Boundary Layer Theory

333 downloads 550 Views 772KB Size Report
Boundary Layer Theory ... 6) Exact calculation of the Boundary layer thickness ...... (see also : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, ...
-

Prof. Dr. Norbert Ebeling

Boundary Layer Theory Lecture notes

Prof. Dr. N. Ebeling

Boundary Layer Theory

Contents : 1) General fluid mechanics / Newton fluids 1.1) Euler's law of hydrostatics 1.2) Friction 1.3) Dimensionless numbers 1.4) Laminar flow in a tube 2) Conservation equations 2.1) Mass balance for ρ = const. 2.2) Euler's and Bernoulli's equations 2.3) Navier-Stokes equations 3) Boundary layers 3.1) Boundary layers on a flat plate 3.2) Friction forces on a plate 3.3) Boundary layer on an obstacle 4) Potential and stream functions 5) Law of Kutta-Joukowski 6) Exact calculation of the Boundary layer thickness 6.1) Conservation of mass (continuity equation) 6.2) Navier-Stokes and Blasius equations 6.3) Friction 7) Thermal Boundary layer 8) Mass Transfer Boundary layer equation 9) Turbulent Boundary layer 10) Burbling 11) Bibliography 12) Acknowledgment

-1-

Prof. Dr. N. Ebeling

Boundary Layer Theory

1) General fluid mechanics / Newton Fluids General definitions

 ex x u    j ey y v  general definitions   k ez z w  i

dy (dz)

dm = ρ i dx i dy i dz

dx

Acceleration : dFi = dm i

Du Dt

Du ∂u ∂u ∂u ∂u = +u i +v i +w i Dt ∂t ∂x ∂y ∂z ∂u =0 ∂t

stationary :

frequently :

Du ∂u =u i Dt ∂x

volume force:

fi

(e.g.

g)

-2-

Prof. Dr. N. Ebeling

Boundary Layer Theory

1.1) Euler's law of hydrostatics

↓ dF1

x↓

fx ↑ dF2

ρ i fx i dV + dF1 = dF2

ρ i fx

∂F i dx i dy i dz = i dx ∂x

dF = dp i dy i dz ∂p ρ i fx = ∂x

-3-

Prof. Dr. N. Ebeling

Boundary Layer Theory

-4-

1.2) Friction

τ = +η i

Moving fluid :

∂u ∂y

( Couette - flow )

Newton fluid

Schlichting :

∂u τ =µ i ∂y

1.3) Dimensionless numbers : Reynolds number

Re ~

inertial force friction force

{   τ

τ + ∂τ

∂y

i dy

∂τ FFR = i dy i ( dx i dz )  ∂y

dA

Prof. Dr. N. Ebeling

Boundary Layer Theory

dm   ∂u ρ i dx i dy i dz i u i ∂x Re ~ ∂τ i dx i dy i dz ∂y

∂u u∞ ∂τ ∂  ∂u  ~ ; = η i  ∂x ∂y ∂y  ∂y  d ∂τ ∂  u∞  ~ η i   ∂y ∂y  d 

or any comparable speed v else

V d = ρ ivid v η η i 2 d

ρivi Re =

v i d with ν = η Re = ρ ν laminar flow : high friction forces, low inertial forces avoided by friction

υ

deciding

-5-

Prof. Dr. N. Ebeling

Boundary Layer Theory

ascending force

FA pis

CA =

s

Bernoulli :

Pipe :

1 i ρ i u2∞ 2 Cw ( or ζ ) analogous p →

ζR =

d ρ i u2m 2

Gravity influence :

i

dp dx

Fr Froude number

Cw =

( or λ )

=

v gid

FR pis

-6-

Prof. Dr. N. Ebeling

Boundary Layer Theory

1.4) Laminar flow in a tube

ν

extremely high

nearly no initial forces, no influence of dm or ρ !

Hagen-Poisseulle :

ζR

64 = Re

dp 64 i η 64 i ν i = = ρ 2 dx v i ρ i d v i d iv 2 d

Derivation :

dp   p i π i r2 -  p + dx  i π r2 - τ i 2π r i dx = 0 dx   r dp du − i =τ = -η i 2 dx dr Integration with u (r = R) = 0 leads to : 2  R2 dp   r  u(r) = i i  - 1 4η dx   R  

-7-

Prof. Dr. N. Ebeling

Boundary Layer Theory

R

= u (r) i 2π i dr V ∫ 0 4 π i R  dp 

= V i  8iη  dx 

V R2 ∆p u= = i π i R2 8iη l u i ρ i ( 2R ) Re = η ∆p d ξ= 1 i 2 i ρ i u l 2 64 ξ= laminar !! Re

2) Conservation equations Important conservation equations for describing continuous flow ( cartesian coordinates ) :

2.1) Mass balance for ρ = const.

∂u ∂v + =0 ∂x ∂y

-8-

Prof. Dr. N. Ebeling

Boundary Layer Theory

u1 i ∆y i ∆ z = u 2 i ∆y i ∆z + v 2 i ∆x i ∆z

(u1 - u2 )

i ∆ y = + v2 i ∆ x

∆u ∆v + =0 ∆x ∆y 2.2) Euler's and Bernoulli's equations Eulers equation ( one direction, pipe ):

Du ∂u dV i ρ i = ρ i dV i u i = + dFx ∂x Dt ρ iui

∂u ∂p =∂x ∂x

Integration : W = F • l leads to Bernoulli's equation

-9-

Prof. Dr. N. Ebeling

Boundary Layer Theory

Mechanical energy balance : Bernoulli incl. hydrostatics

∂u -∂p ρiui = + ρ i fx ∂x ∂x u2 ρi 2

2 1

=p

2

-ρ i gi h

1

2 1

Euler (2 directions ):

↑v

Du Dt

  ∂u ∂u  ∂p ρ i u i +vi = ∂x ∂y  ∂x  v leads to a higher value of u

2.3) Navier - Stokes - equation Bernoulli and Euler neglect friction

τ

∂u =η i ∂y

∂τ dFR = idy i ( dx i dz ) ∂y

- 10 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 11 -

 ∂u2 ∂ 2u  fR = η i  2 + 2  ∂ y ∂ x   Navier - Stokes - Equations ( Can be simplified in a boundary layer (later))

ρi

Du ∂p = ρ i fx + f Rx Dt ∂x

 ∂2u ∂2u   ∂u ∂u  ∂p ρ u i + v i  = ρ ifx + ηi  2+ 2 ∂y  ∂x ∂x   ∂x  ∂y

 ∂ 2v ∂ 2v   ∂v ∂v  ∂p ρ v i + u i  = ρ ify + η i  2+ 2 ∂x  ∂y ∂x   ∂y  ∂y

3) Introduction to Boundary layers 3.1) Boundary layers on a flat plate No influence of the viscosity but directly on the wall Boundary layer phenomena : ( Schlichting )

Prof. Dr. N. Ebeling

Boundary Layer Theory

Thickness of a boundary layer, laminar on a plate

u∞

→

δ = f (x )

u∞ ∂u u∞ ∂τ ~ ; ~ηi 2 x δ ∂x ∂y

∂u ∂ 2u 2 ∂τ ρ iui =ηi = 2 ∂x ∂y ∂y inertial force = friction force ( Navier -Stokes )

u2∞ u∞ ρ i ~ηi 2 δ x ν ix δ ~ u∞

δ 99 (x) = 5 i

ν ix u∞

- 12 -

Prof. Dr. N. Ebeling Dimensionless :

Boundary Layer Theory

δ99 (x)

=

l

5 Re

i

- 13 -

x l

δ 99 is arbitrary

A non - arbitrary value : displacement thickness

U i δ i (x) =



∫ (U - u(x,y) )

idy

y=0

δi



1 i δ 99 3

3.2) Friction forces on a plate :

high value

low value

Prof. Dr. N. Ebeling

Boundary Layer Theory

 ∂u  τ w (x ) = η i    ∂y w

τ

w

~η i

τ ζ = cw =

w

u∞

δ

~

η ix ρ

with δ ~

u∞

η i ρ i u3∞ x

FW FW = ρ E i u∞2 i l b 2 S

(Surface)

l

FW = b i

∫ τ ( x)

i dx

W

0

l

FW ~ b i µ i ρ i u∞3 i ∫ x



1 2

i dx

0

FW ~ b i µ i ρ i u3∞ i 2 i l cw ~

1 2

b i 2 i η i ρ i u3∞ i l b i u4∞ i

ρ2 4

i l2

- 14 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

1,1328 cw = Re

cw ~

l Re

3.3) Boundary layer on an obstacle : Navier - Stokes :

Far away from the obstacle (stream line) :

dU l dp Ui =- i ( no friction ) dx ρ dx

dU dp and are related to Bernoulli dx dx

- 15 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 16 -

4) Potential and Stream functions For describing vortex streams ( and comparable ) :

∂γ1 ∂v ω1 = = ∂t ∂x ∂γ 2 ∂u =ω2 = ∂t ∂y

ω=

Circulation :

Γ=

1  ∂v ∂u    2  ∂x ∂y 

∫ w i ds

Potential streams (no friction ) : no rotation

∂v ∂u ω =0; =0 ∂x ∂y Mass balance ; conservation equation :

∂u ∂v + =0 ∂x ∂y

Prof. Dr. N. Ebeling

Boundary Layer Theory

Stream function (definition ) :

u=

∂Ψ ∂Ψ ; v=∂y ∂x

Conservation equation :

∂  ∂Ψ  ∂  ∂Ψ  + =0     ∂x  ∂y  ∂y  ∂x  No rotation :

∂2Ψ ∂2Ψ + =0 2 2 ∂x ∂y Potential function :

∂φ ∂φ u= ;v= ∂x ∂y Potential streams

1  ∂v ∂u  ∂v ∂u ω= i  ; =0  2  ∂x ∂y  ∂x ∂y

- 17 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 18 -

Streams without any rotation :

∂v ∂u =0 ∂x ∂y also conservation equation :

∂u ∂v + =0 ∂x ∂y

∂  ∂v  ∂ 2u ∂  ∂u  ∂  ∂v  - 2 + =0       ∂y  ∂x  ∂y ∂x  ∂x  ∂x  ∂y  ∂ 2u ∂ 2u + =0 2 2 ∂x ∂y Insert in Navier - Stokes :

 ∂u ∂u  ∂p ρ i u i +vi = +0  ∂x ∂y  ∂x 

p = f ( u, v ) leads to Bernoulli for v = 0 - no friction ! no rotation - no friction

Prof. Dr. N. Ebeling

Boundary Layer Theory

Model frequently used : On the obstacle : boundary layer in the vicinity , but outside the layer : no friction

potential function :

∂Φ ∂Φ u= ;v= ∂x ∂y

No rotation :

∂v ∂u ∂ 2Φ ∂ 2Φ =0 ↔ =0 ∂x ∂y ∂x∂y ∂x∂y Conservation equations : 2 2

∂Φ ∂Φ + =0 2 2 ∂x ∂y

Stream function :

u=

∂Ψ ∂Ψ ;v=∂y ∂x

Conservation equations o.k.

- 19 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

from definition :

∂Ψ ∂Ψ ui +vi =0 ∂x ∂y Stream line :

Circulation :

( no v : )

-> ψ = constant

  Γ = ∫ w i ds

Example : here : Γ = 0 ( all possible ways )

airfoil : high speed low speed

Γ ≠ 0

- 20 -

Prof. Dr. N. Ebeling

assumption :

Boundary Layer Theory

w~

l ; obviously : r

One exception : including the centre :

Γ = 2π i r i

- 21 -

Γ=0

( ω i r)

Potential- and flowfunctions as well as velocitys for some elementary potential flows Ψ ( x, y )

u ( x,y )

v ( x, y)

flow

Φ ( x, y)

translational flow

U∞ x + V∞ y

U∞ y - V∞ x

U∞

V∞

source flow

E ln r 2π

E ϕ 2π

E x 2π r 2

E y 2π r 2

streamline

( productiveness E )

potential vortex stream

Γ ϕ 2π



E r ln 1 2π r2

E 2π

Γ ln r 2π



Γ x 2π r2

Γ y 2π r 2

( circulation I' )

source-drain flow

( ϕ1 - ϕ2 )

E x+ h x  - 2  2π  r12 r2 

Ey  1 1 - 2  2 2π  r1 r2 

( productiveness E, distance h )

dipole flow

M x 2π r2



M y 2π r 2

M y2 - x 2 2π r4



M 2xy 2π r 4

( dipole moment M )

(see also: Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 130 )

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 22 -

spring : V = wrad i 2π i r i h yield : E = wrad i 2π i r

for x = r : E = u i 2π i x E u= 2πx ( or r )

E Φ= i ln x2 + y2 2π ∂Φ E 1 1 u= = i i i 2 2 ∂x 2π 2 x +y Spring :

1 2

2

x +y

E x u= i 2 2π r E E  y Ψ= iϕ= i arctg   2π 2π  x

∂Ψ E ∂   y  u= = i arctg    ∂y 2π ∂y   x 

i 2x

Prof. Dr. N. Ebeling

Bronstein :

Boundary Layer Theory

- 23 -

∂ 1 arctg x = ∂x 1 + x2



() y x

∂Ψ u= i ∂x ∂ yx E 1 u= i 2π 1 + y x

()

()

2

1 i x

E x u= i 2 2π r the rest is the same

For application :

stream =∑ of model streams airfoil :

x2 i 2 x

Prof. Dr. N. Ebeling

Boundary Layer Theory

5) Law of Kutta - Joukowski simple example : flat plate :

FA =b i l i ∆p 1 2 i ρ i( 2u∞ ) FA =b i l i 2

Γ = 2 i u∞ i l

FA = 2 i ρ i l i b i u∞ FA = Γ i ρ i b i u∞ Kutta - Joukowski

2

- 24 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

6) Exact calculation of the Boundary layer thickness Boundary layer on a plate :

∂u ∂u ∂2u ui +v i =νi 2 ∂x ∂y ∂y ∂u ∂v + =0 ∂x ∂y y = 0 : u = 0, v = 0

y → ∞ : u = U∞

xiv δ ( x) ~ u∞ For similarity y/δ (x) is important

y x iν u∞

- 25 -

Prof. Dr. N. Ebeling

Definition :

Boundary Layer Theory

u∞ m=y i 2iν ix

( the factor 2 is arbitrary but helpful )

Idea : Stream function : dimensionless stream function

Ψ =

2 i ν i x i u∞

  i f ( m)

Schlichting says η

u=

∂Ψ ∂Ψ ∂m = i ∂y ∂m ∂y

u = 2 i ν i x i u∞ i f ′ ( m ) i

u∞ 2 iν ix

u = u ∞ i f ′ (m ) v =-

∂Ψ ∂x

Ψ = 2 i ν i x i u ∞ i f (m ) ∂Ψ 1 1 = i i 2 i ν i u ∞ i f (m ) 2 ∂x x

- 26 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 27 -

 ∂m  ′ + 2 i ν i x i u ∞ i f (m ) i    ∂x  3 ∂m u∞  1 =y i i -  i x 2 ∂x 2 i ν  2

 ∂Ψ ν i u∞ = i f - yi  ∂x 2ix 

 u∞  i 2iνix

-

xix

3 2

i

1 2

i 2 i ν i x i u∞ i f ′ ( m )

∂Ψ ν i u∞ v == i ( m i f′ - f ) ∂x 2ix

6.1) Conservation of mass (continuity equation) ∂u = u ∞ i f ′′ (m ) i y i ∂x

3 u∞  1 i -  i x 2 2 i ν  2

∂u 1   = u∞ i f ′′ (m ) i m i   ∂x 2 i x  

∂v ∂ = ∂y ∂y

 ν i u∞  ∂  ν i u∞  i m i f ′ if     2 i x  ∂y  2 i x 

Prof. Dr. N. Ebeling

∂v ν i u∞ = i ∂y 2ix



ν i u∞ 2ix

Boundary Layer Theory

- 28 -

m    u∞ ν i u∞ u∞ u∞ i f ′+ iy i f ′′ i 2 iν ix 2 ix 2 i ν ix 2 i ν ix

i f′ i

u∞ 2 iν ix

∂v 1 ′′ = u∞ i m i f (m ) i ∂y 2ix

∂u ∂v ⇒ + =0 ∂x ∂y

Conti - equation

6.2) Navier-Stokes and Blasius equations Navier-Stokes for the boundary layer on a flat plate :

u = u∞ i f ′ (m ) ∂u 1   = u∞ i f ′′ (m ) i m i  ∂x  2 i x ν i u∞ v = i(m i f ′ - f ) 2 ix

∂u = u∞ i f ′′ ( m) i ∂y

u∞ 2iνix

Prof. Dr. N. Ebeling

Boundary Layer Theory

∂ 2u =u∞ i 2 ∂y

u∞ i f ′′′ ( m ) i 2 iν ix

with :

- 29 -

u∞ 2 i ν ix

∂u ∂u ∂ 2u ui +vi =νi ∂x ∂y ∂y 2 Inserting and differentation leads directly to :

f′′′ + f i f′′ = 0 Blasius - Equation side conditions :

m=0 f = 0 , f′ = 0 m → ∞ : f′ = 1

u = u∞ i f ′ ( m)

m = 0 ( i.e. y = 0)

u = 0 and f′ = 0

m → ∞ ( i.e. y → ∞ )

u = u∞ and f′ = 1

ν i u∞ v= i (m i f ′ - f ) 2ix ⇒ for y = 0 v and f have to be 0

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 30 -

There is a function f(m), but there is no equation. description of f(m) : Thickness of the boundary layer : characteristic parameters for the boundary layer on a longitudinal flown plate

′′ fw

0,4696

β1 = limη → ∞  η - f ( η)  

1,2168



β2 =

∫ f ′ ( 1 - f′ )



0,4696

0

0,7385 (see also : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 158 )

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 159 )

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 31 -

Flat plate laminar boundary layer functions

f

df u = dm u∞

d2 f dm2

0,0

0,0000

0,000

0,470

0,4

0,0191

0,133

0,468

0,8

0,0750

0,265

0,462

1,2

0,1683

0,394

0,448

1,6

0,2970

0,517

0,420

2,0

0,4596

0,630

0,378

2,4

0,6520

0,729

0,322

2,8

0,8704

0,812

0,260

3,2

1,1095

0,876

0,197

3,6

1,3647

0,923

0,139

4,0

1,6306

0,956

0,091

4,4

1,9035

0,976

0,055

4,8

2,1814

0,988

0,031

5,2

2,4621

0,994

0,016

5,6

2,7436

0,997

0,007

6,0

3,0264

0,999

0,003

6,4

3,3086

1,000

0,001

6,8

3,5914

1,000

0,000

m=y

u∞ νx

(see also : Incropera, F.P.; DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 4th Ed., page 352 )

Attention : f and η deviate from Schlichting in factor  2 !

δ99 = y for u = 0.99 i u∞

δ99 = y for f′ = 0.99

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 32 -

6.3) Friction :

  u∞ u = u∞ i f ′  y   2iν ix  ∂u  u∞  ∂y  = u∞ i 2 i ν i x i fw′′  w

 ∂u  0,4696 i u∞ i =  ∂y  2  w τ w = η i 0,332 i u ∞ i

u∞ ν ix u∞ ν ix

Plate ( 1 side ) :

l

Fw =

∫τ

w

i b i dx

0 l

Fw = η i 0,332 i u ∞ i l

with



∫x 0

1 2

1 − u∞ i b i ∫ x 2 i dx ν 0

i dx = 2 l

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 33 -

Fw

cw =

ρ i u∞ i b i l 2 1.328 = Re

cw

( see also 3.2 )

7) Thermal boundary layer

Conservation equation for heat : 2

 ∂T ∂T  ∂ 2T  ∂u  ρ i c p i u i +v i = λ i + η i    2 ∂x ∂y  ∂y   ∂y 

convection :

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 34 -

convection :

i cp i ∆T) ∆Q c = ( m  ∂T  cp i ρ i ( dy i dz ) i u i  i dx   ∂x 

>0

conduction :

 ∂T  − λ i A i   ∂y    − λ i 

( dx

i dz )

∂T  i dy  ∂y 

0

∂u ∂y

Compare the conservation equations for heat with Navier-Stokes !

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 35 -

 ∂T ∂T  ∂ 2T ρ i cp  u i +v i =λ i  2 ∂ x ∂ y ∂ y   ( heat from friction neglected ) Navier-Stokes adapted to a boundary layer (see also 6) )

 ∂u ∂u  ∂ 2u  η i ∂x + v i ∂y  = ν i ∂y2  

 u i   u i   u   u 

∂u +vi ∂x ∂T ivi ∂x

∂u  ∂ 2u ν i ρ i cp ∂y  ∂y2 = i 2 ∂ T λ ∂T  ∂y2 ∂y 

∂u i +vi ∂x ∂T i ivi ∂x

∂u  ∂y  = ∂T  ∂y 

Pr

∂ 2u ∂y 2 i 2 ∂ T ∂y 2

Prof. Dr. N. Ebeling

Boundary Layer Theory

For gases Pr ≈ 1. Independent from the condition u and T behave equal.

q = α i ( Tw - T∞ )  ∂ T 

= -λ i  q  ∂ y  w  ∂T  -λ i   ∂ y  u α= Tw - T∞

( ) 

 ∂ TT ∞ -λ i   ∂y  α = Tw -1 T∞

 w

- 36 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 37 -

  u   ∂  u∞     α =λ i with uw = 0  ∂y     w

α=λ i

u∞ i 0,4696 2iν ix l

bi α = 0,4696 i λ i

u∞ i 2iν

α = 0,4696 i λ i



1

0

1 2

i dx

x bil

u∞ i 4 i l η 2 i i l2 ρ

1 + λ α = 0,664 i i Re 2 l

Nu = 0,664 i Re

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 38 -

There is evidence that for Pr ≠ 1 :

1 2

Nu = 0,664 i Re i Pr

1 3

see also : Vauck, W.R.A., Müller, H.A.: "Grundoperationen chemischer Verfahrenstechnik" , Wiley, 11th Edition (2001)

8) Mass transfer boundary layer equation

∂c A ∂c A ∂ 2c A ui +vi = DAB i ∂x ∂y ∂y2

9) Turbulent Boundary layer Plate : turbulent from Re = 5 i 10 5 on

sudden δ ↑ ,

τ↑

virtual friction turbulent layer : 2 layers viscous sublayer

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 39 -

Viscous sublayer :

δv x

50

=

Re x i

cf 2

Turbulent boundary layers

u ( x,y,t ) = u ( x,y ) + u′ ( x,y,t ) v

( x,y,t )

= v....

u = average ; u ′ = 0

p (x,y,t) = p (x,y) + p′ (x,y,t) Conservation equations :

∂u ∂u′ ∂v ∂v ′ ∂u ∂v + + + =0; + =0 ∂x ∂x ∂y ∂y ∂x ∂y Navier - Stokes ( for boundary layers ) :

∂u ∂u ∂u′ ∂u′   ρ i u i + u′ i +ui + u′ i + v.....  ∂x ∂x ∂x ∂x  

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 40 -

 ∂ 2u dp ∂ 2u′  = +η i  2 + 2  dx ∂ y ∂ y   dp dU = -ρ i Ui ( Bernoulli ) dx dx Average :

∂u ∂u′ u′ i = 0 , u′ i =0 ∂x ∂x  ∂u ∂ u′ ∂u ∂ u′  ρ u i + u′ i +vi + v′ i  ∂x ∂x ∂y ∂y   = .....  ∂ 2u dρ ∂ 2u′  = -

+ η  2 + 2  dx ∂ y ∂ y  

∂u′ ∂u′ ∂ u′ i + v′ i ≈ ( u′ i v′) ∂x ∂y ∂y  ∂u ∂u  du ∂ 2u ∂ ρ u +vi = ρ i u i + η i ( u′ i v′) i ρ  2 ∂y  dx ∂y ∂y  ∂x   

Prof. Dr. N. Ebeling

Boundary Layer Theory

τl = η i

laminar sheer stress :

turbulent sheer stress :

τt

∂u ∂y

(

= - u′ i v′

)iρ

u′ i v′ is usually negative

∂ u τt = + ε i ρ i ∂y

with ε

- u′ i v′ = ∂u ∂y

ε : turbulent kinematic viscosity

u′ ~ l i ∂u ∂y

v′ ~ u′ ∂u ∂u τt = ρ i l i i ∂y ∂y 2

l = length of mixing way l = f ( distance to the wall ) laminar sublayer

- 41 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

Degree of turbulence :

Tu =

1 3

(

i u′2 + v′2 + w′2

- 42 -

)

u∞

10) Burbling

dp Flat plate : =0 dx Stream line along a body different from a flat plate outside the boundary layer ( no friction : )

du dp Ui =dx dx ( see Bernoulli and Navier-Stokes )

Prof. Dr. N. Ebeling

low speed

Boundary Layer Theory

-

- 43 -

high pressure

When friction and pressure increase, debonding occurs. In the layer :

 ∂u ∂u  dp ρ i u i +vi +ηi  =∂x ∂y  dx  dp ∂ 2u If has a high value, must 2 dx ∂y become positive

 ∂ 2u   2  ∂y 

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 44 -

Result :

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 37 )

(nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 39 )

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 45 -

Turbulent flow : η + ε · ρ instead of η : burbling occurs later

burbling from point A on

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 110 )

(nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 111 )

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 46 -

creeping flow :

d'Alembert : no friction (and no burbling)

→ cw = 0 → cw = 0 (nach : Gersten, K. : Einführung in die Strömungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 114 )

Re =

ρ i u∞ i D u∞ i D = η ν sphere : cw =

Fw π u iρi i D2 2 4 2 ∞

→ laminar

→ laminar, but burbling

} turbulent (nach : Gersten, K. : Einführung in die Strömungsmechanik,Bertelsm. Univ.Verlag, 1st edition, page 112 )

Prof. Dr. N. Ebeling

Boundary Layer Theory

Periodic stream due to debonding : Strouhal - Number :

Sr =

f id u

- 47 -

Prof. Dr. N. Ebeling

Boundary Layer Theory

- 48 -

11) Bibliography - Gersten, K. : Einführung in die Strömungsmechanik, Shaker; 1st edition (2003), ISBN-13: 978-3832210397 - Schlichting, H., Gersten, K. : Grenzschicht - Theorie, Springer Verlag, 10th edition (2006), ISBN-13: 978-3540230045 - Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 5th edition (2001) , ISBN-10: 9755030654 - Vauck, W.R.A., Müller, H.A.: "Grundoperationen chemischer Verfahrenstechnik" , Wiley, 11th Edition (2000), ISBN -10: 3527309640 - Bronstein, I.N., Semendjajew, K.A., Musiol, G., Muehlig, H. : Taschenbuch der Mathematik, Deutsch, 7th edition (2008) , ISBN-13: 978-3817120079

12) Acknowledgment I would like to thank my student assistant Matthias Kemper for his contribution to this work.