conclusion as the suggestion of criterion (4), to use the data set with smallest statistical uncertainty. Based on the four criteria, αS is therefore extracted combining the data points in the rapidity regions 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1 for ∆φmax = 7π/8. Extractions of αS from the data points in other kinematical regions in y ∗ and ∆φmax are used to investigate the dependence of the final results on those choices.

8 Determination of αS The R∆φ measurements in the selected kinematic regions are used to determine αS and to test the QCD predictions for its running as a function of the scale Q = HT /2. The αS results are extracted by using minuit [64], to minimize the χ2 function specified in Appendix C. In this approach, the experimental and theoretical uncertainties that are correlated between all data points are treated in the Hessian method [65] by including a nuisance parameter for each uncertainty source, as described in Appendix C. The only exceptions are the uncertainties due to the PDF set and the µr,f dependence of the pQCD calculation. These uncertainties are determined from the variations of the αS results, when repeating the αS extractions for different PDF sets and for variations of the scales µr,f as described in Section 3. Results of αS (Q) (with Q = HT /2, taken at the arithmetic centers of the HT bins) are determined from the R∆φ data for ∆φmax = 7π/8, combining the data points in the two y ∗ regions of 0 < y ∗ < 0.5

12

Table 4: The results for αS (Q) determined from the R∆φ data for ∆φmax = 7π/8 with 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1.0. All uncertainties have been multiplied by a factor of 103 .

Q αS (Q) Total [GeV] uncert. +6.0 262.5 0.1029 −2.8 337.5 0.0970 412.5 0.0936 500.0 0.0901 625.0 0.0890 800.0 0.0850 1000

0.0856

1225

0.0790

1675

0.0723

+8.0 −2.6 +4.0 −2.2 +3.7 −1.5 +3.9 −1.8 +5.9 −2.2 +4.0 −2.7 +4.6 −3.5 +7.0 −8.6

Stat. ±1.6 ±1.8 ±0.9 ±0.6 ±0.5 ±0.6 ±1.2 ±2.5 ±6.1

Exp. correlated +1.6 −1.7 +1.5 −1.5 +1.3 −1.3 +1.2 −1.2 +1.1 −1.1 +1.0 −1.1 +1.1 −1.1 +1.2 −1.2 +1.3 −1.2

Non-perturb. corrections +0.4 −0.4 +0.4 −0.4 +0.3 −0.3 +0.2 −0.2 +0.1 −0.1 +0.1 −0.1 +0.1 −0.1 +0.1 −0.1

< ±0.1

MMHT2014 uncertainty +0.4 −0.4 +0.3 −0.3 +0.3 −0.3 +0.3 −0.3 +0.3 −0.4 +0.4 −0.4 +0.4 −0.4 +0.5 −0.5 +0.5 −0.5

PDF set +1.4 −0.9 +3.0 −0.5 +2.6 −1.4 +1.9 −0.3 +1.7 −0.3 +4.6 −0.2 +1.4 −0.4 +1.6 −0.4 +1.7 −5.1

µr,f variation +5.3 −0.2 +7.0 −0.7 +2.5 −0.2 +2.9 −0.6 +3.3 −1.3 +3.5 −1.8 +3.4 −2.0 +3.2 −1.9 +2.8 −1.6

and 0.5 < y ∗ < 1.0. Nine αS (Q) values are determined in the range 262 < Q ≤ 1675 GeV. A single χ2 minimization provides the uncertainties due to the statistical uncertainties, the experimental correlated uncertainties, the uncertainties due to the non-perturbative corrections, and the MMHT2014 PDF uncertainty. Separate χ2 minimizations are made for variations of µr and µf (in the ranges described in Section 3), and also for the CT14, NNPDFv2.3, ABMP16, and HERAPDF 2.0 PDF sets. The largest individual variations are used to quantify the uncertainty due to the scale dependence and the PDF set, respectively. The so-defined PDF set uncertainty may partially double count some of the uncertainties already taken into account by the MMHT2014 PDF uncertainties, but it may also include some additional systematic uncertainties due to different approaches in the PDF determinations. The αS (Q) results are displayed in Figure 3 and listed in Table 4. In addition, assuming the validity of the RGE, all 18 data points in 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1.0 for ∆φmax = 7π/8 are used to extract a combined αS (mZ ) result. The combined fit (for MMHT2014 PDFs at the default scale) gives χ2 = 21.7 for 17 degrees of freedom and a result of αS (mZ ) = 0.1127 (the uncertainties are detailed in Table 5). The fit is then repeated for the CT14, NNPDFv2.3, ABMP16, and HERAPDF 2.0 PDF sets, for which the αS (mZ ) results differ by +0.0001, +0.0022, +0.0026, and +0.0029, respectively. Fits for various choices of µR and µF result in variations of the αS (mZ ) results between −0.0019 and +0.0052. Further dependence of the αS results on some of the analysis choices is investigated in a series of systematic studies. • Changing the ∆φmax requirement Based on the criteria outlined in Section 7 it was decided to use the data for ∆φmax = 7π/8 in the αS analysis. If, instead, the data with ∆φmax = 5π/6 are used, the αS (mZ ) result changes by +0.0052 to αS (mZ ) = 0.1179, with an uncertainty of +0.0065 and −0.0045 due to the scale dependence. • Extending the y ∗ region For the central αS results, the data points with 1 < y ∗ < 2 are excluded. If αS (mZ ) is determined only from the data points for 1 < y ∗ < 2 (with ∆φmax = 7π/8) the αS (mZ ) result changes by

13

Table 5: Fit result for αS (mZ ), determined from the R∆φ data for ∆φmax = 7π/8 with 0.0 < y ∗ < 0.5 and 0.5 < y ∗ < 1.0. All uncertainties have been multiplied by a factor of 103 .

αS (mZ ) 0.1127

Total uncert.

Statistical

Experimental correlated

Non-perturb. corrections

MMHT2014 uncertainty

PDF set

+6.3 −2.7

±0.5

+1.8 −1.7

+0.3 −0.1

+0.6 −0.6

+2.9 −0.0

µr,f variation +5.2 −1.9

2 −0.0018, with an increased scale dependence, to αS (mZ ) = 0.1109+0.0071 −0.0031 with χ = 13.8 for seven ∗ degrees of freedom. If the data points for 1 < y < 2 are combined with those for 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1, the result is αS (mZ ) = 0.1135+0.0051 . −0.0025

• Smoothing the systematic uncertainties In the experimental measurement, the systematic uncertainties that are correlated between different data points were smoothed in order to avoid double counting of statistical fluctuations. For this purpose, the systematic uncertainties were fitted with a linear function in log (HT /GeV). If, alternatively, a quadratic function is used, the central αS (mZ ) result changes by −0.0006, and the +0.0017 experimental uncertainty is changed from +0.0018 −0.0017 to −0.0016 . • Stronger correlations of experimental uncertainties The largest experimental uncertainties are due to the jet energy calibration. These are represented by contributions from 57 independent sources. Some of the correlations are estimated on the basis of prior assumptions. In a study of the systematic effects these assumptions are varied, resulting in an alternative scenario with stronger correlations between some of these sources. This changes the combined αS (mZ ) result by −0.0004, while the experimental correlated uncertainty is reduced +0.0012 from +0.0018 −0.0017 to −0.0013 . • Treatment of non-perturbative corrections The central αS results are obtained using the average values of the non-perturbative corrections from Pythia tunes ABT1 and DW, and the spread between the average and the individual models is taken as a correlated uncertainty, which is treated in the Hessian approach by fitting a corresponding nuisance parameter. Alternatively, the αS (mZ ) result is also extracted by fixing the values for the non-perturbative corrections to the individual model predictions from Herwig (default) and Pythia with tunes AMBT1, DW, S Global, and A, and to unity (corresponding to zero non-perturbative corrections). The corresponding changes of the αS (mZ ) result for the different choices are between −0.0004 and +0.0011. • Choice of nf = 6 versus nf = 5 The choice of nf = 6 corresponds to the rather extreme approximation in which the top quark is included as a massless quark in the pQCD calculation. The effect of using nf = 6 instead of nf = 5 in the pQCD matrix elements and the RGE and the corresponding impact on R∆φ are discussed in Appendix A. The effects on the extracted αS results are also studied and are found to be between +1.3% (at low HT ) and −1.1% (at high HT ) for the nine αS (Q) results. The combined αS (mZ ) result changes by −0.0006 from 0.1127 (for nf = 5) to 0.1121 (for nf = 6). • A scan of the renormalization scale dependence Unlike all other uncertainties which are treated in the Hessian approach, the uncertainty due to the renormalization and factorization scale dependence is obtained from individual fits in which both scales are set to fixed values. To ensure that the largest variation may not occur at intermediate

14

values, a scan of the renormalization scale dependence in finer steps is made. For each of the three variations of µf by factors of xµf = 0.5, 1.0, 2.0, the renormalization scale is varied by nine logarithmically equal-spaced factors of xµr = 0.5, 0.596, 0.708, 0.841, 1.0, 1.189, 1.413, 1.679, and 2.0. It is seen that the largest upward variation (of +0.0052) is obtained for the correlated variation xµr = xµf = 2.0. The lowest variation (of −0.0027) is obtained for the anti-correlated variation xµr = 0.5 and xµf = 2.0, which is, however, outside the range 0.5 ≤ xµr /xµf ≤ 2. The lowest variation within this range (−0.0014) is obtained for xµr = 0.5 and xµf = 1.0. • Effects of the Hessian method In the Hessian approach, a fit can explore the multi-dimensional uncertainty space to find the χ2 minimum at values of the nuisance parameters associated to the sources of systematic uncertainties, that do not represent the best knowledge of the corresponding sources. While in this analysis the shifts of the nuisance parameters are all small, it is still interesting to study their effects on the αS fit results. Therefore, the αS (mZ ) extraction is repeated, initially including the uncorrelated (i.e. statistical) uncertainties only. Then, step by step, the experimental correlated uncertainties, the uncertainties of the non-perturbative corrections, and the PDF uncertainties are included. These fits produce αS (mZ ) results that differ by less than ±0.0004 from the central result. These systematic studies show that the αS results are rather independent of the analysis choices and demonstrate the stability of the αS extraction procedure. These variations are not treated as additional uncertainties because their resulting effects are smaller than the other theoretical uncertainties. The largest variation of the αS (mZ ) result, by +0.0052, is obtained when using the data with ∆φmax = 5π/6 instead of ∆φmax = 7π/8. This difference may be due to different higher-order corrections to the NLO pQCD results for different ∆φmax values. This assumption is consistent with the observed scale dependence of the αS (mZ ) results, within which the results for both choices of ∆φmax agree (0.1127 + 0.0052 versus 0.1179 − 0.0045 for ∆φmax = 5π/6 and 7π/8, respectively). It is therefore concluded from the systematic studies that no further uncertainties need to be assigned. The final result from the combined fit is αS (mZ ) = 0.1127+0.0063 −0.0027 with the individual uncertainty contributions given in Table 5. This result and the corresponding RGE prediction are also shown in Figure 3. For all αS results in Tables 4 and 5, the uncertainties are dominated by the µr dependence of the NLO pQCD calculation. Within the uncertainties, the αS (mZ ) result is consistent with the current world average value of αS (mZ ) = 0.1181 ± 0.0011 [15] and with recent αS results from multi-jet cross-section ratio measurements in hadron collisions, namely from the DØ measurement of R∆R [9] (αS (mZ ) = 0.1191+0.0048 −0.0071 ), and from the CMS measurements of R3/2 [10] (αS (mZ ) = 0.1148 ± 0.0055), the inclusive jet cross section [11, 12] (αS (mZ ) = +0.0060 +0.0074 0.1185+0.0063 −0.0042 , αS (m Z ) = 0.1164−0.0043 ), and the three-jet cross section [13] (αS (m Z ) = 0.1171−0.0049 ), and the ATLAS measurement of transverse energy–energy correlations [14] (αS (mZ ) = 0.1162+0.0085 −0.0071 ), with comparable uncertainties. The compatibility of the results of this analysis, based on the measurements of R∆φ , with the world average value of αS (mZ ) is demonstrated in Appendix D. The individual αS (Q) results are compared in Figure 4 with previously published αS results obtained from jet measurements [4–14] and with the RGE prediction for the combined αS (mZ ) result obtained in this analysis. The new results agree with previous αS (Q) results in the region of overlap, and extend the pQCD tests to momentum transfers up to 1.6 TeV, where RGE predictions are consistent with the αS (Q) results, as discussed in Appendix E.

15

αs(Q)

ATLAS R∆φ ATLAS TEEC CMS M3-jet CMS inclusive jets CMS R32 DØ R∆R DØ inclusive jets ALEPH event shapes JADE event shapes ZEUS inclusive jets H1 incl. jets + dijets

0.25 ATLAS

0.2

0.15

0.1 αs(mZ) = 0.1127

10

10

+0.0063 −0.0027

2

10

3

Q [GeV] Figure 4: The αS (Q) results from this analysis in the range of 262 < Q < 1675 GeV, compared to the results of previous αS determinations from jet data in other experiments at 5 < Q < 1508 GeV [4–14]. Also shown is the prediction of the RGE for the αS (mZ ) result obtained from the R∆φ data in this analysis.

9 Summary The multi-jet cross-section ratio R∆φ is measured at the LHC. The quantity R∆φ specifies the fraction of the inclusive dijet events in which the azimuthal opening angle of the two jets with the highest transverse momenta is less than a given value of the parameter ∆φmax . The R∆φ results, measured in 20.2 fb−1 of √ pp collisions at s = 8 TeV with the ATLAS detector, are presented as a function of three variables: the total transverse momentum HT , the dijet rapidity interval y ∗ , and the parameter ∆φmax . The HT and y ∗ dependences of the data are well-described by theoretical predictions based on NLO pQCD (for ∆φmax = 7π/8, 5π/6, and 3π/4), or LO pQCD (for ∆φmax = 2π/3), with corrections for non-perturbative effects. Based on the data points for ∆φmax = 7π/8 with 0 < y ∗ < 0.5 and 0.5 < y ∗ < 1, nine αS results are determined, at a scale of Q = HT /2, over the range of 262 < Q < 1675 GeV. The αS (Q) results are consistent with the predictions of the RGE, and a combined analysis results in a value of αS (mZ ) = 0.1127+0.0063 −0.0027 , where the uncertainty is dominated by the scale dependence of the NLO pQCD predictions.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and

16

CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CCIN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [66].

17

Appendix A Effects of top quark contributions on the pQCD predictions There are two ways in which contributions from top quarks affect the pQCD predictions for R∆φ . Firstly, the pQCD predictions based on matrix elements for massless quarks also depend on the number of quark flavors in gluon splitting (g → q q), ¯ nf , which affects the tree-level matrix elements and their real and virtual corrections, as well as the RGE predictions. The pQCD predictions for the central analysis are obtained for nf = 5. The effects for the measured quantity R∆φ for the choice nf = 6 are computed in this appendix. Secondly, since the decay products of hadronically decaying (anti-)top quarks are sometimes reconstructed as multiple jets, the O(αS2 ) t t¯ production process also contributes to three-jet topologies. Since this contribution is of lower order in αS as compared to the pQCD O(αS3 ) three-jet production processes, it is a "super-leading" contribution, which is formally more important. This potentially large contribution and the corresponding effects for R∆φ are also estimated in this appendix. In a pQCD calculation in which quark masses are properly taken into account, the contributions from the massive top quark arise naturally at higher momentum transfers, according to the available phase space. In calculations based on matrix elements for massless quarks, nf is a parameter in the calculation. For jet production at the LHC, the alternatives are nf = 5, i.e. ignoring the contributions from g → t t¯ processes (which is the central choice for this analysis), or nf = 6, i.e. treating the top quark as a sixth massless quark. The relative difference between the two alternatives is evaluated from the effects due to the RGE and the matrix elements. For this purpose, the 2-loop solution of the RGE for nf = 5 is replaced by the pole 2-loop solutions for nf = 5 and nf = 6 with 1-loop matching [67] at the pole mass of the top quark mtop , pole

assuming that mtop is equal to the world average of the measured “Monte Carlo mass” of 173.21 GeV [15]. In addition, the matrix elements are recomputed for nf = 6. For a fixed value of αS (mZ ) = 0.118, the corresponding effects for the pQCD predictions for R∆φ are in the range of −1% to +2%. The effects on R∆φ due to the contributions from hadronic decays of t t¯ final states are estimated using Powheg-Box [68] (for the pQCD matrix elements) interfaced with Pythia (for the parton shower, underlying event, and hadronization) and CTEQ6L1 PDFs [69]. It is seen that the t t¯ process contributes 0.003–0.2% to the denominator of R∆φ (the inclusive dijet cross section), and 0.006–0.5% to the numerator (with ∆φmax = 7π/8). The effects for the ratio R∆φ are 0–0.5% in the analysis phase space, and there are no systematic trends in the considered distributions within the statistical uncertainties of the generated Powheg-Box event sample. Since this effect is about four to eight times smaller than the typical uncertainty due to the renormalization scale dependence, the corresponding effects on αS are not investigated further.

B Data tables The results of the R∆φ measurements are listed in Tables 6–9, together with their relative statistical and systematic uncertainties. A detailed list of the individual contributions from all sources of correlated uncertainties is provided in Ref. [46].

18

Table 6: The R∆φ measurement results for ∆φmax = 7π/8 with their relative statistical and systematic uncertainties.

HT [GeV] 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700 2700–4000 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700 2700–4000 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700

y∗

R∆φ

0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0

1.88 · 10−1 1.85 · 10−1 1.82 · 10−1 1.67 · 10−1 1.56 · 10−1 1.36 · 10−1 1.25 · 10−1 1.02 · 10−1 0.82 · 10−1 1.97 · 10−1 2.04 · 10−1 1.94 · 10−1 1.83 · 10−1 1.73 · 10−1 1.59 · 10−1 1.44 · 10−1 1.28 · 10−1 1.13 · 10−1 2.42 · 10−1 2.40 · 10−1 2.54 · 10−1 2.40 · 10−1 2.33 · 10−1 2.18 · 10−1 2.22 · 10−1 1.96 · 10−1

19

Stat. uncert. [%] ±2.2 ±2.2 ±1.3 ±0.9 ±0.7 ±1.0 ±1.9 ±4.1 ±9.9 ±2.2 ±2.3 ±1.3 ±0.8 ±0.8 ±1.1 ±2.3 ±5.4 ±16 ±2.3 ±2.5 ±1.5 ±1.1 ±1.0 ±1.8 ±4.4 ±14

Syst. uncert. [%] +1.8 −1.7 +1.6 −1.5 +1.4 −1.4 +1.3 −1.3 +1.2 −1.2 +1.2 −1.2 +1.2 −1.3 +1.3 −1.4 +1.5 −1.7 +1.5 −1.6 +1.3 −1.4 +1.2 −1.3 +1.2 −1.2 +1.3 −1.2 +1.4 −1.3 +1.7 −1.5 +1.9 −1.7 +2.4 −2.0 +2.3 −1.0 +1.9 −1.1 +1.7 −1.2 +1.6 −1.4 +1.6 −1.7 +1.6 −2.2 +1.6 −2.7 +1.7 −3.1

Table 7: The R∆φ measurement results for ∆φmax = 5π/6 with their relative statistical and systematic uncertainties.

HT [GeV] 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700 2700–4000 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700

y∗

R∆φ

0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0

1.22 · 10−1 1.13 · 10−1 1.10 · 10−1 1.00 · 10−1 0.92 · 10−1 0.78 · 10−1 0.72 · 10−1 0.55 · 10−1 0.51 · 10−1 1.33 · 10−1 1.27 · 10−1 1.18 · 10−1 1.11 · 10−1 1.03 · 10−1 0.93 · 10−1 0.85 · 10−1 0.74 · 10−1 1.58 · 10−1 1.54 · 10−1 1.62 · 10−1 1.53 · 10−1 1.47 · 10−1 1.36 · 10−1 1.41 · 10−1 1.35 · 10−1

20

Stat. uncert. [%] ±2.8 ±2.9 ±1.7 ±1.3 ±1.0 ±1.4 ±2.6 ±5.7 ±13 ±2.9 ±3.1 ±1.8 ±1.2 ±1.2 ±1.5 ±3.2 ±7.3 ±2.9 ±3.3 ±2.3 ±1.6 ±1.4 ±2.6 ±5.8 ±18

Syst. uncert. [%] +2.0 −1.9 +1.7 −1.7 +1.5 −1.6 +1.4 −1.5 +1.2 −1.5 +1.2 −1.5 +1.2 −1.7 +1.3 −1.9 +1.6 −2.3 +1.5 −1.8 +1.4 −1.5 +1.3 −1.3 +1.3 −1.2 +1.4 −1.2 +1.6 −1.3 +1.9 −1.4 +2.2 −1.6 +3.1 −1.0 +2.5 −0.9 +2.1 −1.1 +1.9 −1.5 +1.8 −2.2 +1.8 −3.1 +1.9 −3.9 +2.0 −4.7

Table 8: The R∆φ measurement results for ∆φmax = 3π/4 with their relative statistical and systematic uncertainties.

HT [GeV] 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 2200–2700 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200

y∗

R∆φ

0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0

4.35 · 10−2 3.67 · 10−2 3.55 · 10−2 3.24 · 10−2 2.84 · 10−2 2.27 · 10−2 1.89 · 10−2 1.43 · 10−2 4.68 · 10−2 4.01 · 10−2 3.92 · 10−2 3.61 · 10−2 3.31 · 10−2 2.90 · 10−2 2.44 · 10−2 2.17 · 10−2 6.02 · 10−2 5.68 · 10−2 5.71 · 10−2 5.19 · 10−2 4.95 · 10−2 4.56 · 10−2 5.25 · 10−2

21

Stat. uncert. [%] ±5.0 ±5.9 ±4.6 ±3.9 ±2.5 ±3.2 ±5.5 ±12 ±5.5 ±6.1 ±4.1 ±2.9 ±3.3 ±3.4 ±6.7 ±14 ±5.1 ±5.7 ±4.6 ±3.4 ±2.7 ±5.0 ±11

Syst. uncert. [%] +3.4 −2.4 +3.0 −2.1 +2.6 −1.9 +2.3 −1.8 +2.0 −1.8 +1.8 −2.0 +1.8 −2.2 +1.9 −2.5 +2.2 −2.6 +1.8 −1.9 +1.6 −1.6 +1.5 −1.4 +1.6 −1.3 +2.1 −1.3 +2.5 −1.5 +3.0 −1.8 +5.8 −2.5 +4.8 −2.4 +4.1 −2.7 +3.7 −3.2 +3.5 −4.0 +3.7 −5.0 +4.1 −6.1

Table 9: The R∆φ measurement results for ∆φmax = 2π/3 with their relative statistical and systematic uncertainties.

HT [GeV] 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200 450–600 600–750 750–900 900–1100 1100–1400 1400–1800 1800–2200

y∗

R∆φ

0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.0–0.5 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 0.5–1.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0 1.0–2.0

1.37 · 10−2 1.05 · 10−2 1.02 · 10−2 0.87 · 10−2 0.70 · 10−2 0.48 · 10−2 0.38 · 10−2 1.45 · 10−2 1.07 · 10−2 1.14 · 10−2 0.86 · 10−2 0.77 · 10−2 0.70 · 10−2 0.63 · 10−2 1.49 · 10−2 1.70 · 10−2 1.53 · 10−2 1.29 · 10−2 1.12 · 10−2 1.02 · 10−2 1.61 · 10−2

22

Stat. uncert. [%] ±9.5 ±11 ±12 ±8.9 ±6.0 ±7.8 ±13 ±11 ±12 ±11 ±6.8 ±7.1 ±8.6 ±16 ±10 ±11 ±8.9 ±7.5 ±6.6 ±12 ±20

Syst. uncert. [%] +6.3 −4.1 +5.4 −3.6 +4.7 −3.3 +4.1 −3.2 +3.5 −3.2 +3.2 −3.3 +3.2 −3.7 +3.9 −4.4 +2.7 −2.5 +2.1 −1.8 +2.2 −1.8 +2.8 −2.3 +3.8 −3.2 +4.8 −4.2 +9.0 −5.1 +7.4 −3.8 +6.5 −3.7 +6.2 −4.3 +6.6 −5.9 +7.6 −8.0 +8.8 −10

C Definition of χ 2 Given is a set of experimental measurement results in bins i of a given quantity with central measurement results di with statistical and uncorrelated systematic uncertainties σi,stat and σi,uncorr , respectively. The experimental measurements are affected by various sources of correlated uncertainties, and δi j ( j ) specifies the uncertainty of measurement i due to the source j, where  j is a Gaussian distributed random variable with zero expectation value and unit width. The δi j ( j ) specify the dependence of the measured result i on the variation of the correlated uncertainty source j by  j standard deviations, where  j = 0 corresponds to the central value of the measurement (i.e. δi j ( j = 0) = 0), while the relative uncertainties corresponding to plus/minus one standard deviation are given by δi j ( j = ±1) = ∆di±j . From the central measurement result and the relative uncertainties ∆di±j , the continuous  j dependence of δi j ( j ) can be obtained using quadratic interpolation ∆di+j − ∆di−j ∆di+j + ∆di−j 2 δi j ( j ) =  j + j . 2 2 The theoretical prediction ti (αS ) for bin i depends on the value of αS . Furthermore, the theoretical predictions are also affected by sources of correlated uncertainties; δik (λk ) specifies the relative uncertainty of ti due to the source k. Like the  j , the λ j are also treated as Gaussian distributed random variables with zero expectation value and unity width. It is assumed that the theoretical predictions can be obtained with statistical uncertainties which are negligible as compared to the statistical uncertainties of the measurements. The continuous dependence of the relative uncertainty δik (λk ) can be obtained through quadratic interpo± obtained by variations corresponding to plus/minus lation between the central result ti and the results tik one standard deviation due to source k  +  + − t− − tik t + tik ik 2 ik δik (λk ) = λ j + λk −1 . 2ti 2ti The χ2 used in the αS extraction is then computed as  ® = χ2 (αS, ®, λ)

Õ i

2 Í (1+ k δi k (λ k )) di − ti (αS ) 1+Í δ ( ) ( j ij j ) 2 2 σi,stat. + σi,uncorr.

+

Õ j

 j2 +

Õ

λk2 ,

k

where i runs over all data points, j runs over all sources of experimental correlated uncertainties, and k over all theoretical correlated uncertainties. The fit result of αS is determined by minimizing χ2 with respect to αS and the “nuisance parameters”  j and λk .

D On the compatibility of the R∆φ data and the world average of αS (m Z ) The αS (mZ ) result in Table 5 is lower than the world average value by approximately one standard deviation. In this appendix, the consistency of the world average of αS (mZ ) and the R∆φ data is investigated using the χ2 values. The χ2 values are computed according to Appendix C, using the 18 data points with ∆φmax = 7π/8, and 0.0 < y ∗ < 0.5 and 0.5 < y ∗ < 1.0. The theoretical predictions are computed for the fixed value of αS (mZ ) = 0.1181. The computation of χ2 uses the Hessian method for the treatment of all

23

Table 10: The χ2 values between the 18 data points and the theoretical predictions when αS (mZ ) is fixed to the world average value of αS (mZ ) = 0.1181 (third column) and when it is a free fitted parameter (fourth column) for variations of the scales µR and µF around the central choice µR = µF = µ0 = HT /2.

µR /µ0

0.5 0.5 1.0 1.0 1.0 2.0 2.0

µF /µ0

0.5 1.0 0.5 1.0 2.0 1.0 2.0

χ2 for αS (mZ ) = 0.1181 62.4 56.3 31.6 29.7 28.4 19.2 19.3

χ2 for αS (mZ ) free fit parameter 50.9 39.6 23.6 21.7 20.8 19.0 19.3

uncertainties except for the PDF set uncertainty and the scale dependence, so the χ2 values do not reflect these theoretical uncertainties. Therefore, a series of χ2 values is computed for possible combinations of variations of µr and µf around the central choice µr = µf = µ0 = HT /2. The results are displayed in Table 10 and compared to the χ2 values obtained when αS (mZ ) is a free fit parameter. When αS (mZ ) is fixed to the world average, the χ2 value for the central scale choice is slightly √ higher than the one obtained for a free αS (mZ ), and also higher than the expectation of χ2 = Ndof ± 2 · Ndof , where Ndof = 18 when αS (mZ ) is fixed or 17 when it is a free fit parameter. However, the χ2 definition does not take into account the theoretical uncertainty due to the scale dependence. When the renormalization scale is increased by a factor of two, to µr = 2µ0 , lower χ2 values are obtained, which are similar in size to the ones obtained for a free αS (mZ ), and close to the expectation (the dependence on the factorization scale is rather small). Since these χ2 values are well within the range of the expectation, it is concluded that, within their uncertainties, the theoretical predictions for the world average value of αS (mZ ) are consistent with the R∆φ data.

E On the compatibility of the RGE and the slope of the αS (Q) results It is natural to ask whether the observed Q dependence (i.e. the running) of the αS (Q) results shown in Figure 3 is described by the RGE or instead exhibits significant deviations at the highest Q values, possibly indicating signals of physics beyond the Standard Model. The consistency of the RGE predictions with the observed slope is investigated in this appendix. The RGE prediction would be in agreement with the observed Q dependence of the αS (Q) results if the latter, when evolved to mZ , give αS (mZ ) values that are independent of Q. For this purpose, a linear function in log10 (Q/1 GeV), f (Q) = c +m ·log10 (Q/1 GeV), is fitted to the nine αS (mZ ) points in Figure 3 (bottom) and their statistical uncertainties. Here the correlated systematic uncertainties are not taken into account as their correlations are non-trivial since the individual αS (Q) results are obtained in separate fits, with different optimizations for the nuisance parameters. The fit results for the slope parameter m and its uncertainty are displayed in Table 11 for a fit to the αS (mZ ) points at all nine Q values, and also for fits to different subsets of the αS (mZ ) points, omitting points either at lower or higher Q.

24

Table 11: Fit of a linear function in log10 (Q/GeV) to the nine extracted αS (Q) results with their statistical uncertainties.

αS (Q) points included in fit 1–9 2–9 3–9 4–9 5–9 6–9 1–9 1–8 1–7 1–6 1–5 1–4

Q range (GeV) 225–2000 300–2000 375–2000 450–2000 550–2000 700–2000 225–2000 225–1350 225–1100 225–900 225–700 225–550

Fit result for slope parameter (−0.89 ± 0.35) ·10−2 (−0.52 ± 0.33) ·10−2 (−0.39 ± 0.28) ·10−2 (−0.20 ± 0.29) ·10−2 (−1.19 ± 0.35) ·10−2 (+0.35 ± 0.51) ·10−2 (−0.89 ± 0.35) ·10−2 (−0.85 ± 0.43) ·10−2 (−0.78 ± 0.32) ·10−2 (−1.14 ± 0.28) ·10−2 (−1.01 ± 0.31) ·10−2 (−2.55 ± 0.41) ·10−2

As documented in Table 11, a fit to all nine αS (mZ ) points gives a slope that differs from zero by more than its uncertainty. Fits to groups of data points, however, show that the significance of this slope arises from the two points at lowest Q. Omitting the αS (mZ ) point at lowest Q (fitting points # 2–9), or the two points at lowest Q (fitting points # 3–9), both give fit results for which the slope parameter is more consistent with zero, while the αS (mZ ) results change by less than ±0.0001. On the other hand, omitting the αS (Q) points at highest Q (fitting points # 1–8 or # 1–7) does not affect the significance of the slope. It is therefore concluded that the high-Q behavior of the αS (Q) results is consistent with the RGE and that the small differences at lowest Q do not affect the combined αS (mZ ) result.

References [1]

H. D. Politzer, Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 30 (1973) 1346.

[2]

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. 1, Phys. Rev. D 8 (1973) 3633.

[3]

H1 Collaboration, Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA, Eur. Phys. J. C 77 (2017) 215, arXiv: 1611.03421 [hep-ex].

[4]

H1 Collaboration, Determination of the strong coupling constant αs (mZ ) in next-to-next-to-leading order QCD using H1 jet cross section measurements, Eur. Phys. J. C 77 (2017) 791, arXiv: 1709.07251 [hep-ex].

[5]

ZEUS Collaboration, Inclusive-jet photoproduction at HERA and determination of αs , Nucl. Phys. B 864 (2012) 1, arXiv: 1205.6153 [hep-ex].

[6]

S. Bethke, S. Kluth, C. Pahl, and J. Schieck, Determination of the strong coupling αs from hadronic event shapes with O(αs3 ) and resummed QCD predictions using JADE data, Eur. Phys. J. C 64 (2009) 351, arXiv: 0810.1389 [hep-ex].

25

[7]

G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e+e- annihilations, JHEP 08 (2009) 036, arXiv: 0906.3436 [hep-ph].

[8]

D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross √ section in p p¯ collisions at s = 1.96 TeV, Phys. Rev. D 80 (2009) 111107, arXiv: 0911.2710 [hep-ex]. √ [9] D0 Collaboration, Measurement of angular correlations of jets at s = 1.96 TeV and determination of the strong coupling at high momentum transfers, Phys. Lett. B 718 (2012) 56, arXiv: 1207.4957 [hep-ex]. [10]

CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive √ 2-jet cross section in pp collisions at s = 7 TeV and first determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 73 (2013) 2604, arXiv: 1304.7498 [hep-ex].

[11]

CMS Collaboration, Constraints on parton distribution functions and extraction of the strong √ coupling constant from the inclusive jet cross section in pp collisions at s = 7 TeV, Eur. Phys. J. C 75 (2015) 288, arXiv: 1410.6765 [hep-ex].

[12]

CMS Collaboration, Measurement and QCD analysis of double-differential inclusive jet cross √ sections in pp collisions at s = 8 TeV and cross section ratios to 2.76 and 7 TeV, JHEP 03 (2017) 156, arXiv: 1609.05331 [hep-ex].

[13]

CMS Collaboration, Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 75 (2015) 186, arXiv: 1412.1633 [hep-ex].

[14]

ATLAS Collaboration, Determination of the strong coupling constant αs from transverse √ energy–energy correlations in multijet events at s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 872, arXiv: 1707.02562 [hep-ex].

[15]

C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001.

[16]

M. Wobisch, K. Chakravarthula, R. Dhullipudi, L. Sawyer, and M. Tamsett, A new quantity for studies of dijet azimuthal decorrelations, JHEP 01 (2013) 172, arXiv: 1211.6773 [hep-ph].

[17]

D0 Collaboration, Measurement of dijet azimuthal decorrelations at central rapidities in p p¯ √ collisions at s = 1.96 TeV, Phys. Rev. Lett. 94 (2005) 221801, arXiv: hep-ex/0409040. √ CMS Collaboration, Dijet Azimuthal Decorrelations in pp Collisions at s = 7 TeV, Phys. Rev. Lett. 106 (2011) 122003, arXiv: 1101.5029 [hep-ex].

[18] [19]

ATLAS Collaboration, √ Measurement of Dijet Azimuthal Decorrelations in pp Collisions at s = 7 TeV, Phys. Rev. Lett. 106 (2011) 172002, arXiv: 1102.2696 [hep-ex].

[20]

M. Wobisch and K. Rabbertz, Dijet azimuthal decorrelations for ∆φdijet < 2π/3 in perturbative QCD, JHEP 12 (2015) 024, arXiv: 1505.05030 [hep-ph].

[21]

D0 Collaboration, Measurement of the combined rapidity and pT dependence of dijet azimuthal √ decorrelations in p p¯ collisions at s = 1.96 TeV, Phys. Lett. B 721 (2013) 212, arXiv: 1212.1842 [hep-ex].

26

[22]

ATLAS Collaboration, √ Luminosity determination in pp collisions at s = 8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653, arXiv: 1608.03953 [hep-ex].

[23]

C. Buttar et al., Standard Model Handles and Candles Working Group: Tools and Jets Summary Report, 2008, arXiv: 0803.0678 [hep-ph].

[24]

M. Cacciari and G. P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57, arXiv: hep-ph/0512210.

[25]

M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].

[26]

G. Soyez, Optimal jet radius in kinematic dijet reconstruction, JHEP 07 (2010) 075, arXiv: 1006.3634 [hep-ph].

[27]

Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002, arXiv: hep-ph/0307268.

[28]

Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003, arXiv: hep-ph/0110315.

[29]

T. Kluge, K. Rabbertz, and M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, 2006, arXiv: hep-ph/0609285.

[30]

M. Wobisch, D. Britzger, T. Kluge, K. Rabbertz, and F. Stober, Theory-Data Comparisons for Jet Measurements in Hadron-Induced Processes, 2011, arXiv: 1109.1310 [hep-ph].

[31]

W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998.

[32]

L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204, arXiv: 1412.3989 [hep-ph].

[33]

L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Uncertainties on αs in the MMHT2014 global PDF analysis and implications for SM predictions, Eur. Phys. J. C 75 (2015) 435, arXiv: 1506.05682 [hep-ph].

[34]

S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006, arXiv: 1506.07443 [hep-ph].

[35]

R. D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296, arXiv: 1101.1300 [hep-ph].

[36]

R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040, arXiv: 1410.8849 [hep-ph].

[37]

S. Alekhin, J. Blümlein, S. Moch, and R. Placakyte, Parton Distribution Functions, αs and Heavy-Quark Masses for LHC Run II, Phys. Rev. D 96 (2017) 014011, arXiv: 1701.05838 [hep-ph].

27

[38]

H1 and ZEUS Collaborations, Combination of measurements of inclusive deep inelastic e± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580, arXiv: 1506.06042 [hep-ex].

[39]

T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238, arXiv: hep-ph/0010017.

[40]

G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010, arXiv: hep-ph/0011363.

[41]

G. Corcella et al., HERWIG 6.5 release note, (2002), arXiv: hep-ph/0210213.

[42]

ATLAS Collaboration, √ Charged particle multiplicities in pp interactions at s = 0.9 and 7 TeV in a diffractive limited phase-space measured with the ATLAS detector at the LHC and new Pythia6 tune, ATLAS-CONF-2010-031, 2010, url: https://cds.cern.ch/record/1277665.

[43]

M. G. Albrow et al., Tevatron-for-LHC Report of the QCD Working Group, 2006, arXiv: hep-ph/0610012.

[44]

R. Field, Min-Bias and the Underlying Event at the Tevatron and the LHC, talk presented at the Fermilab ME/MC Tuning Workshop, Fermilab, October 4, 2002.

[45]

H. Schulz and P. Z. Skands, Energy scaling of minimum-bias tunes, Eur. Phys. J. C 71 (2011) 1644, arXiv: 1103.3649 [hep-ph].

[46]

ATLAS Collaboration, Tables of the measurement results with their uncorrelated and correlated uncertainties, and the non-perturbative corrections are available in the Durham HEP database, url: http://hepdata.cedar.ac.uk/view/[to-be-provided].

[47]

ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

[48]

ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010, Eur. Phys. J. C 72 (2012) 1849, arXiv: 1110.1530 [hep-ex].

[49]

ATLAS Collaboration, The performance of the jet trigger for the ATLAS detector during 2011 data taking, Eur. Phys. J. C 76 (2016) 526, arXiv: 1606.07759 [hep-ex].

[50]

ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex].

[51]

S. Agostinelli et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.

[52]

ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823, arXiv: 1005.4568 [physics.ins-det].

[53]

T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv: 0710.3820 [hep-ph].

[54]

ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003, 2012, url: https://cds.cern.ch/record/1474107.

[55]

M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119, arXiv: 0707.1378 [hep-ph].

28

[56]

ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at √ s = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581, arXiv: 1510.03823 [hep-ex].

[57]

ATLAS Collaboration, Monte Carlo Calibration and Combination of In-situ Measurements of Jet Energy Scale, Jet Energy Resolution and Jet Mass in ATLAS, ATLAS-CONF-2015-037, 2015, url: https://cds.cern.ch/record/2044941.

[58]

ATLAS Collaboration, A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector, Eur. Phys. J. C 77 (2017) 26, arXiv: 1607.08842 [hep-ex].

[59]

ATLAS Collaboration, Data-driven determination of the energy scale and resolution of jets √ reconstructed in the ATLAS calorimeters using dijet and multijet events at s = 8 TeV, ATLAS-CONF-2015-017, 2015, url: https://cds.cern.ch/record/2008678. √ [60] ATLAS Collaboration, Jet energy resolution in proton-proton collisions at s = 7 TeV recorded in 2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306, arXiv: 1210.6210 [hep-ex]. [61]

ATLAS Collaboration, Determination of the jet energy scale and resolution at ATLAS using √ Z/γ-jet events in data at s = 8 TeV, ATLAS-CONF-2015-057, 2015, url: https://cds.cern.ch/record/2059846.

[62]

ATLAS Collaboration, Jet global sequential corrections with the ATLAS detector in proton-proton √ collisions at s = 8 TeV, (2015), url: https://cds.cern.ch/record/2001682.

[63]

G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487.

[64]

F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343.

[65]

T. Carli et al., “Experimental determination of Parton Distributions,” in the proceedings of HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Proceedings Part A, ed. by G. Altarelli et al., 2005, arXiv: hep-ph/0601012.

[66]

ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-GEN-PUB-2016-002, url: https://cds.cern.ch/record/2202407.

[67]

K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184, arXiv: hep-ph/9706430.

[68]

P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, arXiv: hep-ph/0409146.

[69]

J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012, arXiv: hep-ph/0201195.

29

The ATLAS Collaboration M. Aaboud34d , G. Aad99 , B. Abbott124 , O. Abdinov13,* , B. Abeloos128 , S.H. Abidi164 , O.S. AbouZeid143 , N.L. Abraham153 , H. Abramowicz158 , H. Abreu157 , R. Abreu127 , Y. Abulaiti45a,45b , B.S. Acharya67a,67b,l , S. Adachi160 , L. Adamczyk41a , J. Adelman119 , M. Adersberger112 , T. Adye140 , A.A. Affolder143 , Y. Afik157 , T. Agatonovic-Jovin16 , C. Agheorghiesei27c , J.A. Aguilar-Saavedra135f,135a , F. Ahmadov80,ah , G. Aielli74a,74b , S. Akatsuka83 , H. Akerstedt45a,45b , T.P.A. Åkesson95 , E. Akilli55 , A.V. Akimov108 , G.L. Alberghi23b,23a , J. Albert174 , P. Albicocco52 , M.J. Alconada Verzini86 , S. Alderweireldt117 , M. Aleksa35 , I.N. Aleksandrov80 , C. Alexa27b , G. Alexander158 , T. Alexopoulos10 , M. Alhroob124 , B. Ali137 , M. Aliev68a,68b , G. Alimonti69a , J. Alison36 , S.P. Alkire38 , B.M.M. Allbrooke153 , B.W. Allen127 , P.P. Allport21 , A. Aloisio70a,70b , A. Alonso39 , F. Alonso86 , C. Alpigiani145 , A.A. Alshehri58 , M.I. Alstaty99 , B. Alvarez Gonzalez35 , D. Álvarez Piqueras172 , M.G. Alviggi70a,70b , B.T. Amadio18 , Y. Amaral Coutinho141a , C. Amelung26 , D. Amidei103 , S.P. Amor Dos Santos135a,135c , S. Amoroso35 , G. Amundsen26 , C. Anastopoulos146 , L.S. Ancu55 , N. Andari21 , T. Andeen11 , C.F. Anders62b , J.K. Anders88 , K.J. Anderson36 , A. Andreazza69a,69b , V. Andrei62a , S. Angelidakis37 , I. Angelozzi118 , A. Angerami38 , A.V. Anisenkov120b,120a , N. Anjos14 , A. Annovi72a , C. Antel62a , M. Antonelli52 , A. Antonov110,* , D.J.A. Antrim169 , F. Anulli73a , M. Aoki81 , L. Aperio Bella35 , G. Arabidze104 , Y. Arai81 , J.P. Araque135a , V. Araujo Ferraz141a , A.T.H. Arce49 , R.E. Ardell91 , F.A. Arduh86 , J-F. Arguin107 , S. Argyropoulos78 , M. Arik12c , A.J. Armbruster35 , L.J. Armitage90 , O. Arnaez164 , H. Arnold53 , M. Arratia31 , O. Arslan24 , A. Artamonov109,* , G. Artoni131 , S. Artz97 , S. Asai160 , N. Asbah46 , A. Ashkenazi158 , L. Asquith153 , K. Assamagan29 , R. Astalos28a , M. Atkinson171 , N.B. Atlay148 , K. Augsten137 , G. Avolio35 , B. Axen18 , M.K. Ayoub15a , G. Azuelos107,av , A.E. Baas62a , M.J. Baca21 , H. Bachacou142 , K. Bachas68a,68b , M. Backes131 , P. Bagnaia73a,73b , M. Bahmani42 , H. Bahrasemani149 , J.T. Baines140 , M. Bajic39 , O.K. Baker181 , P.J. Bakker118 , E.M. Baldin120b,120a , P. Balek178 , F. Balli142 , W.K. Balunas132 , E. Banas42 , A. Bandyopadhyay24 , Sw. Banerjee179,i , A.A.E. Bannoura180 , L. Barak158 , E.L. Barberio102 , D. Barberis56b,56a , M. Barbero99 , T. Barillari113 , M-S Barisits35 , J. Barkeloo127 , T. Barklow150 , N. Barlow31 , S.L. Barnes61c , B.M. Barnett140 , R.M. Barnett18 , Z. Barnovska-Blenessy61a , A. Baroncelli75a , G. Barone26 , A.J. Barr131 , L. Barranco Navarro172 , F. Barreiro96 , J. Barreiro Guimarães da Costa15a , R. Bartoldus150 , A.E. Barton87 , P. Bartos28a , A. Basalaev133 , A. Bassalat128 , R.L. Bates58 , S.J. Batista164 , J.R. Batley31 , M. Battaglia143 , M. Bauce73a,73b , F. Bauer142 , H.S. Bawa150,j , J.B. Beacham122 , M.D. Beattie87 , T. Beau94 , P.H. Beauchemin167 , P. Bechtle24 , H.C. Beck54 , H.P. Beck20,r , K. Becker131 , M. Becker97 , C. Becot121 , A. Beddall12d , A.J. Beddall12a , V.A. Bednyakov80 , M. Bedognetti118 , C.P. Bee152 , T.A. Beermann35 , M. Begalli141a , M. Begel29 , J.K. Behr46 , A.S. Bell92 , G. Bella158 , L. Bellagamba23b , A. Bellerive33 , M. Bellomo157 , K. Belotskiy110 , O. Beltramello35 , N.L. Belyaev110 , O. Benary158,* , D. Benchekroun34a , M. Bender112 , N. Benekos10 , Y. Benhammou158 , E. Benhar Noccioli181 , J. Benitez78 , D.P. Benjamin49 , M. Benoit55 , J.R. Bensinger26 , S. Bentvelsen118 , L. Beresford131 , M. Beretta52 , D. Berge118 , E. Bergeaas Kuutmann170 , N. Berger5 , J. Beringer18 , S. Berlendis59 , N.R. Bernard100 , G. Bernardi94 , C. Bernius150 , F.U. Bernlochner24 , T. Berry91 , P. Berta97 , C. Bertella15a , G. Bertoli45a,45b , I.A. Bertram87 , C. Bertsche46 , D. Bertsche124 , G.J. Besjes39 , O. Bessidskaia Bylund45a,45b , M. Bessner46 , N. Besson142 , A. Bethani98 , S. Bethke113 , A. Betti24 , A.J. Bevan90 , J. Beyer113 , R.M. Bianchi134 , O. Biebel112 , D. Biedermann19 , R. Bielski98 , K. Bierwagen97 , N.V. Biesuz72a,72b , M. Biglietti75a , T.R.V. Billoud107 , H. Bilokon52 , M. Bindi54 , A. Bingul12d , C. Bini73a,73b , S. Biondi23b,23a , T. Bisanz54 , C. Bittrich48 , D.M. Bjergaard49 , J.E. Black150 , K.M. Black25 , R.E. Blair6 , T. Blazek28a , I. Bloch46 , C. Blocker26 , A. Blue58 , W. Blum97,* , U. Blumenschein90 , Dr. Blunier144a , G.J. Bobbink118 , V.S. Bobrovnikov120b,120a , S.S. Bocchetta95 , A. Bocci49 , C. Bock112 , M. Boehler53 , D. Boerner180 ,

30

D. Bogavac112 , A.G. Bogdanchikov120b,120a , C. Bohm45a , V. Boisvert91 , P. Bokan170,z , T. Bold41a , A.S. Boldyrev111 , A.E. Bolz62b , M. Bomben94 , M. Bona90 , M. Boonekamp142 , A. Borisov139 , G. Borissov87 , J. Bortfeldt35 , D. Bortoletto131 , V. Bortolotto64a,64b,64c , D. Boscherini23b , M. Bosman14 , J.D. Bossio Sola30 , J. Boudreau134 , J. Bouffard2 , E.V. Bouhova-Thacker87 , D. Boumediene37 , C. Bourdarios128 , S.K. Boutle58 , A. Boveia122 , J. Boyd35 , I.R. Boyko80 , A.J. Bozson91 , J. Bracinik21 , A. Brandt8 , G. Brandt54 , O. Brandt62a , F. Braren46 , U. Bratzler161 , B. Brau100 , J.E. Brau127 , W.D. Breaden Madden58 , K. Brendlinger46 , A.J. Brennan102 , L. Brenner118 , R. Brenner170 , S. Bressler178 , D.L. Briglin21 , T.M. Bristow50 , D. Britton58 , D. Britzger46 , I. Brock24 , R. Brock104 , G. Brooijmans38 , T. Brooks91 , W.K. Brooks144b , J. Brosamer18 , E. Brost119 , J.H Broughton21 , P.A. Bruckman de Renstrom42 , D. Bruncko28b , A. Bruni23b , G. Bruni23b , L.S. Bruni118 , S. Bruno74a,74b , B.H. Brunt31 , M. Bruschi23b , N. Bruscino134 , P. Bryant36 , L. Bryngemark46 , T. Buanes17 , Q. Buat149 , P. Buchholz148 , A.G. Buckley58 , I.A. Budagov80 , F. Buehrer53 , M.K. Bugge130 , O. Bulekov110 , D. Bullock8 , T.J. Burch119 , S. Burdin88 , C.D. Burgard53 , A.M. Burger5 , B. Burghgrave119 , K. Burka42 , S. Burke140 , I. Burmeister47 , J.T.P. Burr131 , E. Busato37 , D. Büscher53 , V. Büscher97 , P. Bussey58 , J.M. Butler25 , C.M. Buttar58 , J.M. Butterworth92 , P. Butti35 , W. Buttinger29 , A. Buzatu155 , A.R. Buzykaev120b,120a , S. Cabrera Urbán172 , D. Caforio137 , H. Cai171 , V.M.M. Cairo40b,40a , O. Cakir4a , N. Calace55 , P. Calafiura18 , A. Calandri99 , G. Calderini94 , P. Calfayan66 , G. Callea40b,40a , L.P. Caloba141a , S. Calvente Lopez96 , D. Calvet37 , S. Calvet37 , T.P. Calvet99 , R. Camacho Toro36 , S. Camarda35 , P. Camarri74a,74b , D. Cameron130 , R. Caminal Armadans171 , C. Camincher59 , S. Campana35 , M. Campanelli92 , A. Camplani69a,69b , A. Campoverde148 , V. Canale70a,70b , M. Cano Bret61c , J. Cantero125 , T. Cao158 , M.D.M. Capeans Garrido35 , I. Caprini27b , M. Caprini27b , M. Capua40b,40a , R.M. Carbone38 , R. Cardarelli74a , F. Cardillo53 , I. Carli138 , T. Carli35 , G. Carlino70a , B.T. Carlson134 , L. Carminati69a,69b , R.M.D. Carney45a,45b , S. Caron117 , E. Carquin144b , S. Carrá69a,69b , G.D. Carrillo-Montoya35 , D. Casadei21 , M.P. Casado14,e , M. Casolino14 , D.W. Casper169 , R. Castelijn118 , V. Castillo Gimenez172 , N.F. Castro135a , A. Catinaccio35 , J.R. Catmore130 , A. Cattai35 , J. Caudron24 , V. Cavaliere171 , E. Cavallaro14 , D. Cavalli69a , M. Cavalli-Sforza14 , V. Cavasinni72a,72b , E. Celebi12b , F. Ceradini75a,75b , L. Cerda Alberich172 , A.S. Cerqueira141b , A. Cerri153 , L. Cerrito74a,74b , F. Cerutti18 , A. Cervelli23b,23a , S.A. Cetin12b , A. Chafaq34a , DC Chakraborty119 , S.K. Chan60 , W.S. Chan118 , Y.L. Chan64a , P. Chang171 , J.D. Chapman31 , D.G. Charlton21 , C.C. Chau33 , C.A. Chavez Barajas153 , S. Che122 , S. Cheatham67a,67c , A. Chegwidden104 , S. Chekanov6 , S.V. Chekulaev165a , G.A. Chelkov80,au , M.A. Chelstowska35 , C. Chen61a , C. Chen79 , H. Chen29 , J. Chen61a , S. Chen15b , S. Chen160 , X. Chen15c,at , Y. Chen82 , H.C. Cheng103 , H.J. Cheng15d , A. Cheplakov80 , E. Cheremushkina139 , R. Cherkaoui El Moursli34e , E. Cheu7 , K. Cheung65 , L. Chevalier142 , V. Chiarella52 , G. Chiarelli72a , G. Chiodini68a , A.S. Chisholm35 , A. Chitan27b , Y.H. Chiu174 , M.V. Chizhov80 , K. Choi66 , A.R. Chomont37 , S. Chouridou159 , Y.S. Chow64a , V. Christodoulou92 , M.C. Chu64a , J. Chudoba136 , A.J. Chuinard101 , J.J. Chwastowski42 , L. Chytka126 , A.K. Ciftci4a , D. Cinca47 , V. Cindro89 , I.A. Cioară24 , A. Ciocio18 , F. Cirotto70a,70b , Z.H. Citron178 , M. Citterio69a , M. Ciubancan27b , A. Clark55 , B.L. Clark60 , M.R. Clark38 , P.J. Clark50 , R.N. Clarke18 , C. Clement45a,45b , Y. Coadou99 , M. Cobal67a,67c , A. Coccaro55 , J. Cochran79 , L. Colasurdo117 , B. Cole38 , A.P. Colijn118 , J. Collot59 , T. Colombo169 , P. Conde Muiño135a,135b , E. Coniavitis53 , S.H. Connell32b , I.A. Connelly98 , S. Constantinescu27b , G. Conti35 , F. Conventi70a,aw , M. Cooke18 , A.M. Cooper-Sarkar131 , F. Cormier173 , K.J.R. Cormier164 , M. Corradi73a,73b , F. Corriveau101,af , A. Cortes-Gonzalez35 , G. Costa69a , M.J. Costa172 , D. Costanzo146 , G. Cottin31 , G. Cowan91 , B.E. Cox98 , K. Cranmer121 , S.J. Crawley58 , R.A. Creager132 , G. Cree33 , S. Crépé-Renaudin59 , F. Crescioli94 , W.A. Cribbs45a,45b , M. Cristinziani24 , V. Croft121 , G. Crosetti40b,40a , A. Cueto96 , T. Cuhadar Donszelmann146 , A.R. Cukierman150 , J. Cummings181 , M. Curatolo52 , J. Cúth97 , S. Czekierda42 , P. Czodrowski35 , M.J. Da Cunha Sargedas De Sousa135a,135b , C. Da Via98 , W. Dabrowski41a , T. Dado28a,z , T. Dai103 , O. Dale17 , F. Dallaire107 , C. Dallapiccola100 , M. Dam39 ,

31

G. D’amen23b,23a , J.R. Dandoy132 , M.F. Daneri30 , N.P. Dang179,i , A.C. Daniells21 , N.D Dann98 , M. Danninger173 , M. Dano Hoffmann142 , V. Dao152 , G. Darbo56b , S. Darmora8 , J. Dassoulas3 , A. Dattagupta127 , T. Daubney46 , S. D’Auria58 , W. Davey24 , C. David46 , T. Davidek138 , D.R. Davis49 , P. Davison92 , E. Dawe102 , I. Dawson146 , K. De8 , R. de Asmundis70a , A. De Benedetti124 , S. De Castro23b,23a , S. De Cecco94 , N. De Groot117 , P. de Jong118 , H. De la Torre104 , F. De Lorenzi79 , A. De Maria54,s , D. De Pedis73a , A. De Salvo73a , U. De Sanctis74a,74b , A. De Santo153 , K. De Vasconcelos Corga99 , J.B. De Vivie De Regie128 , R. Debbe29 , C. Debenedetti143 , D.V. Dedovich80 , N. Dehghanian3 , I. Deigaard118 , M. Del Gaudio40b,40a , J. Del Peso96 , D. Delgove128 , F. Deliot142 , C.M. Delitzsch7 , M. Della Pietra70a,70b , D. della Volpe55 , A. Dell’Acqua35 , L. Dell’Asta25 , M. Dell’Orso72a,72b , M. Delmastro5 , C. Delporte128 , P.A. Delsart59 , D.A. DeMarco164 , S. Demers181 , M. Demichev80 , A. Demilly94 , S.P. Denisov139 , D. Denysiuk142 , L. D’Eramo94 , D. Derendarz42 , J.E. Derkaoui34d , F. Derue94 , P. Dervan88 , K. Desch24 , C. Deterre46 , K. Dette164 , M.R. Devesa30 , P.O. Deviveiros35 , A. Dewhurst140 , S. Dhaliwal26 , F.A. Di Bello55 , A. Di Ciaccio74a,74b , L. Di Ciaccio5 , W.K. Di Clemente132 , C. Di Donato70a,70b , A. Di Girolamo35 , B. Di Girolamo35 , B. Di Micco75a,75b , R. Di Nardo35 , K.F. Di Petrillo60 , A. Di Simone53 , R. Di Sipio164 , D. Di Valentino33 , C. Diaconu99 , M. Diamond164 , F.A. Dias39 , M.A. Diaz144a , E.B. Diehl103 , J. Dietrich19 , S. Díez Cornell46 , A. Dimitrievska16 , J. Dingfelder24 , P. Dita27b , S. Dita27b , F. Dittus35 , F. Djama99 , T. Djobava156b , J.I. Djuvsland62a , M.A.B. do Vale141c , D. Dobos35 , M. Dobre27b , D. Dodsworth26 , C. Doglioni95 , J. Dolejsi138 , Z. Dolezal138 , M. Donadelli141d , S. Donati72a,72b , P. Dondero71a,71b , J. Donini37 , M. D’Onofrio88 , J. Dopke140 , A. Doria70a , M.T. Dova86 , A.T. Doyle58 , E. Drechsler54 , M. Dris10 , Y. Du61b , J. Duarte-Campderros158 , A. Dubreuil55 , E. Duchovni178 , G. Duckeck112 , A. Ducourthial94 , O.A. Ducu107,y , D. Duda118 , A. Dudarev35 , A.Chr. Dudder97 , E.M. Duffield18 , L. Duflot128 , M. Dührssen35 , C. Dülsen180 , M. Dumancic178 , A.E. Dumitriu27b,d , A.K. Duncan58 , M. Dunford62a , A. Duperrin99 , H. Duran Yildiz4a , M. Düren57 , A. Durglishvili156b , D. Duschinger48 , B. Dutta46 , D. Duvnjak1 , M. Dyndal46 , B.S. Dziedzic42 , C. Eckardt46 , K.M. Ecker113 , R.C. Edgar103 , T. Eifert35 , G. Eigen17 , K. Einsweiler18 , T. Ekelof170 , M. El Kacimi34c , R. El Kosseifi99 , V. Ellajosyula99 , M. Ellert170 , S. Elles5 , F. Ellinghaus180 , A.A. Elliot174 , N. Ellis35 , J. Elmsheuser29 , M. Elsing35 , D. Emeliyanov140 , Y. Enari160 , O.C. Endner97 , J.S. Ennis176 , M.B. Epland49 , J. Erdmann47 , A. Ereditato20 , M. Ernst29 , S. Errede171 , M. Escalier128 , C. Escobar172 , B. Esposito52 , O. Estrada Pastor172 , A.I. Etienvre142 , E. Etzion158 , H. Evans66 , A. Ezhilov133 , M. Ezzi34e , F. Fabbri23b,23a , L. Fabbri23b,23a , V. Fabiani117 , G. Facini92 , R.M. Fakhrutdinov139 , S. Falciano73a , R.J. Falla92 , J. Faltova35 , Y. Fang15a , M. Fanti69a,69b , A. Farbin8 , A. Farilla75a , C. Farina134 , E.M. Farina71a,71b , T. Farooque104 , S. Farrell18 , S.M. Farrington176 , P. Farthouat35 , F. Fassi34e , P. Fassnacht35 , D. Fassouliotis9 , M. Faucci Giannelli50 , A. Favareto56b,56a , W.J. Fawcett131 , L. Fayard128 , O.L. Fedin133,n , W. Fedorko173 , S. Feigl130 , L. Feligioni99 , C. Feng61b , E.J. Feng35 , M.J. Fenton58 , A.B. Fenyuk139 , L. Feremenga8 , P. Fernandez Martinez172 , S. Fernandez Perez14 , J. Ferrando46 , A. Ferrari170 , P. Ferrari118 , R. Ferrari71a , D.E. Ferreira de Lima62b , A. Ferrer172 , D. Ferrere55 , C. Ferretti103 , F. Fiedler97 , M. Filipuzzi46 , A. Filipčič89 , F. Filthaut117 , M. Fincke-Keeler174 , K.D. Finelli154 , M.C.N. Fiolhais135a,135c,a , L. Fiorini172 , A. Fischer2 , C. Fischer14 , J. Fischer180 , W.C. Fisher104 , N. Flaschel46 , I. Fleck148 , P. Fleischmann103 , R.R.M. Fletcher132 , T. Flick180 , B.M. Flierl112 , L.R. Flores Castillo64a , M.J. Flowerdew113 , G.T. Forcolin98 , A. Formica142 , F.A. Förster14 , A.C. Forti98 , A.G. Foster21 , D. Fournier128 , H. Fox87 , S. Fracchia146 , P. Francavilla94 , M. Franchini23b,23a , S. Franchino62a , D. Francis35 , L. Franconi130 , M. Franklin60 , M. Frate169 , M. Fraternali71a,71b , D. Freeborn92 , S.M. Fressard-Batraneanu35 , B. Freund107 , D. Froidevaux35 , J.A. Frost131 , C. Fukunaga161 , T. Fusayasu114 , J. Fuster172 , O. Gabizon157 , A. Gabrielli23b,23a , A. Gabrielli18 , G.P. Gach41a , S. Gadatsch35 , S. Gadomski55 , G. Gagliardi56b,56a , L.G. Gagnon107 , C. Galea117 , B. Galhardo135a,135c , E.J. Gallas131 , B.J. Gallop140 , P. Gallus137 , G. Galster39 , K.K. Gan122 ,

32

S. Ganguly37 , Y. Gao88 , Y.S. Gao150,j , F.M. Garay Walls50 , C. García172 , J.E. García Navarro172 , J.A. García Pascual15a , M. Garcia-Sciveres18 , R.W. Gardner36 , N. Garelli150 , V. Garonne130 , A. Gascon Bravo46 , K. Gasnikova46 , C. Gatti52 , A. Gaudiello56b,56a , G. Gaudio71a , I.L. Gavrilenko108 , C. Gay173 , G. Gaycken24 , E.N. Gazis10 , C.N.P. Gee140 , J. Geisen54 , M. Geisen97 , M.P. Geisler62a , K. Gellerstedt45a,45b , C. Gemme56b , M.H. Genest59 , C. Geng103 , S. Gentile73a,73b , C. Gentsos159 , S. George91 , D. Gerbaudo14 , G. Gessner47 , S. Ghasemi148 , M. Ghneimat24 , B. Giacobbe23b , S. Giagu73a,73b , N. Giangiacomi23b,23a , P. Giannetti72a , S.M. Gibson91 , M. Gignac173 , M. Gilchriese18 , D. Gillberg33 , G. Gilles180 , D.M. Gingrich3,av , M.P. Giordani67a,67c , F.M. Giorgi23b , P.F. Giraud142 , P. Giromini60 , G. Giugliarelli67a,67c , D. Giugni69a , F. Giuli131 , C. Giuliani113 , M. Giulini62b , B.K. Gjelsten130 , S. Gkaitatzis159 , I. Gkialas9,h , E.L. Gkougkousis14 , P. Gkountoumis10 , L.K. Gladilin111 , C. Glasman96 , J. Glatzer14 , P.C.F. Glaysher46 , A. Glazov46 , M. Goblirsch-Kolb26 , J. Godlewski42 , S. Goldfarb102 , T. Golling55 , D. Golubkov139 , A. Gomes135a,135b,135d , R. Gon¸calo135a , R. Goncalves Gama141a , J. Goncalves Pinto Firmino Da Costa142 , G. Gonella53 , L. Gonella21 , A. Gongadze80 , S. González de la Hoz172 , S. Gonzalez-Sevilla55 , L. Goossens35 , P.A. Gorbounov109 , H.A. Gordon29 , I. Gorelov116 , B. Gorini35 , E. Gorini68a,68b , A. Gorišek89 , A.T. Goshaw49 , C. Gössling47 , M.I. Gostkin80 , C.A. Gottardo24 , C.R. Goudet128 , D. Goujdami34c , A.G. Goussiou145 , N. Govender32b,b , E. Gozani157 , I. Grabowska-Bold41a , P.O.J. Gradin170 , J. Gramling169 , E. Gramstad130 , S. Grancagnolo19 , V. Gratchev133 , P.M. Gravila27f , C. Gray58 , H.M. Gray18 , Z.D. Greenwood93,ak , C. Grefe24 , K. Gregersen92 , I.M. Gregor46 , P. Grenier150 , K. Grevtsov5 , J. Griffiths8 , A.A. Grillo143 , K. Grimm87 , S. Grinstein14,aa , Ph. Gris37 , J.-F. Grivaz128 , S. Groh97 , E. Gross178 , J. Grosse-Knetter54 , G.C. Grossi93 , Z.J. Grout92 , A. Grummer116 , L. Guan103 , W. Guan179 , J. Guenther35 , F. Guescini165a , D. Guest169 , O. Gueta158 , B. Gui122 , E. Guido56b,56a , T. Guillemin5 , S. Guindon35 , U. Gul58 , C. Gumpert35 , J. Guo61c , W. Guo103 , Y. Guo61a,p , R. Gupta43 , S. Gupta131 , S. Gurbuz12c , G. Gustavino124 , B.J. Gutelman157 , P. Gutierrez124 , N.G. Gutierrez Ortiz92 , C. Gutschow92 , C. Guyot142 , M.P. Guzik41a , C. Gwenlan131 , C.B. Gwilliam88 , A. Haas121 , C. Haber18 , H.K. Hadavand8 , N. Haddad34e , A. Hadef99 , S. Hageböck24 , M. Hagihara166 , H. Hakobyan182,* , M. Haleem46 , J. Haley125 , G. Halladjian104 , G.D. Hallewell99 , K. Hamacher180 , P. Hamal126 , K. Hamano174 , A. Hamilton32a , G.N. Hamity146 , P.G. Hamnett46 , L. Han61a , S. Han15d , K. Hanagaki81,x , K. Hanawa160 , M. Hance143 , B. Haney132 , P. Hanke62a , J.B. Hansen39 , J.D. Hansen39 , M.C. Hansen24 , P.H. Hansen39 , K. Hara166 , A.S. Hard179 , T. Harenberg180 , F. Hariri128 , S. Harkusha105 , P.F. Harrison176 , N.M. Hartmann112 , Y. Hasegawa147 , A. Hasib50 , S. Hassani142 , S. Haug20 , R. Hauser104 , L. Hauswald48 , L.B. Havener38 , M. Havranek137 , C.M. Hawkes21 , R.J. Hawkings35 , D. Hayakawa162 , D. Hayden104 , C.P. Hays131 , J.M. Hays90 , H.S. Hayward88 , S.J. Haywood140 , S.J. Head21 , T. Heck97 , V. Hedberg95 , L. Heelan8 , S. Heer24 , K.K. Heidegger53 , S. Heim46 , T. Heim18 , B. Heinemann46,u , J.J. Heinrich112 , L. Heinrich121 , C. Heinz57 , J. Hejbal136 , L. Helary35 , A. Held173 , S. Hellman45a,45b , C. Helsens35 , R.C.W. Henderson87 , Y. Heng179 , S. Henkelmann173 , A.M. Henriques Correia35 , S. Henrot-Versille128 , G.H. Herbert19 , H. Herde26 , V. Herget175 , Y. Hernández Jiménez32c , H. Herr97 , G. Herten53 , R. Hertenberger112 , L. Hervas35 , T.C. Herwig132 , G.G. Hesketh92 , N.P. Hessey165a , J.W. Hetherly43 , S. Higashino81 , E. Higón-Rodriguez172 , K. Hildebrand36 , E. Hill174 , J.C. Hill31 , K.H. Hiller46 , S.J. Hillier21 , M. Hils48 , I. Hinchliffe18 , M. Hirose53 , D. Hirschbuehl180 , B. Hiti89 , O. Hladik136 , X. Hoad50 , J. Hobbs152 , N. Hod165a , M.C. Hodgkinson146 , P. Hodgson146 , A. Hoecker35 , M.R. Hoeferkamp116 , F. Hoenig112 , D. Hohn24 , T.R. Holmes36 , M. Homann47 , S. Honda166 , T. Honda81 , T.M. Hong134 , B.H. Hooberman171 , W.H. Hopkins127 , Y. Horii115 , A.J. Horton149 , J-Y. Hostachy59 , A. Hostiuc145 , S. Hou155 , A. Hoummada34a , J. Howarth98 , J. Hoya86 , M. Hrabovsky126 , J. Hrdinka35 , I. Hristova19 , J. Hrivnac128 , A. Hrynevich106 , T. Hryn’ova5 , P.J. Hsu65 , S.-C. Hsu145 , Q. Hu61a , S. Hu61c , Y. Huang15a , Z. Hubacek137 , F. Hubaut99 , F. Huegging24 , T.B. Huffman131 , E.W. Hughes38 , G. Hughes87 , M. Huhtinen35 , R.F.H. Hunter33 , P. Huo152 , N. Huseynov80,ah , J. Huston104 , J. Huth60 , R. Hyneman103 ,

33

G. Iacobucci55 , G. Iakovidis29 , I. Ibragimov148 , L. Iconomidou-Fayard128 , Z. Idrissi34e , P. Iengo35 , O. Igonkina118,ac , T. Iizawa177 , Y. Ikegami81 , M. Ikeno81 , Y. Ilchenko11,q , D. Iliadis159 , N. Ilic150 , F. Iltzsche48 , G. Introzzi71a,71b , P. Ioannou9,* , M. Iodice75a , K. Iordanidou38 , V. Ippolito60 , M.F. Isacson170 , N. Ishijima129 , M. Ishino160 , M. Ishitsuka162 , C. Issever131 , S. Istin12c,ao , F. Ito166 , J.M. Iturbe Ponce64a , R. Iuppa76a,76b , H. Iwasaki81 , J.M. Izen44 , V. Izzo70a , S. Jabbar3 , P. Jackson1 , R.M. Jacobs24 , V. Jain2 , K.B. Jakobi97 , K. Jakobs53 , S. Jakobsen77 , T. Jakoubek136 , D.O. Jamin125 , D.K. Jana93 , R. Jansky55 , J. Janssen24 , M. Janus54 , P.A. Janus41a , G. Jarlskog95 , N. Javadov80,ah , T. Javůrek53 , M. Javurkova53 , F. Jeanneau142 , L. Jeanty18 , J. Jejelava156a,ai , A. Jelinskas176 , P. Jenni53,c , C. Jeske176 , S. Jézéquel5 , H. Ji179 , J. Jia152 , H. Jiang79 , Y. Jiang61a , Z. Jiang150 , S. Jiggins92 , J. Jimenez Pena172 , S. Jin15a , A. Jinaru27b , O. Jinnouchi162 , H. Jivan32c , P. Johansson146 , K.A. Johns7 , C.A. Johnson66 , W.J. Johnson145 , K. Jon-And45a,45b , R.W.L. Jones87 , S.D. Jones153 , S. Jones7 , T.J. Jones88 , J. Jongmanns62a , P.M. Jorge135a,135b , J. Jovicevic165a , X. Ju179 , A. Juste Rozas14,aa , A. Kaczmarska42 , M. Kado128 , H. Kagan122 , M. Kagan150 , S.J. Kahn99 , T. Kaji177 , E. Kajomovitz157 , C.W. Kalderon95 , A. Kaluza97 , S. Kama43 , A. Kamenshchikov139 , N. Kanaya160 , L. Kanjir89 , V.A. Kantserov110 , J. Kanzaki81 , B. Kaplan121 , L.S. Kaplan179 , D. Kar32c , K. Karakostas10 , N. Karastathis10 , M.J. Kareem165b , E. Karentzos10 , S.N. Karpov80 , Z.M. Karpova80 , K. Karthik121 , V. Kartvelishvili87 , A.N. Karyukhin139 , K. Kasahara166 , L. Kashif179 , R.D. Kass122 , A. Kastanas151 , Y. Kataoka160 , C. Kato160 , A. Katre55 , J. Katzy46 , K. Kawade82 , K. Kawagoe85 , T. Kawamoto160 , G. Kawamura54 , E.F. Kay88 , V.F. Kazanin120b,120a , R. Keeler174 , R. Kehoe43 , J.S. Keller33 , E. Kellermann95 , J.J. Kempster91 , J. Kendrick21 , H. Keoshkerian164 , O. Kepka136 , S. Kersten180 , B.P. Kerševan89 , R.A. Keyes101 , M. Khader171 , F. Khalil-zada13 , A. Khanov125 , A.G. Kharlamov120b,120a , T. Kharlamova120b,120a , A. Khodinov163 , T.J. Khoo55 , V. Khovanskiy109,* , E. Khramov80 , J. Khubua156b,v , S. Kido82 , C.R. Kilby91 , H.Y. Kim8 , S.H. Kim166 , Y.K. Kim36 , N. Kimura159 , O.M. Kind19 , B.T. King88 , D. Kirchmeier48 , J. Kirk140 , A.E. Kiryunin113 , T. Kishimoto160 , D. Kisielewska41a , V. Kitali46 , O. Kivernyk5 , E. Kladiva28b , T. Klapdor-Kleingrothaus53 , M.H. Klein103 , M. Klein88 , U. Klein88 , K. Kleinknecht97 , P. Klimek119 , A. Klimentov29 , R. Klingenberg47,* , T. Klingl24 , T. Klioutchnikova35 , P. Kluit118 , S. Kluth113 , E. Kneringer77 , E.B.F.G. Knoops99 , A. Knue113 , A. Kobayashi160 , D. Kobayashi85 , T. Kobayashi160 , M. Kobel48 , M. Kocian150 , P. Kodys138 , T. Koffas33 , E. Koffeman118 , M.K. Köhler178 , N.M. Köhler113 , T. Koi150 , M. Kolb62b , I. Koletsou5 , A.A. Komar108,* , T. Kondo81 , N. Kondrashova61c , K. Köneke53 , A.C. König117 , T. Kono81,aq , R. Konoplich121,al , N. Konstantinidis92 , R. Kopeliansky66 , S. Koperny41a , A.K. Kopp53 , K. Korcyl42 , K. Kordas159 , A. Korn92 , A.A. Korol120b,120a,ap , I. Korolkov14 , E.V. Korolkova146 , O. Kortner113 , S. Kortner113 , T. Kosek138 , V.V. Kostyukhin24 , A. Kotwal49 , A. Koulouris10 , A. Kourkoumeli-Charalampidi71a,71b , C. Kourkoumelis9 , E. Kourlitis146 , V. Kouskoura29 , A.B. Kowalewska42 , R. Kowalewski174 , T.Z. Kowalski41a , C. Kozakai160 , W. Kozanecki142 , A.S. Kozhin139 , V.A. Kramarenko111 , G. Kramberger89 , D. Krasnopevtsev110 , M.W. Krasny94 , A. Krasznahorkay35 , D. Krauss113 , J.A. Kremer41a , J. Kretzschmar88 , K. Kreutzfeldt57 , P. Krieger164 , K. Krizka18 , K. Kroeninger47 , H. Kroha113 , J. Kroll136 , J. Kroll132 , J. Kroseberg24 , J. Krstic16 , U. Kruchonak80 , H. Krüger24 , N. Krumnack79 , M.C. Kruse49 , T. Kubota102 , H. Kucuk92 , S. Kuday4b , J.T. Kuechler180 , S. Kuehn35 , A. Kugel62a , F. Kuger175 , T. Kuhl46 , V. Kukhtin80 , R. Kukla99 , Y. Kulchitsky105 , S. Kuleshov144b , Y.P. Kulinich171 , M. Kuna73a,73b , T. Kunigo83 , A. Kupco136 , T. Kupfer47 , O. Kuprash158 , H. Kurashige82 , L.L. Kurchaninov165a , Y.A. Kurochkin105 , M.G. Kurth15d , E.S. Kuwertz174 , M. Kuze162 , J. Kvita126 , T. Kwan174 , D. Kyriazopoulos146 , A. La Rosa113 , J.L. La Rosa Navarro141d , L. La Rotonda40b,40a , F. La Ruffa40b,40a , C. Lacasta172 , F. Lacava73a,73b , J. Lacey46 , D.P.J. Lack98 , H. Lacker19 , D. Lacour94 , E. Ladygin80 , R. Lafaye5 , B. Laforge94 , T. Lagouri32c , S. Lai54 , S. Lammers66 , W. Lampl7 , E. Lan¸con29 , U. Landgraf53 , M.P.J. Landon90 , M.C. Lanfermann55 , V.S. Lang46 , J.C. Lange14 , R.J. Langenberg35 , A.J. Lankford169 , F. Lanni29 , K. Lantzsch24 , A. Lanza71a , A. Lapertosa56b,56a , S. Laplace94 ,

34

J.F. Laporte142 , T. Lari69a , F. Lasagni Manghi23b,23a , M. Lassnig35 , T.S. Lau64a , P. Laurelli52 , W. Lavrijsen18 , A.T. Law143 , P. Laycock88 , T. Lazovich60 , M. Lazzaroni69a,69b , B. Le102 , O. Le Dortz94 , E. Le Guirriec99 , E.P. Le Quilleuc142 , M. LeBlanc174 , T. LeCompte6 , F. Ledroit-Guillon59 , C.A. Lee29 , G.R. Lee144a , L. Lee60 , S.C. Lee155 , B. Lefebvre101 , G. Lefebvre94 , M. Lefebvre174 , F. Legger112 , C. Leggett18 , G. Lehmann Miotto35 , X. Lei7 , W.A. Leight46 , M.A.L. Leite141d , R. Leitner138 , D. Lellouch178 , B. Lemmer54 , K.J.C. Leney92 , T. Lenz24 , B. Lenzi35 , R. Leone7 , S. Leone72a , C. Leonidopoulos50 , G. Lerner153 , C. Leroy107 , R. Les164 , A.A.J. Lesage142 , C.G. Lester31 , M. Levchenko133 , J. Levêque5 , D. Levin103 , L.J. Levinson178 , M. Levy21 , D. Lewis90 , B. Li61a,p , C.-Q. Li61a , H. Li152 , L. Li61c , Q. Li15d , Q. Li61a , S. Li49 , X. Li61c , Y. Li148 , Z. Liang15a , B. Liberti74a , A. Liblong164 , K. Lie64c , J. Liebal24 , W. Liebig17 , A. Limosani154 , C.Y. Lin31 , K. Lin104 , S.C. Lin168 , T.H. Lin97 , R.A. Linck66 , B.E. Lindquist152 , A.L. Lionti55 , E. Lipeles132 , A. Lipniacka17 , M. Lisovyi62b , T.M. Liss171,as , A. Lister173 , A.M. Litke143 , B. Liu79 , H. Liu29 , H. Liu103 , J.B. Liu61a , J.K.K. Liu131 , J. Liu61b , K. Liu99 , L. Liu171 , M. Liu61a , Y. Liu61a , Y.L. Liu61a , M. Livan71a,71b , A. Lleres59 , J. Llorente Merino15a , S.L. Lloyd90 , C.Y. Lo64b , F. Lo Sterzo43 , E.M. Lobodzinska46 , P. Loch7 , F.K. Loebinger98 , A. Loesle53 , K.M. Loew26 , T. Lohse19 , K. Lohwasser146 , M. Lokajicek136 , B.A. Long25 , J.D. Long171 , R.E. Long87 , L. Longo68a,68b , K.A. Looper122 , J.A. Lopez144b , I. Lopez Paz14 , A. Lopez Solis94 , J. Lorenz112 , N. Lorenzo Martinez5 , M. Losada22 , P.J. Lösel112 , X. Lou15a , A. Lounis128 , J. Love6 , P.A. Love87 , H. Lu64a , N. Lu103 , Y.J. Lu65 , H.J. Lubatti145 , C. Luci73a,73b , A. Lucotte59 , C. Luedtke53 , F. Luehring66 , W. Lukas77 , L. Luminari73a , O. Lundberg45a,45b , B. Lund-Jensen151 , M.S. Lutz100 , P.M. Luzi94 , D. Lynn29 , R. Lysak136 , E. Lytken95 , F. Lyu15a , V. Lyubushkin80 , H. Ma29 , L.L. Ma61b , Y. Ma61b , G. Maccarrone52 , A. Macchiolo113 , C.M. Macdonald146 , J. Machado Miguens132,135b , D. Madaffari172 , R. Madar37 , W.F. Mader48 , A. Madsen46 , N. Madysa48 , J. Maeda82 , S. Maeland17 , T. Maeno29 , A.S. Maevskiy111 , V. Magerl53 , C. Maiani128 , C. Maidantchik141a , T. Maier112 , A. Maio135a,135b,135d , O. Majersky28a , S. Majewski127 , Y. Makida81 , N. Makovec128 , B. Malaescu94 , Pa. Malecki42 , V.P. Maleev133 , F. Malek59 , U. Mallik78 , D. Malon6 , C. Malone31 , S. Maltezos10 , S. Malyukov35 , J. Mamuzic172 , G. Mancini52 , I. Mandić89 , J. Maneira135a,135b , L. Manhaes de Andrade Filho141b , J. Manjarres Ramos48 , K.H. Mankinen95 , A. Mann112 , A. Manousos35 , B. Mansoulie142 , J.D. Mansour15a , R. Mantifel101 , M. Mantoani54 , S. Manzoni69a,69b , L. Mapelli35 , G. Marceca30 , L. March55 , L. Marchese131 , G. Marchiori94 , M. Marcisovsky136 , C.A. Marin Tobon35 , M. Marjanovic37 , D.E. Marley103 , F. Marroquim141a , S.P. Marsden98 , Z. Marshall18 , M.U.F Martensson170 , S. Marti-Garcia172 , C.B. Martin122 , T.A. Martin176 , V.J. Martin50 , B. Martin dit Latour17 , M. Martinez14,aa , V.I. Martinez Outschoorn171 , S. Martin-Haugh140 , V.S. Martoiu27b , A.C. Martyniuk92 , A. Marzin35 , L. Masetti97 , T. Mashimo160 , R. Mashinistov108 , J. Masik98 , A.L. Maslennikov120b,120a , L.H. Mason102 , L. Massa74a,74b , P. Mastrandrea5 , A. Mastroberardino40b,40a , T. Masubuchi160 , P. Mättig180 , J. Maurer27b , B. Maček89 , S.J. Maxfield88 , D.A. Maximov120b,120a , R. Mazini155 , I. Maznas159 , S.M. Mazza69a,69b , N.C. Mc Fadden116 , G. Mc Goldrick164 , S.P. Mc Kee103 , A. McCarn103 , R.L. McCarthy152 , T.G. McCarthy113 , L.I. McClymont92 , E.F. McDonald102 , J.A. Mcfayden35 , G. Mchedlidze54 , S.J. McMahon140 , P.C. McNamara102 , C.J. McNicol176 , R.A. McPherson174,af , S. Meehan145 , T. Megy53 , S. Mehlhase112 , A. Mehta88 , T. Meideck59 , B. Meirose44 , D. Melini172,f , B.R. Mellado Garcia32c , J.D. Mellenthin54 , M. Melo28a , F. Meloni20 , A. Melzer24 , S.B. Menary98 , L. Meng88 , X.T. Meng103 , A. Mengarelli23b,23a , S. Menke113 , E. Meoni40b,40a , S. Mergelmeyer19 , C. Merlassino20 , P. Mermod55 , L. Merola70a,70b , C. Meroni69a , F.S. Merritt36 , A. Messina73a,73b , J. Metcalfe6 , A.S. Mete169 , C. Meyer132 , J. Meyer118 , J-P. Meyer142 , H. Meyer Zu Theenhausen62a , F. Miano153 , R.P. Middleton140 , S. Miglioranzi56b,56a , L. Mijović50 , G. Mikenberg178 , M. Mikestikova136 , M. Mikuž89 , M. Milesi102 , A. Milic164 , D.A. Millar90 , D.W. Miller36 , C. Mills50 , A. Milov178 , D.A. Milstead45a,45b , A.A. Minaenko139 , Y. Minami160 , I.A. Minashvili156b , A.I. Mincer121 , B. Mindur41a , M. Mineev80 ,

35

Y. Minegishi160 , Y. Ming179 , L.M. Mir14 , A. Mirto68a,68b , K.P. Mistry132 , T. Mitani177 , J. Mitrevski112 , V.A. Mitsou172 , A. Miucci20 , P.S. Miyagawa146 , A. Mizukami81 , J.U. Mjörnmark95 , T. Mkrtchyan182 , M. Mlynarikova138 , T. Moa45a,45b , K. Mochizuki107 , P. Mogg53 , S. Mohapatra38 , S. Molander45a,45b , R. Moles-Valls24 , M.C. Mondragon104 , K. Mönig46 , J. Monk39 , E. Monnier99 , A. Montalbano152 , J. Montejo Berlingen35 , F. Monticelli86 , S. Monzani69a , R.W. Moore3 , N. Morange128 , D. Moreno22 , M. Moreno Llácer35 , P. Morettini56b , S. Morgenstern35 , D. Mori149 , T. Mori160 , M. Morii60 , M. Morinaga177 , V. Morisbak130 , A.K. Morley35 , G. Mornacchi35 , J.D. Morris90 , L. Morvaj152 , P. Moschovakos10 , M. Mosidze156b , H.J. Moss146 , J. Moss150,k , K. Motohashi162 , R. Mount150 , E. Mountricha29 , E.J.W. Moyse100 , S. Muanza99 , F. Mueller113 , J. Mueller134 , R.S.P. Mueller112 , D. Muenstermann87 , P. Mullen58 , G.A. Mullier20 , F.J. Munoz Sanchez98 , W.J. Murray176,140 , H. Musheghyan35 , M. Muškinja89 , A.G. Myagkov139,am , M. Myska137 , B.P. Nachman18 , O. Nackenhorst55 , K. Nagai131 , R. Nagai81,aq , K. Nagano81 , Y. Nagasaka63 , K. Nagata166 , M. Nagel53 , E. Nagy99 , A.M. Nairz35 , Y. Nakahama115 , K. Nakamura81 , T. Nakamura160 , I. Nakano123 , R.F. Naranjo Garcia46 , R. Narayan11 , D.I. Narrias Villar62a , I. Naryshkin133 , T. Naumann46 , G. Navarro22 , R. Nayyar7 , H.A. Neal103 , P.Yu. Nechaeva108 , T.J. Neep142 , A. Negri71a,71b , M. Negrini23b , S. Nektarijevic117 , C. Nellist54 , A. Nelson169 , M.E. Nelson131 , S. Nemecek136 , P. Nemethy121 , M. Nessi35,g , M.S. Neubauer171 , M. Neumann180 , P.R. Newman21 , T.Y. Ng64c , Y.S. Ng19 , T. Nguyen Manh107 , R.B. Nickerson131 , R. Nicolaidou142 , J. Nielsen143 , N. Nikiforou11 , V. Nikolaenko139,am , I. Nikolic-Audit94 , K. Nikolopoulos21 , J.K. Nilsen130 , P. Nilsson29 , Y. Ninomiya160 , A. Nisati73a , N. Nishu61c , R. Nisius113 , I. Nitsche47 , T. Nitta177 , T. Nobe160 , Y. Noguchi83 , M. Nomachi129 , I. Nomidis33 , M.A. Nomura29 , T. Nooney90 , M. Nordberg35 , N. Norjoharuddeen131 , O. Novgorodova48 , M. Nozaki81 , L. Nozka126 , K. Ntekas169 , E. Nurse92 , F. Nuti102 , F.G. Oakham33,av , H. Oberlack113 , T. Obermann24 , J. Ocariz94 , A. Ochi82 , I. Ochoa38 , J.P. Ochoa-Ricoux144a , K. O’Connor26 , S. Oda85 , S. Odaka81 , A. Oh98 , S.H. Oh49 , C.C. Ohm151 , H. Ohman170 , H. Oide56b,56a , H. Okawa166 , Y. Okumura160 , T. Okuyama81 , A. Olariu27b , L.F. Oleiro Seabra135a , S.A. Olivares Pino144a , D. Oliveira Damazio29 , A. Olszewski42 , J. Olszowska42 , D.C. O’Neil149 , A. Onofre135a,135e , K. Onogi115 , P.U.E. Onyisi11,q , H. Oppen130 , M.J. Oreglia36 , Y. Oren158 , D. Orestano75a,75b , N. Orlando64b , A.A. O’Rourke46 , R.S. Orr164 , B. Osculati56b,56a,* , V. O’Shea58 , R. Ospanov61a , G. Otero y Garzon30 , H. Otono85 , M. Ouchrif34d , F. Ould-Saada130 , A. Ouraou142 , K.P. Oussoren118 , Q. Ouyang15a , M. Owen58 , R.E. Owen21 , V.E. Ozcan12c , N. Ozturk8 , K. Pachal149 , A. Pacheco Pages14 , L. Pacheco Rodriguez142 , C. Padilla Aranda14 , S. Pagan Griso18 , M. Paganini181 , F. Paige29 , G. Palacino66 , S. Palazzo40b,40a , S. Palestini35 , M. Palka41b , D. Pallin37 , E.St. Panagiotopoulou10 , I. Panagoulias10 , C.E. Pandini55 , J.G. Panduro Vazquez91 , P. Pani35 , S. Panitkin29 , D. Pantea27b , L. Paolozzi55 , Th.D. Papadopoulou10 , K. Papageorgiou9,h , A. Paramonov6 , D. Paredes Hernandez181 , A.J. Parker87 , K.A. Parker46 , M.A. Parker31 , F. Parodi56b,56a , J.A. Parsons38 , U. Parzefall53 , V.R. Pascuzzi164 , J.M.P Pasner143 , E. Pasqualucci73a , S. Passaggio56b , Fr. Pastore91 , S. Pataraia97 , J.R. Pater98 , T. Pauly35 , B. Pearson113 , S. Pedraza Lopez172 , R. Pedro135a,135b , S.V. Peleganchuk120b,120a , O. Penc136 , C. Peng15d , H. Peng61a , J. Penwell66 , B.S. Peralva141b , M.M. Perego142 , D.V. Perepelitsa29 , F. Peri19 , L. Perini69a,69b , H. Pernegger35 , S. Perrella70a,70b , R. Peschke46 , V.D. Peshekhonov80,* , K. Peters46 , R.F.Y. Peters98 , B.A. Petersen35 , T.C. Petersen39 , E. Petit59 , A. Petridis1 , C. Petridou159 , P. Petroff128 , E. Petrolo73a , M. Petrov131 , F. Petrucci75a,75b , N.E. Pettersson100 , A. Peyaud142 , R. Pezoa144b , F.H. Phillips104 , P.W. Phillips140 , G. Piacquadio152 , E. Pianori176 , A. Picazio100 , E. Piccaro90 , M.A. Pickering131 , R. Piegaia30 , J.E. Pilcher36 , A.D. Pilkington98 , M. Pinamonti74a,74b , J.L. Pinfold3 , H. Pirumov46 , M. Pitt178 , L. Plazak28a , M.-A. Pleier29 , V. Pleskot97 , E. Plotnikova80 , D. Pluth79 , P. Podberezko120b,120a , R. Poettgen95 , R. Poggi71a,71b , L. Poggioli128 , I. Pogrebnyak104 , D. Pohl24 , I. Pokharel54 , G. Polesello71a , A. Poley46 , A. Policicchio40b,40a , R. Polifka35 , A. Polini23b , C.S. Pollard58 , V. Polychronakos29 , K. Pommès35 ,

36

D. Ponomarenko110 , L. Pontecorvo73a , G.A. Popeneciu27d , D.M. Portillo Quintero94 , S. Pospisil137 , K. Potamianos46 , I.N. Potrap80 , C.J. Potter31 , H. Potti11 , T. Poulsen95 , J. Poveda35 , M.E. Pozo Astigarraga35 , P. Pralavorio99 , A. Pranko18 , S. Prell79 , D. Price98 , M. Primavera68a , S. Prince101 , N. Proklova110 , K. Prokofiev64c , F. Prokoshin144b , S. Protopopescu29 , J. Proudfoot6 , M. Przybycien41a , A. Puri171 , P. Puzo128 , J. Qian103 , G. Qin58 , Y. Qin98 , A. Quadt54 , M. Queitsch-Maitland46 , D. Quilty58 , S. Raddum130 , V. Radeka29 , V. Radescu131 , S.K. Radhakrishnan152 , P. Radloff127 , P. Rados102 , F. Ragusa69a,69b , G. Rahal51 , J.A. Raine98 , S. Rajagopalan29 , C. Rangel-Smith170 , T. Rashid128 , S. Raspopov5 , M.G. Ratti69a,69b , D.M. Rauch46 , F. Rauscher112 , S. Rave97 , I. Ravinovich178 , J.H. Rawling98 , M. Raymond35 , A.L. Read130 , N.P. Readioff59 , M. Reale68a,68b , D.M. Rebuzzi71a,71b , A. Redelbach175 , G. Redlinger29 , R. Reece143 , R.G. Reed32c , K. Reeves44 , L. Rehnisch19 , J. Reichert132 , A. Reiss97 , C. Rembser35 , H. Ren15d , M. Rescigno73a , S. Resconi69a , E.D. Resseguie132 , S. Rettie173 , E. Reynolds21 , O.L. Rezanova120b,120a , P. Reznicek138 , R. Rezvani107 , R. Richter113 , S. Richter92 , E. Richter-Was41b , O. Ricken24 , M. Ridel94 , P. Rieck113 , C.J. Riegel180 , J. Rieger54 , O. Rifki124 , M. Rijssenbeek152 , A. Rimoldi71a,71b , M. Rimoldi20 , L. Rinaldi23b , G. Ripellino151 , B. Ristić35 , E. Ritsch35 , I. Riu14 , F. Rizatdinova125 , E. Rizvi90 , C. Rizzi14 , R.T. Roberts98 , S.H. Robertson101,af , A. Robichaud-Veronneau101 , D. Robinson31 , J.E.M. Robinson46 , A. Robson58 , E. Rocco97 , C. Roda72a,72b , Y. Rodina99,ab , S. Rodriguez Bosca172 , A. Rodriguez Perez14 , D. Rodriguez Rodriguez172 , S. Roe35 , C.S. Rogan60 , O. Røhne130 , J. Roloff60 , A. Romaniouk110 , M. Romano23b,23a , S.M. Romano Saez37 , E. Romero Adam172 , N. Rompotis88 , M. Ronzani53 , L. Roos94 , S. Rosati73a , K. Rosbach53 , P. Rose143 , N.-A. Rosien54 , E. Rossi70a,70b , L.P. Rossi56b , J.H.N. Rosten31 , R. Rosten145 , M. Rotaru27b , J. Rothberg145 , D. Rousseau128 , A. Rozanov99 , Y. Rozen157 , X. Ruan32c , F. Rubbo150 , F. Rühr53 , A. Ruiz-Martinez33 , Z. Rurikova53 , N.A. Rusakovich80 , H.L. Russell101 , J.P. Rutherfoord7 , N. Ruthmann35 , Y.F. Ryabov133 , M. Rybar171 , G. Rybkin128 , S. Ryu6 , A. Ryzhov139 , G.F. Rzehorz54 , A.F. Saavedra154 , G. Sabato118 , S. Sacerdoti30 , H.F-W. Sadrozinski143 , R. Sadykov80 , F. Safai Tehrani73a , P. Saha119 , M. Sahinsoy62a , M. Saimpert46 , M. Saito160 , T. Saito160 , H. Sakamoto160 , Y. Sakurai177 , G. Salamanna75a,75b , J.E. Salazar Loyola144b , D. Salek118 , P.H. Sales De Bruin170 , D. Salihagic113 , A. Salnikov150 , J. Salt172 , D. Salvatore40b,40a , F. Salvatore153 , A. Salvucci64a,64b,64c , A. Salzburger35 , D. Sammel53 , D. Sampsonidis159 , D. Sampsonidou159 , J. Sánchez172 , V. Sanchez Martinez172 , A. Sanchez Pineda67a,67c , H. Sandaker130 , R.L. Sandbach90 , C.O. Sander46 , M. Sandhoff180 , C. Sandoval22 , D.P.C. Sankey140 , M. Sannino56b,56a , Y. Sano115 , A. Sansoni52 , C. Santoni37 , H. Santos135a , I. Santoyo Castillo153 , A. Sapronov80 , J.G. Saraiva135a,135d , B. Sarrazin24 , O. Sasaki81 , K. Sato166 , E. Sauvan5 , G. Savage91 , P. Savard164,av , N. Savic113 , C. Sawyer140 , L. Sawyer93,ak , J. Saxon36 , C. Sbarra23b , A. Sbrizzi23b,23a , T. Scanlon92 , D.A. Scannicchio169 , J. Schaarschmidt145 , P. Schacht113 , B.M. Schachtner112 , D. Schaefer36 , L. Schaefer132 , R. Schaefer46 , J. Schaeffer97 , S. Schaepe24 , S. Schaetzel62b , U. Schäfer97 , A.C. Schaffer128 , D. Schaile112 , R.D. Schamberger152 , V.A. Schegelsky133 , D. Scheirich138 , M. Schernau169 , C. Schiavi56b,56a , S. Schier143 , L.K. Schildgen24 , C. Schillo53 , M. Schioppa40b,40a , S. Schlenker35 , K.R. Schmidt-Sommerfeld113 , K. Schmieden35 , C. Schmitt97 , S. Schmitt46 , S. Schmitz97 , U. Schnoor53 , L. Schoeffel142 , A. Schoening62b , B.D. Schoenrock104 , E. Schopf24 , M. Schott97 , J.F.P. Schouwenberg117 , J. Schovancova35 , S. Schramm55 , N. Schuh97 , A. Schulte97 , M.J. Schultens24 , H.-C. Schultz-Coulon62a , H. Schulz19 , M. Schumacher53 , B.A. Schumm143 , Ph. Schune142 , A. Schwartzman150 , T.A. Schwarz103 , H. Schweiger98 , Ph. Schwemling142 , R. Schwienhorst104 , A. Sciandra24 , G. Sciolla26 , M. Scornajenghi40b,40a , F. Scuri72a , F. Scutti102 , J. Searcy103 , P. Seema24 , S.C. Seidel116 , A. Seiden143 , J.M. Seixas141a , G. Sekhniaidze70a , K. Sekhon103 , S.J. Sekula43 , N. Semprini-Cesari23b,23a , S. Senkin37 , C. Serfon130 , L. Serin128 , L. Serkin67a,67b , M. Sessa75a,75b , R. Seuster174 , H. Severini124 , F. Sforza167 , A. Sfyrla55 , E. Shabalina54 , N.W. Shaikh45a,45b , L.Y. Shan15a , R. Shang171 , J.T. Shank25 , M. Shapiro18 , P.B. Shatalov109 , K. Shaw67a,67b , S.M. Shaw98 , A. Shcherbakova45a,45b , C.Y. Shehu153 , Y. Shen124 ,

37

N. Sherafati33 , P. Sherwood92 , L. Shi155,ar , S. Shimizu82 , C.O. Shimmin181 , M. Shimojima114 , I.P.J. Shipsey131 , S. Shirabe85 , M. Shiyakova80,ad , J. Shlomi178 , A. Shmeleva108 , D. Shoaleh Saadi107 , M.J. Shochet36 , S. Shojaii102 , D.R. Shope124 , S. Shrestha122 , E. Shulga110 , M.A. Shupe7 , P. Sicho136 , A.M. Sickles171 , P.E. Sidebo151 , E. Sideras Haddad32c , O. Sidiropoulou175 , A. Sidoti23b,23a , F. Siegert48 , Dj. Sijacki16 , J. Silva135a,135d , S.B. Silverstein45a , V. Simak137 , L. Simic80 , S. Simion128 , E. Simioni97 , B. Simmons92 , M. Simon97 , P. Sinervo164 , N.B. Sinev127 , M. Sioli23b,23a , G. Siragusa175 , I. Siral103 , S.Yu. Sivoklokov111 , J. Sjölin45a,45b , M.B. Skinner87 , P. Skubic124 , M. Slater21 , T. Slavicek137 , M. Slawinska42 , K. Sliwa167 , R. Slovak138 , V. Smakhtin178 , B.H. Smart5 , J. Smiesko28a , N. Smirnov110 , S.Yu. Smirnov110 , Y. Smirnov110 , L.N. Smirnova111,t , O. Smirnova95 , J.W. Smith54 , M.N.K. Smith38 , R.W. Smith38 , M. Smizanska87 , K. Smolek137 , A.A. Snesarev108 , I.M. Snyder127 , S. Snyder29 , R. Sobie174,af , F. Socher48 , A. Soffer158 , A. Søgaard50 , D.A. Soh155 , G. Sokhrannyi89 , C.A. Solans Sanchez35 , M. Solar137 , E.Yu. Soldatov110 , U. Soldevila172 , A.A. Solodkov139 , A. Soloshenko80 , O.V. Solovyanov139 , V. Solovyev133 , P. Sommer53 , H. Son167 , A. Sopczak137 , D. Sosa62b , C.L. Sotiropoulou72a,72b , S. Sottocornola71a,71b , R. Soualah67a,67c , A.M. Soukharev120b,120a , D. South46 , B.C. Sowden91 , S. Spagnolo68a,68b , M. Spalla72a,72b , M. Spangenberg176 , F. Spanò91 , D. Sperlich19 , F. Spettel113 , T.M. Spieker62a , R. Spighi23b , G. Spigo35 , L.A. Spiller102 , M. Spousta138 , R.D. St. Denis58,* , A. Stabile69a,69b , R. Stamen62a , S. Stamm19 , E. Stanecka42 , R.W. Stanek6 , C. Stanescu75a , M.M. Stanitzki46 , B.S. Stapf118 , S. Stapnes130 , E.A. Starchenko139 , G.H. Stark36 , J. Stark59 , S.H Stark39 , P. Staroba136 , P. Starovoitov62a , S. Stärz35 , R. Staszewski42 , M. Stegler46 , P. Steinberg29 , B. Stelzer149 , H.J. Stelzer35 , O. Stelzer-Chilton165a , H. Stenzel57 , G.A. Stewart58 , M.C. Stockton127 , M. Stoebe101 , G. Stoicea27b , P. Stolte54 , S. Stonjek113 , A.R. Stradling8 , A. Straessner48 , M.E. Stramaglia20 , J. Strandberg151 , S. Strandberg45a,45b , M. Strauss124 , P. Strizenec28b , R. Ströhmer175 , D.M. Strom127 , R. Stroynowski43 , A. Strubig50 , S.A. Stucci29 , B. Stugu17 , N.A. Styles46 , D. Su150 , J. Su134 , R. Subramaniam93 , S. Suchek62a , Y. Sugaya129 , M. Suk137 , V.V. Sulin108 , D.M.S. Sultan76a,76b , S. Sultansoy4c , T. Sumida83 , S. Sun60 , X. Sun3 , K. Suruliz153 , C.J.E. Suster154 , M.R. Sutton153 , S. Suzuki81 , M. Svatos136 , M. Swiatlowski36 , S.P. Swift2 , I. Sykora28a , T. Sykora138 , D. Ta53 , K. Tackmann46 , J. Taenzer158 , A. Taffard169 , R. Tafirout165a , E. Tahirovic90 , N. Taiblum158 , H. Takai29 , R. Takashima84 , E.H. Takasugi113 , K. Takeda82 , T. Takeshita147 , Y. Takubo81 , M. Talby99 , A.A. Talyshev120b,120a , M.C. Tamsett93 , J. Tanaka160 , M. Tanaka162 , R. Tanaka128 , S. Tanaka81 , R. Tanioka82 , B.B. Tannenwald122 , S. Tapia Araya144b , S. Tapprogge97 , S. Tarem157 , G.F. Tartarelli69a , P. Tas138 , M. Tasevsky136 , T. Tashiro83 , E. Tassi40b,40a , A. Tavares Delgado135a,135b , Y. Tayalati34e , A.C. Taylor116 , A.J. Taylor50 , G.N. Taylor102 , P.T.E. Taylor102 , W. Taylor165b , P. Teixeira-Dias91 , D. Temple149 , H. Ten Kate35 , P.K. Teng155 , J.J. Teoh129 , F. Tepel180 , S. Terada81 , K. Terashi160 , J. Terron96 , S. Terzo14 , M. Testa52 , R.J. Teuscher164,af , T. Theveneaux-Pelzer99 , F. Thiele39 , J.P. Thomas21 , J. Thomas-Wilsker91 , A.S. Thompson58 , P.D. Thompson21 , L.A. Thomsen181 , E. Thomson132 , Y. Tian38 , M.J. Tibbetts18 , R.E. Ticse Torres99 , V.O. Tikhomirov108,an , Yu.A. Tikhonov120b,120a , S. Timoshenko110 , P. Tipton181 , S. Tisserant99 , K. Todome162 , S. Todorova-Nova5 , S. Todt48 , J. Tojo85 , S. Tokár28a , K. Tokushuku81 , E. Tolley122 , L. Tomlinson98 , M. Tomoto115 , L. Tompkins150,o , K. Toms116 , B. Tong60 , P. Tornambe53 , E. Torrence127 , H. Torres48 , E. Torró Pastor145 , J. Toth99,ae , F. Touchard99 , D.R. Tovey146 , C.J. Treado121 , T. Trefzger175 , F. Tresoldi153 , A. Tricoli29 , I.M. Trigger165a , S. Trincaz-Duvoid94 , M.F. Tripiana14 , W. Trischuk164 , B. Trocmé59 , A. Trofymov46 , C. Troncon69a , M. Trottier-McDonald18 , M. Trovatelli174 , L. Truong32b , M. Trzebinski42 , A. Trzupek42 , K.W. Tsang64a , J.C-L. Tseng131 , P.V. Tsiareshka105 , G. Tsipolitis10 , N. Tsirintanis9 , S. Tsiskaridze14 , V. Tsiskaridze53 , E.G. Tskhadadze156a , I.I. Tsukerman109 , V. Tsulaia18 , S. Tsuno81 , D. Tsybychev152 , Y. Tu64b , A. Tudorache27b , V. Tudorache27b , T.T. Tulbure27a , A.N. Tuna60 , S. Turchikhin80 , D. Turgeman178 , I. Turk Cakir4b,w , R. Turra69a , P.M. Tuts38 , G. Ucchielli23b,23a , I. Ueda81 , M. Ughetto45a,45b , F. Ukegawa166 , G. Unal35 , A. Undrus29 , G. Unel169 , F.C. Ungaro102 ,

38

Y. Unno81 , K. Uno160 , C. Unverdorben112 , J. Urban28b , P. Urquijo102 , P. Urrejola97 , G. Usai8 , J. Usui81 , L. Vacavant99 , V. Vacek137 , B. Vachon101 , K.O.H. Vadla130 , A. Vaidya92 , C. Valderanis112 , E. Valdes Santurio45a,45b , M. Valente55 , S. Valentinetti23b,23a , A. Valero172 , L. Valéry14 , S. Valkar138 , A. Vallier5 , J.A. Valls Ferrer172 , W. Van Den Wollenberg118 , H. van der Graaf118 , P. van Gemmeren6 , J. Van Nieuwkoop149 , I. van Vulpen118 , M.C. van Woerden118 , M. Vanadia74a,74b , W. Vandelli35 , A. Vaniachine163 , P. Vankov118 , G. Vardanyan182 , R. Vari73a , E.W. Varnes7 , C. Varni56b,56a , T. Varol43 , D. Varouchas128 , A. Vartapetian8 , K.E. Varvell154 , G.A. Vasquez144b , J.G. Vasquez181 , F. Vazeille37 , D. Vazquez Furelos14 , T. Vazquez Schroeder101 , J. Veatch54 , V. Veeraraghavan7 , L.M. Veloce164 , F. Veloso135a,135c , S. Veneziano73a , A. Ventura68a,68b , M. Venturi174 , N. Venturi35 , A. Venturini26 , V. Vercesi71a , M. Verducci75a,75b , W. Verkerke118 , A.T. Vermeulen118 , J.C. Vermeulen118 , M.C. Vetterli149,av , N. Viaux Maira144b , O. Viazlo95 , I. Vichou171,* , T. Vickey146 , O.E. Vickey Boeriu146 , G.H.A. Viehhauser131 , S. Viel18 , L. Vigani131 , M. Villa23b,23a , M. Villaplana Perez69a,69b , E. Vilucchi52 , M.G. Vincter33 , V.B. Vinogradov80 , A. Vishwakarma46 , C. Vittori23b,23a , I. Vivarelli153 , S. Vlachos10 , M. Vogel180 , P. Vokac137 , G. Volpi14 , H. von der Schmitt113 , E. von Toerne24 , V. Vorobel138 , K. Vorobev110 , M. Vos172 , R. Voss35 , J.H. Vossebeld88 , N. Vranjes16 , M. Vranjes Milosavljevic16 , V. Vrba137 , M. Vreeswijk118 , T. Šfiligoj89 , R. Vuillermet35 , I. Vukotic36 , T. Ženiš28a , L. Živković16 , P. Wagner24 , W. Wagner180 , J. Wagner-Kuhr112 , H. Wahlberg86 , S. Wahrmund48 , J. Walder87 , R. Walker112 , W. Walkowiak148 , V. Wallangen45a,45b , C. Wang15b , C. Wang61b,d , F. Wang179 , H. Wang18 , H. Wang3 , J. Wang154 , J. Wang46 , Q. Wang124 , R.-J. Wang94 , R. Wang6 , S.M. Wang155 , T. Wang38 , W. Wang155,m , W. Wang61a,ag , Z. Wang61c , C. Wanotayaroj46 , A. Warburton101 , C.P. Ward31 , D.R. Wardrope92 , A. Washbrook50 , P.M. Watkins21 , A.T. Watson21 , M.F. Watson21 , G. Watts145 , S. Watts98 , B.M. Waugh92 , A.F. Webb11 , S. Webb97 , M.S. Weber20 , S.A. Weber33 , S.M. Weber62a , S.W. Weber175 , J.S. Webster6 , A.R. Weidberg131 , B. Weinert66 , J. Weingarten54 , M. Weirich97 , C. Weiser53 , H. Weits118 , P.S. Wells35 , T. Wenaus29 , T. Wengler35 , S. Wenig35 , N. Wermes24 , M.D. Werner79 , P. Werner35 , M. Wessels62a , T.D. Weston20 , K. Whalen127 , N.L. Whallon145 , A.M. Wharton87 , A.S. White103 , A. White8 , M.J. White1 , R. White144b , D. Whiteson169 , B.W. Whitmore87 , F.J. Wickens140 , W. Wiedenmann179 , M. Wielers140 , C. Wiglesworth39 , L.A.M. Wiik-Fuchs53 , A. Wildauer113 , F. Wilk98 , H.G. Wilkens35 , H.H. Williams132 , S. Williams31 , C. Willis104 , S. Willocq100 , J.A. Wilson21 , I. Wingerter-Seez5 , E. Winkels153 , F. Winklmeier127 , O.J. Winston153 , B.T. Winter24 , M. Wittgen150 , M. Wobisch93,ak , T.M.H. Wolf118 , R. Wolff99 , M.W. Wolter42 , H. Wolters135a,135c , V.W.S. Wong173 , N.L. Woods143 , S.D. Worm21 , B.K. Wosiek42 , J. Wotschack35 , K.W. Woźniak42 , M. Wu36 , S.L. Wu179 , X. Wu55 , Y. Wu103 , T.R. Wyatt98 , B.M. Wynne50 , S. Xella39 , Z. Xi103 , L. Xia15c , D. Xu15a , L. Xu29 , T. Xu142 , B. Yabsley154 , S. Yacoob32a , D. Yamaguchi162 , Y. Yamaguchi162 , A. Yamamoto81 , S. Yamamoto160 , T. Yamanaka160 , F. Yamane82 , M. Yamatani160 , Y. Yamazaki82 , Z. Yan25 , H. Yang61c,61d , H. Yang18 , Y. Yang155 , Z. Yang17 , W-M. Yao18 , Y.C. Yap46 , Y. Yasu81 , E. Yatsenko5 , K.H. Yau Wong24 , J. Ye43 , S. Ye29 , I. Yeletskikh80 , E. Yigitbasi25 , E. Yildirim97 , K. Yorita177 , K. Yoshihara132 , C.J.S. Young35 , C. Young150 , J. Yu8 , J. Yu79 , S.P.Y. Yuen24 , I. Yusuff31,ax , B. Zabinski42 , G. Zacharis10 , R. Zaidan14 , A.M. Zaitsev139,am , N. Zakharchuk46 , J. Zalieckas17 , A. Zaman152 , S. Zambito60 , D. Zanzi102 , C. Zeitnitz180 , G. Zemaityte131 , A. Zemla41a , J.C. Zeng171 , Q. Zeng150 , O. Zenin139 , D. Zerwas128 , D. Zhang103 , D. Zhang61b , F. Zhang179 , G. Zhang61a,ag , H. Zhang128 , J. Zhang6 , L. Zhang53 , L. Zhang61a , M. Zhang171 , P. Zhang15b , R. Zhang61a,d , R. Zhang24 , X. Zhang61b , Y. Zhang15d , Z. Zhang128 , X. Zhao43 , Y. Zhao61b,aj , Z. Zhao61a , A. Zhemchugov80 , B. Zhou103 , C. Zhou179 , L. Zhou43 , M. Zhou15d , M. Zhou152 , N. Zhou15c , Y. Zhou7 , C.G. Zhu61b , H. Zhu15a , J. Zhu103 , Y. Zhu61a , X. Zhuang15a , K. Zhukov108 , A. Zibell175 , D. Zieminska66 , N.I. Zimine80 , C. Zimmermann97 , S. Zimmermann53 , Z. Zinonos113 , M. Zinser97 , M. Ziolkowski148 , G. Zobernig179 , A. Zoccoli23b,23a , R. Zou36 , M. zur Nedden19 , L. Zwalinski35 .

39

1 Department

of Physics, University of Adelaide, Adelaide; Australia. Department, SUNY Albany, Albany NY; United States of America. 3 Department of Physics, University of Alberta, Edmonton AB; Canada. 4(a) Department of Physics, Ankara University, Ankara;(b) Istanbul Aydin University, Istanbul;(c) Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey. 5 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France. 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America. 7 Department of Physics, University of Arizona, Tucson AZ; United States of America. 8 Department of Physics, The University of Texas at Arlington, Arlington TX; United States of America. 9 Physics Department, National and Kapodistrian University of Athens, Athens; Greece. 10 Physics Department, National Technical University of Athens, Zografou; Greece. 11 Department of Physics, The University of Texas at Austin, Austin TX; United States of America. 12(a) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;(b) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul;(c) Department of Physics, Bogazici University, Istanbul;(d) Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey. 13 Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan. 14 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona; Spain. 15(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;(b) Department of Physics, Nanjing University, Jiangsu;(c) Physics Department, Tsinghua University, Beijing;(d) University of Chinese Academy of Science (UCAS), Beijing; China. 16 Institute of Physics, University of Belgrade, Belgrade; Serbia. 17 Department for Physics and Technology, University of Bergen, Bergen; Norway. 18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America. 19 Department of Physics, Humboldt University, Berlin; Germany. 20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland. 21 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom. 22 Centro de Investigaciones, Universidad Antonio Narino, Bogota; Colombia. 23(a) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna;(b) INFN Sezione di Bologna; Italy. 24 Physikalisches Institut, University of Bonn, Bonn; Germany. 25 Department of Physics, Boston University, Boston MA; United States of America. 26 Department of Physics, Brandeis University, Waltham MA; United States of America. 27(a) Transilvania University of Brasov, Brasov;(b) Horia Hulubei National Institute of Physics and Nuclear Engineering;(c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi;(d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca;(e) University Politehnica Bucharest, Bucharest;( f ) West University in Timisoara, Timisoara; Romania. 28(a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;(b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic. 29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America. 30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina. 31 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom. 32(a) Department of Physics, University of Cape Town, Cape Town;(b) Department of Mechanical 2 Physics

40

Engineering Science, University of Johannesburg, Johannesburg;(c) School of Physics, University of the Witwatersrand, Johannesburg; South Africa. 33 Department of Physics, Carleton University, Ottawa ON; Canada. 34(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca;(b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat;(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech;(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda;(e) Faculté des sciences, Université Mohammed V, Rabat; Morocco. 35 CERN, Geneva; Switzerland. 36 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America. 37 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France. 38 Nevis Laboratory, Columbia University, Irvington NY; United States of America. 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn; Denmark. 40(a) Dipartimento di Fisica, Università della Calabria, Rende;(b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy. 41(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow;(b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland. 42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland. 43 Physics Department, Southern Methodist University, Dallas TX; United States of America. 44 Physics Department, University of Texas at Dallas, Richardson TX; United States of America. 45(a) Department of Physics, Stockholm University;(b) The Oskar Klein Centre, Stockholm; Sweden. 46 DESY, Hamburg and Zeuthen; Germany. 47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany. 48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany. 49 Department of Physics, Duke University, Durham NC; United States of America. 50 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom. 51 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France. 52 INFN e Laboratori Nazionali di Frascati, Frascati; Italy. 53 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg; Germany. 54 II Physikalisches Institut, Georg-August-Universität, Göttingen; Germany. 55 Departement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva; Switzerland. 56(a) Dipartimento di Fisica, Università di Genova, Genova;(b) INFN Sezione di Genova; Italy. 57 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany. 58 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom. 59 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France. 60 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America. 61(a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui;(b) School of Physics, Shandong University, Shandong;(c) School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University;(d) Tsung-Dao Lee Institute, Shanghai; China. 62(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;(b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany. 63 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan. 64(a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong

41

Kong;(b) Department of Physics, The University of Hong Kong, Hong Kong;(c) Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China. 65 Department of Physics, National Tsing Hua University, Hsinchu; Taiwan. 66 Department of Physics, Indiana University, Bloomington IN; United States of America. 67(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;(b) ICTP, Trieste;(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine; Italy. 68(a) INFN Sezione di Lecce;(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy. 69(a) INFN Sezione di Milano;(b) Dipartimento di Fisica, Università di Milano, Milano; Italy. 70(a) INFN Sezione di Napoli;(b) Dipartimento di Fisica, Università di Napoli, Napoli; Italy. 71(a) INFN Sezione di Pavia;(b) Dipartimento di Fisica, Università di Pavia, Pavia; Italy. 72(a) INFN Sezione di Pisa;(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy. 73(a) INFN Sezione di Roma;(b) Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy. 74(a) INFN Sezione di Roma Tor Vergata;(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy. 75(a) INFN Sezione di Roma Tre;(b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy. 76(a) INFN-TIFPA;(b) University of Trento, Trento; Italy. 77 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria. 78 University of Iowa, Iowa City IA; United States of America. 79 Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America. 80 Joint Institute for Nuclear Research, JINR Dubna, Dubna; Russia. 81 KEK, High Energy Accelerator Research Organization, Tsukuba; Japan. 82 Graduate School of Science, Kobe University, Kobe; Japan. 83 Faculty of Science, Kyoto University, Kyoto; Japan. 84 Kyoto University of Education, Kyoto; Japan. 85 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka ; Japan. 86 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina. 87 Physics Department, Lancaster University, Lancaster; United Kingdom. 88 Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom. 89 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia. 90 School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom. 91 Department of Physics, Royal Holloway University of London, Surrey; United Kingdom. 92 Department of Physics and Astronomy, University College London, London; United Kingdom. 93 Louisiana Tech University, Ruston LA; United States of America. 94 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris; France. 95 Fysiska institutionen, Lunds universitet, Lund; Sweden. 96 Departamento de Fisica Teorica C-15 and CIAFF, Universidad Autonoma de Madrid, Madrid; Spain. 97 Institut für Physik, Universität Mainz, Mainz; Germany. 98 School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom. 99 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille; France. 100 Department of Physics, University of Massachusetts, Amherst MA; United States of America. 101 Department of Physics, McGill University, Montreal QC; Canada. 102 School of Physics, University of Melbourne, Victoria; Australia.

42

103 Department 104 Department

of Physics, The University of Michigan, Ann Arbor MI; United States of America. of Physics and Astronomy, Michigan State University, East Lansing MI; United States of

America. 105 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Republic of Belarus. 106 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Republic of Belarus. 107 Group of Particle Physics, University of Montreal, Montreal QC; Canada. 108 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia. 109 Institute for Theoretical and Experimental Physics (ITEP), Moscow; Russia. 110 National Research Nuclear University MEPhI, Moscow; Russia. 111 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia. 112 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany. 113 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany. 114 Nagasaki Institute of Applied Science, Nagasaki; Japan. 115 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan. 116 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America. 117 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands. 118 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands. 119 Department of Physics, Northern Illinois University, DeKalb IL; United States of America. 120(a) Budker Institute of Nuclear Physics, SB RAS, Novosibirsk;(b) Novosibirsk State University Novosibirsk; Russia. 121 Department of Physics, New York University, New York NY; United States of America. 122 Ohio State University, Columbus OH; United States of America. 123 Faculty of Science, Okayama University, Okayama; Japan. 124 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America. 125 Department of Physics, Oklahoma State University, Stillwater OK; United States of America. 126 Palacký University, RCPTM, Olomouc; Czech Republic. 127 Center for High Energy Physics, University of Oregon, Eugene OR; United States of America. 128 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France. 129 Graduate School of Science, Osaka University, Osaka; Japan. 130 Department of Physics, University of Oslo, Oslo; Norway. 131 Department of Physics, Oxford University, Oxford; United Kingdom. 132 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America. 133 Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia. 134 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America. 135(a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa;(b) Faculdade de Ciências, Universidade de Lisboa, Lisboa;(c) Department of Physics, University of Coimbra, Coimbra;(d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa;(e) Departamento de Fisica, Universidade do Minho, Braga;( f ) Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain);(g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia,

43

Universidade Nova de Lisboa, Caparica; Portugal. 136 Institute of Physics, Academy of Sciences of the Czech Republic, Praha; Czech Republic. 137 Czech Technical University in Prague, Praha; Czech Republic. 138 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic. 139 State Research Center Institute for High Energy Physics (Protvino), NRC KI; Russia. 140 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom. 141(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;(b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora;(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei;(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo; Brazil. 142 Institut de Recherches sur les Lois Fondamentales de l’Univers, DSM/IRFU, CEA Saclay, Gif-sur-Yvette; France. 143 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America. 144(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile. 145 Department of Physics, University of Washington, Seattle WA; United States of America. 146 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom. 147 Department of Physics, Shinshu University, Nagano; Japan. 148 Department Physik, Universität Siegen, Siegen; Germany. 149 Department of Physics, Simon Fraser University, Burnaby BC; Canada. 150 SLAC National Accelerator Laboratory, Stanford CA; United States of America. 151 Physics Department, Royal Institute of Technology, Stockholm; Sweden. 152 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America. 153 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom. 154 School of Physics, University of Sydney, Sydney; Australia. 155 Institute of Physics, Academia Sinica, Taipei; Taiwan. 156(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;(b) High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia. 157 Department of Physics, Technion: Israel Institute of Technology, Haifa; Israel. 158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel. 159 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece. 160 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo; Japan. 161 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan. 162 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan. 163 Tomsk State University, Tomsk; Russia. 164 Department of Physics, University of Toronto, Toronto ON; Canada. 165(a) TRIUMF, Vancouver BC;(b) Department of Physics and Astronomy, York University, Toronto ON; Canada. 166 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan. 167 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America. 168 Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei; Taiwan. 169 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America. 170 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

44

171 Department

of Physics, University of Illinois, Urbana IL; United States of America. de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC; Spain. 173 Department of Physics, University of British Columbia, Vancouver BC; Canada. 174 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada. 175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg; Germany. 176 Department of Physics, University of Warwick, Coventry; United Kingdom. 177 Waseda University, Tokyo; Japan. 178 Department of Particle Physics, The Weizmann Institute of Science, Rehovot; Israel. 179 Department of Physics, University of Wisconsin, Madison WI; United States of America. 180 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany. 181 Department of Physics, Yale University, New Haven CT; United States of America. 182 Yerevan Physics Institute, Yerevan; Armenia. a Also at Borough of Manhattan Community College, City University of New York, New York City; United States of America. b Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa. c Also at CERN, Geneva; Switzerland. d Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille; France. e Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain. f Also at Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Spain. g Also at Departement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva; Switzerland. h Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece. i Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America. j Also at Department of Physics, California State University, Fresno CA; United States of America. k Also at Department of Physics, California State University, Sacramento CA; United States of America. l Also at Department of Physics, King’s College London, London; United Kingdom. m Also at Department of Physics, Nanjing University, Jiangsu; China. n Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia. o Also at Department of Physics, Stanford University, Stanford CA; United States of America. p Also at Department of Physics, The University of Michigan, Ann Arbor MI; United States of America. q Also at Department of Physics, The University of Texas at Austin, Austin TX; United States of America. r Also at Department of Physics, University of Fribourg, Fribourg; Switzerland. s Also at Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy. t Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow; Russia. u Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg; Germany. v Also at Georgian Technical University (GTU),Tbilisi; Georgia. w Also at Giresun University, Faculty of Engineering; Turkey. x Also at Graduate School of Science, Osaka University, Osaka; Japan. y Also at Horia Hulubei National Institute of Physics and Nuclear Engineering; Romania. z Also at II Physikalisches Institut, Georg-August-Universität, Göttingen; Germany. aa Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain. ab Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona; Spain. 172 Instituto

45

ac

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands. ad Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria. ae Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary. a f Also at Institute of Particle Physics (IPP); Canada. ag Also at Institute of Physics, Academia Sinica, Taipei; Taiwan. ah Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan. ai Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia. a j Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France. ak Also at Louisiana Tech University, Ruston LA; United States of America. al Also at Manhattan College, New York NY; United States of America. am Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia. an Also at National Research Nuclear University MEPhI, Moscow; Russia. ao Also at Near East University, Nicosia, North Cyprus, Mersin 10; Turkey. ap Also at Novosibirsk State University, Novosibirsk; Russia. aq Also at Ochadai Academic Production, Ochanomizu University, Tokyo; Japan. ar Also at School of Physics, Sun Yat-sen University, Guangzhou; China. as Also at The City College of New York, New York NY; United States of America. at Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China. au Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia. av Also at TRIUMF, Vancouver BC; Canada. aw Also at Universita di Napoli Parthenope, Napoli; Italy. ax Also at University of Malaya, Department of Physics, Kuala Lumpur; Malaysia. ∗ Deceased

46