1997. Op Amp fabricated by MOSIS service in 2-µm, n-well CMOS, DPDM ... P.
Allen and D. Holberg – CMOS Analog Circuit Design, 2nd. Ed., Oxford, New York,
...
Chap. IV –CMOS Operational Amplifiers n IV.1 Introduction n IV.2 Performance parameters n IV.3 OTA (single-stage op amp) n IV.4 Cascode and folded-cascode amplifiers n IV.5 Cascade amplifiers n IV.6 Fully-differential amplifiers and common-mode
feedback
EEL 6713 - Analog Integrated Circuit Design
1
IV.1 Introduction The ideal op amp +
A→∞ RS=0
+ RS
vi
+ Avi -
-
-
+
+
vi -
+ vo -
Gm=AGS Gmvi
GS
+ vo -
EEL 6713 - Analog Integrated Circuit Design
2
IV.1 Introduction Applications of op amps - 1 Inverting amplifier
R2 + vi -
R1
+ vo -
+
-
+ vi -
+
1 R ≅− 2 R1 1 R 1 + 1 + 2 A R1
Noninverting amplifier
R2 R1
vo R =− 2 vi R1
+ vo -
vo R2 R 1 = 1 + ≅ 1+ 2 vi R1 R1 1 R 1 + 1 + 2 A R1
EEL 6713 - Analog Integrated Circuit Design
3
IV.1 Introduction Applications of op amps - 2 Transimpedance amplifier
R2
i
+
+ vo -
vo A 1 = − R2 ≅ − R2 1 − ≅ − R2 1+ A i A
- Continuous-time filters - SC filters - D/A & A/D converters - Sensor signal conditioning - Voltage & current references - Comparators - Nonlinear analog functions, - ....... EEL 6713 - Analog Integrated Circuit Design
4
IV.1 Introduction Op amp requirements: •Technology; •Supply voltage; •Gain, GBW, output swing, noise, offset voltage, PSRR, ICMR, ....
Op amp design: •Choice of architecture; •Bias currents & Transistors dimensions; •Compensation; •Simulation; •Layout; •Post-layout simulation
P. Allen and D. Holberg – CMOS Analog Circuit Design, 2nd. Ed., Oxford, New York, 2002. EEL 6713 - Analog Integrated Circuit Design
5
IV.2 Performance parameters - 1
Gate channel capacitances are used for compensation capacitors.
W.-C. S. Wu et al., Digital-Compatible HighPerformance Operational Amplifier with Railto-Rail Input and Output Ranges, IEEE JSSC, vol. 29, no. 1, pp. 63-66, Jan. 1994. EEL 6713 - Analog Integrated Circuit Design
6
IV.2 Performance parameters - 2
Op Amp fabricated by MOSIS service in 2-µm, n-well CMOS, DPDM L. Moldovan and H. H. Li, A Rail-to-Rail, Constant Gain, Buffered Op-Amp for Real Time Video Applications, IEEE JSSC, vol. 32, no. 2, pp. 169-176, Feb. 1997 EEL 6713 - Analog Integrated Circuit Design
7
IV.2 Performance parameters - 3
J. F. Duque-Carrillo et al., 1-V Rail-to-Rail Operational Amplifiers in Standard CMOS Technology, IEEE JSSC, vol. 35, no. 1, pp. 33-44, Jan. 1990 EEL 6713 - Analog Integrated Circuit Design
8
IV.2 Performance parameters - 4 Offset voltage Vod(V)
VOS
Vid(mV)
Systematic offset – results from circuit design and is present even when all supposedly identical devices are matched (usually can be set to a low value). Random offset – results from mismatches in supposedly identical pairs of devices (depends on area and bias). P. R. Gray and R. G. Meyer, MOS Operational Amplifier Design – A Tutorial Overview, IEEE JSSC, vo. 17, n0. 6, pp. 969-982, Dec. 1982. EEL 6713 - Analog Integrated Circuit Design
9
IV.2 Performance parameters - 5 Differential voltage gain Ad
dB
Extrapolated unitygain frequency
0 dB
− p1
P. R. Gray and R. G. Meyer, MOS Operational Amplifier Design – A Tutorial Overview, IEEE JSSC, vo. 17, n0. 6, pp. 969-982, Dec. 1982. EEL 6713 - Analog Integrated Circuit Design
10
IV.2 Performance parameters - 6 Settling time
P. Allen and D. Holberg – CMOS Analog Circuit Design, 2nd. Ed., Oxford, New York, 2002. EEL 6713 - Analog Integrated Circuit Design
11
IV.2 Performance parameters - 7 CMRR, PSRR, Slew rate, Noise, Common-Mode Input Range, Output Swing, Power, Silicon Real State, .... Dynamic Range (DR)
Distortion (within acceptable level: application-dependent).
vin ,max DR = 20 log v in ,min
Noise (distinguish between signal and noise) EEL 6713 - Analog Integrated Circuit Design
12
IV.3 OTA (single-stage op amp) - 1 Or current-mirror op amp (Johns & Martin) /symmetric OTA (Laker & Sansen)
1:B CM
1:B CM I1 I2
BI1
+ vG1 -
M1
M2
+ vG2 -
IT VSS
BI1
BI2 Io= B(I2-I1) CL
1:1 CM EEL 6713 - Analog Integrated Circuit Design
13
IV.3 OTA (single-stage op amp) - 2 Bias circuitry
Low-gain diff. amp.
Cascode output
Fig. AP6-1
K. Laker and W. Sansen: Design of Analog Integrated Circuits and Systems, McGraw-Hill, 1994
EEL 6713 - Analog Integrated Circuit Design
14
IV.3 OTA (single-stage op amp) - 3
D. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, 1997.
EEL 6713 - Analog Integrated Circuit Design
15
IV.3 OTA (single-stage op amp) - 4 1:B CM
1:B CM
Input common-mode range: see diff. amp.
I1 I2 BI1
+ vG1 -
M1
M2
BI2
+ vG2 -
Io= B(I2-I1)
IT asymmetry
CL
BI1
VSS
SR =
BIT ( CL + CP )
Bg m1 Ro Ad ( s ) = 1 + sRo ( CL + CP )
GBW ( Hz ) =
1:1 CM
Bg m1 1 2π ( CL + CP )
CM delays were neglected −Bgm1vid
Ro
CL+CP
+ vo
vid = v g1 − vg 2 EEL 6713 - Analog Integrated Circuit Design
16
IV.4 Cascode & folded-cascode amplifiers - 1 - Reduced output swing; -Doublet ! - Not applicable to low supply voltage.
Telescopic diff. amp. with self-biased cascode CM
Telescopic diff. amp. with high-swing cascode CM EEL 6713 - Analog Integrated Circuit Design
17
IV.4 Cascode & folded-cascode amplifiers - 2
Low-gain diff. amp. D. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, 1997.
High-gain diff. amp.
EEL 6713 - Analog Integrated Circuit Design
18
IV.4 Cascode & folded-cascode amplifiers - 3
P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.
EEL 6713 - Analog Integrated Circuit Design
19
IV.4 Cascode & folded-cascode amplifiers - 4 Folded-cascode amplifier - 1 Can be changed to increase positive output swing
IT ∆i IT/2 IT/2
IT/2
IT/2
∆i ∆i
∆i IT
P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.
2∆i
∆i
IT
EEL 6713 - Analog Integrated Circuit Design
20
IV.4 Cascode & folded-cascode amplifiers - 5 Folded-cascode amplifier - 2 ICMR : Exercise Output swing : Exercise Note: The output swing can be around -VSS+2VDSsatp to VDD-2VSDsatp for high-
Ro
swing current mirror and optimized bias.
IT CL Ad 0 Ad ≅ 1 + sCL R0 SR ± = ±
High-swing current mirror P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.
& doublet
Gm = g m1 Ad 0 = Gm Ro g 1 Go = = g ds 4 ds 4 A Ro g ms 4 A + ( g ds12 + g ds 2 )
EEL 6713 - Analog Integrated Circuit Design
g ds 2 A g ms 2 A 21
IV.4 Cascode & folded-cascode amplifiers - 6 The gain-boost technique - 1 g + g ds 2 g mg 2 n + Add + ds1 g mg 2 1 ≅ Add g mg 2 1 Ro = g ds 2 g ds1 g ds 2 g ds1
Stacked devices reduce output swing. Cascade amplifiers: stability?
K. Bult & G.J.G.M. Geelen, A fast-settling CMOS op amp for SC circuits with 90-dB DC gain, IEEE JSSC, no.6, pp. 1379-1384, Dec. 1990. EEL 6713 - Analog Integrated Circuit Design
22
IV.4 Cascode & folded-cascode amplifiers - 7 The gain-boost technique - 2
P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.
EEL 6713 - Analog Integrated Circuit Design
23
IV.4 Cascode & folded-cascode amplifiers - 8 The gain-boost technique - 3
P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.
EEL 6713 - Analog Integrated Circuit Design
24
IV.5 Cascade amplifiers Two-stage amplifiers - 1 VDD 1:1
ICMR: see diff. amp. 1:2B
M3
Output swing:
M6
M4
VDD − VDSsat 4 > Vo > VSS + VDSsat 5 vo CL
CC inv
IT
+ vi -
noninv
M1
M2
Low-voltage gain:
1:2B
M8 1:1
For systematic offset → 0. “Early” effect at the output
M5
M7
Ado =
1:B
vo vi
=− LF
g m1 g m6 g ds 2 + g ds 2 g ds 6 + g ds 7
VSS EEL 6713 - Analog Integrated Circuit Design
25
IV.5 Cascade amplifiers Two-stage amplifiers - 2 CC
+ vi -
vx
GmI
Io2 -AdII
Io1
d ( vo − vx ) dvo dvo IT I o1 = CC ≅ CC → = dt dt dt CC Io2
dvo dvo I o2 − I o1 = I o1 + C L → = dt dt CL
The output node can be the SR limiting node*
vo CL
IT SR = ± CC I 6max − ( B + 1) I B + SRext ≅ > SR + CL ( B − 1) IT − SRext = − CL ±
*For a discussion, see Laker & Sansen, pp. 510-512 EEL 6713 - Analog Integrated Circuit Design
26
IV.5 Cascade amplifiers Two-stage amplifiers - 3 Amplitude x frequency limitation due to SR
dvo ≤ SR; dt
vo = A sin ω0t ;
dvo dt
= Aω0 ≤ SR max
Amplitude limitation
SR-limited slope
J. Dostál, Operational Amplifiers, 2nd. Ed., Butterworth-Heinemann, Boston, 1993.
EEL 6713 - Analog Integrated Circuit Design
27
IV.5 Cascade amplifiers Two-stage amplifiers - 4
A( s) Vo s = ( ) Vin 1 + A ( s) F ( s ) Determines the poles of the closed-loop system Allen & Holberg, 1st ed.
EEL 6713 - Analog Integrated Circuit Design
28
IV.5 Cascade amplifiers Two-stage amplifiers - 5 The op amp design must take into account both load and feedback loop
jω
s-plane x
p2
x
1 − RII CII
x
1 − RI CI
Allen & Holberg, 1st ed.
x
p1
σ
φM EEL 6713 - Analog Integrated Circuit Design
29
IV.5 Cascade amplifiers Two-stage amplifiers - 6 Response of second order system with various phase margins
Allen & Holberg, 1st ed.
EEL 6713 - Analog Integrated Circuit Design
30
IV.5 Cascade amplifiers Two-stage amplifiers - 7 Equivalent differential circuit
CC
vin
+
+
+ CI
RI
gmIvin
RII
gmIIvI
CII
g mI = g m1
vo -
-
-
RI = ( g ds 2 + g ds 4 )
vI
If CC→0, then −1
CI = Cdb 2 + Cdb 4 + Cgb 6 + Cgs 6
g mII = g m 6 RII = ( g ds 6 + g ds 7 )
Vo g mI g mII RI RII (s) ≅ − Vin (1 + sRI CI )(1 + sRII CII ) Poles relatively close → phase margin can be low or even negative !!!
−1
CII = Cdb 6 + Cdb 7 + CL
Exercise: Derive the transfer function Ad(s) of the compensated operational amplifier EEL 6713 - Analog Integrated Circuit Design
31
IV.5 Cascade amplifiers Two-stage amplifiers - 8 Compensated operational amplifier
Ad 0 (1 − s z ) Vo s = − ( ) Ad 0 = g mI g mII RI RII Vin (1 − s / p1 )(1 − s / p2 ) 1 1 p1 ≅ − ≅− RI ( CI + CC ) + RII ( CII + CC ) + g mII RI RII Cc g mII RI RII Cc
Ad ( s ) =
p2 ≅ −
g mII Cc g ≅ − mII CI CII + CC ( CI + CII ) CII
jω
z=
g mII Cc
s plane
pole splitting x
p2 Note:
x
1 − RII CII
x
1 − RI CI
2π GBW = Ad 0 p1 = g mI / CC SR = IT / CC
x z=
p1
SR = ( IT / g mI ) = nφt 2π GBW
EEL 6713 - Analog Integrated Circuit Design
σ
g mII Cc
(
)
1+ if +1
32
IV.5 Cascade amplifiers Two-stage amplifiers - 9 s-plane
σ z=
x
p1
x
p2
g mII Cc
2π GBW ≅
g m1 CC
jω
To avoid low phase margin, choose p2 , z > 2π GBW φM ≅
2π GBW π − tan −1 2 − p2
−1 2π GBW − tan z
g m1 (CI CII / CC + C I + CII ) g C m 6 C
g m1 g m 6 EEL 6713 - Analog Integrated Circuit Design
33
IV.5 Cascade amplifiers Two-stage amplifiers - 10 Simplified model for noise analysis (input-referred noise current source not accounted for)
2 enII
2 oI
vo
2 nI
v 2 e = Ad ∆f ∆f
2 2 voII 2 enII = AvII ∆f ∆f
enI2 compensation
Ad is the op amp voltage gain AvII is the voltage gain relative to the second noise source. For the calculation, account for the output impedance of the first stage and compensation network) Laker & Sansen’s book
EEL 6713 - Analog Integrated Circuit Design
34
IV.5 Cascade amplifiers Two-stage amplifiers - 11
1st stage
Ad
AvII
2nd stage
Open-loop output noise of a Miller OTA K. Laker and W. Sansen: Design of Analog Integrated Circuits and Systems, McGraw-Hill, 1994
NOTE: white noise only EEL 6713 - Analog Integrated Circuit Design
35
IV.5 Cascade amplifiers Two-stage amplifiers - 12 This connection reduces the feedforward current through C when comparing to connecting C to node Y
Two-stage CMOS op amp with a cascode current mirror load in the input stage P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th. Ed., Wiley, 2001.
EEL 6713 - Analog Integrated Circuit Design
36
IV.5 Cascade amplifiers Two-stage amplifiers - 13
CMOS two-stage op amp using nulling resistor compensation P. Allen and D. Holberg – CMOS Analog Circuit Design, 2nd. Ed., Oxford, New York, 2002.
EEL 6713 - Analog Integrated Circuit Design
37
IV.5 Cascade amplifiers Two-stage amplifiers - 14 CMOS two-stage op amp using nulling resistor compensation
p1 ≅ −
1 g mII RI RII Cc
g mII Cc g p2 ≅ − ≅ − mII CI CII + CC ( CI + CII ) CII
p3 = −
1 Rz CI
z=−
1 Cc ( Rz − 1/ g m 6 )
High-frequency pole
Placing z on top of p2:
Rz =
1 Cc + CII g m 6 Cc
1 Cc + CL ≅ g C m6 c
Determined by source/drain and gate voltages, and W/L P. Allen and D. Holberg – CMOS Analog Circuit Design, 2nd. Ed., Oxford, New York, 2002.
EEL 6713 - Analog Integrated Circuit Design
38
IV.5 Cascade amplifiers Two-stage amplifier: design equations - 1 VDD
1:1
SR = IT / CC
1:2B
M3
M6
M4
2π GBW = Ad 0 p1 = g mI / CC vo CL
CC inv
IT
+ vi -
M8 1:1
z=
noninv
M1
M2
M5 VSS
p2 ≅ −
g mII Cc g ≅ − mII CI CII + CC ( CI + CII ) CII
g mII Cc
Ad 0 = Ad 1 Ad 2 M7 1:B
g m1 Ad 1 = g ds 2 + g ds 4 gm6 Ad 2 = g ds 6 + g ds 7
EEL 6713 - Analog Integrated Circuit Design
39
IV.5 Cascade amplifiers Two-stage amplifier: design equations - 2 VDD
1:1
VICM max =
1:2B
M3
VICM min =
M6
M4
See diff. amp.
vo −VSS + VDSsat 7 < Vo < VDD − VDSsat 7 CL
CC inv
IT
+ vi -
noninv
M1
M8 1:1
M2
M5
CMRR, noise (white & 1/f), PSRR±, (random) offset voltage, M7 1:B
VSS EEL 6713 - Analog Integrated Circuit Design
40