Computation of Some Wonderful Results Involving Certain ... - IRJET

0 downloads 0 Views 1MB Size Report
the form of Hypergeometric function .The results ... systematic study of the Hypergeometric functions ..... Complex infinity may be returned by Mathematica, where.
International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

COMPUTATION OF SOME WONDERFUL RESULTS INVOLVING CERTAIN POLYNOMIALS Salahuddin1, Intazar Husain2 1

Assistant Professor, Applied Sciences, P.D.M College of engineering, Haryana, India 2 Assistant Professor, Applied Sciences, D. I. T. M. R, Haryana, India

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - In this paper we have established some indefinite integrals involving certain polynomials in the form of Hypergeometric function .The results represent here are assume to be new.

Key

Words:

Polynomials, number,

Hypergeometric Gegenbaur

Bernoulli

function,

Polynomials,

Polynomials,

and

The series converges for all finite z if A ≤ B, converges for │z│ B+1. Lucas Polynomials

Lucus

Hermonic Hermite

Polynomials. 1. Introduction The special function is one of the central branches of Mathematical sciences initiated by L’Euler .But systematic study of the Hypergeometric functions were initiated by C.F Gauss, an imminent German Mathematician in 1812 by defining the Hypergeometric series and he had also proposed notation for Hypergeometric functions. Since about 250 years several talented brains and promising Scholars have been contributed to this area. Some of them are C.F Gauss, G.H Hardy , S. Ramanujan ,A.P Prudnikov , W.W Bell , Yu. A Brychkov and G.E Andrews. We have the generalized Gaussian hypergeometric function of one variable

The Lucas polynomials are the w-polynomials obtained by setting p(x) = x and q(x) = 1 in the Lucas polynomials sequence. It is given explicitly by

Ln ( x)  2 n [( x  x 2  4 )n+ ( x  x 2  4 )n] (2) The first few are

L1 ( x)  x L2 ( x)  x 2  2

AFB(a1,a2,…,aA;b1,b2,…bB;z

)= (1)

where the parameters b1 , b2 , ….,bB are neither zero nor negative integers and A , B are non negative integers.

(3)

L3 ( x)  x3  3x L4 ( x)  x 4  4 x 2  2 Generalized Harmonic Number

The series converges for all finite z if A ≤ B, converges for │z│ B+1. © 2015, IRJET.NET- All Rights Reserved

Page 382

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

The generalized harmonic number of order n of m is given by

 te xt tn   Bn ( x) et  1 n  0 n!

(6)

n

1 m k 1 k

H n( m)  

Gegenbauer polynomials (4)

In the limit of n   the generalized harmonic number converges to the Riemann zeta function

lim H n ( m)   (m) n

In Mathematics, Gegenbauer polynomials or ultraspherical polynomials are orthogonal polynomials on the interval [1,1] with respect to the weight function

(5) 

Bernoulli Polynomial

(1  x 2 )

1 2

.They

generalize Legendre

polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer. Explicitly , n 2  

Cn ( ) ( x)   (1)k k 0

( n  k   ) (2 z )( n 2 k ) ( )k !(n  2k )! (7)

Laguerre polynomials

In mathematics, the Bernoulli polynomials occur in the study of many special functions and in particular the Riemann zeta function and Hurwitz zeta function. This is in large part because they are an Appell sequence, i.e. a Sheffer sequence for the ordinary derivative operator. Unlike orthogonal polynomials, the Bernoulli polynomials are remarkable in that the number of crossing of the x-axis in the unit interval does not go up as the degree of the polynomials goes up. In the limit of large degree, the Bernoulli polynomials, appropriately scaled, approach the sine and cosine functions. Explicit formula of Bernoulli polynomials is n

n! bn k x k , for n≥0, where bk are the k  0 k ! n  k  !

The Laguerre polynomials are the Laguerre differential equation

solutions

to

Bn ( x)  

xy '' (1  x) y '  y  0 , which is a special case of the

Bernoulli numbers.

more general associated Laguerre differential equation, defined by

The generating function for the Bernoulli polynomials is © 2015, IRJET.NET- All Rights Reserved

Page 383

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

xy '' (  1  x) y '  y  0 , where  and  are real

Legendre function of the first kind

numbers with  =0. The Laguerre polynomials are given by the sum

(1)k n! xk k ! k ! n  k !   k 0 n

Ln ( x)  

(8)

Hermite polynomials

The Legendre polynomials, sometimes called Legendre functions of the first kind, Legendre coefficients, or zonal harmonics (Whittaker and Watson 1990, p. 302), are solutions to the Legendre differential equation. If l is an integer, they are polynomials. The Legendre

Pn ( x)

polynomials The Hermite polynomials

H n ( x) are set of orthogonal

polynomials over the domain (-∞,∞) with weighting function

e x . 2

The Hermite polynomials

illustrated

above

and n=1, 2, ..., 5.

The Legendre polynomials

Pn ( x) can be defined by the

contour integral

H n ( x) can be defined by the

contour integral

H n ( z) 

for

are

2 n! e r  2 rz t  n1dt ,   2 i

Pn ( z ) 

1  1 2 2  n 1 (1  2 tz  t ) t dt , (10)  2 i 

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 1985, p. 416).

Where the contour incloses the origin and is traversed in a counterclockwise direction

Legendre function of the second kind

(Arfken 1985, p. 416). The first few Hermite polynomials are

H 0 ( x)  1 H1 ( x)  2 x H 2 ( x)  4 x 2  2

(9)

H3 ( x)  8x3  12 x H 4 ( x)  16 x 4  48x 2  12

© 2015, IRJET.NET- All Rights Reserved

The second solution to the Legendre differential equation. The Legendre functions of the second kind

Page 384

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

satisfy the same recurrence relation as the Legendre polynomials.

T1 ( x)  x

The first few are

Q0 ( x) 

T0 ( x)  1

1 1 x ln( ) 2 1 x

Q1 ( x) 

x 1 x ln( )-1 2 1 x

Q2 ( x) 

3x 2  1 1  x 3 x ln( )4 1 x 2

T2 ( x)  2 x 2  1

T3 ( x)  4 x3  3x (11)

A beautiful plot can be obtained by plotting radially, increasing the radius for each value of n , and filling in the areas between the curves (Trott 1999, pp. 10 and 84).

Chebyshev polynomial of the first kind

The Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted . They are used as an approximation to a least squares fit, and are a special case of the Gegenbauer polynomial with . They are also intimately connected with trigonometric multiple-angle formulas. The Chebyshev polynomial of the first kind defined by the contour integral

1 (1  t 2 )t  n1 Tn ( z )   1  2tz  t 2 dt , 4 i 

The Chebyshev polynomials of the first kind are defined through the identity Tn(cos θ)=cos nθ. Chebyshev polynomial of the second kind

can be

(12)

where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 1985, p. 416). The first few Chebyshev polynomials of the first kind are

© 2015, IRJET.NET- All Rights Reserved

Page 385

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

E0 ( x)  1 A modified set of Chebyshev polynomials defined by a slightly different generating function. They arise in the development of four-dimensional spherical harmonics in angular momentum theory. They are a special case of the Gegenbauer polynomial with . They are also intimately connected with trigonometric multiple-angle formulas. The first few Chebyshev polynomials of the second kind are

E1 ( x)  x 

1 2

E2 ( x)  x 2  x

E3 ( x)  x3 

(15)

3 2 1 x  2 4

Generalized Riemann zeta function

U 0 ( x)  1 U1 ( x)  2 x

(13)

U 2 ( x)  4 x 2  1 U 3 ( x)  8 x 3  4 x Euler polynomial

The Euler polynomial sequence with

g (t ) 

is given by the Appell

1 t (e  1) , 2

giving the generating function

2e xt  et  1



 En ( x) n 0

The first few Euler polynomials are © 2015, IRJET.NET- All Rights Reserved

tn . n!

(14)

The Riemann zeta function is an extremely important special function of mathematics and physics that arises in definite integration and is intimately related with very deep results surrounding the prime number theorem. While many of the properties of this function have been investigated, there remain important fundamental conjectures (most notably the Riemann hypothesis) that remain unproved to this day. The Riemann zeta function is defined over the complex

Page 386

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

plane for one complex variable, which is conventionally denoted s (instead of the usual ) in deference to the notation used by Riemann in his 1859 paper that founded the study of this function (Riemann 1859).

for is not a coincidence since it turns out that monotonic decrease implies the Riemann hypothesis (Zvengrowski and Saidak 2003; Borwein and Bailey 2003, pp. 95-96). On the real line with , the Riemann zeta function can be defined by the integral

 ( x) 

1  u x 1 du , where ( x) is the gamma ( x) 0 eu  1

function. Complex infinity

The of the

plot ridges

above for appear

Complex infinity is an infinite number in the complex plane whose complex argument is unknown or undefined. Complex infinity may be returned by Mathematica, where it is represented symbolically by ComplexInfinity. The Wolfram Functions Site uses the notation to represent complex infinity.

shows the "ridges" and . The fact that to decrease monotonically

2. MAIN RESULTS 1

x x  L1 ( x)(1  e ) n dx  n(e  1)



1 n

1

(e x  1) n [ x{2 F1 ( 

1 1 n 1 , ; ; e  x )} n n n

1 1 1 n 1 n 1 n{3 F2 (  ,  ,  ; , ; e  x )}]  C n n n n n

(17)

Here L1(x) is Lucas Polynomials.

H

( x) 1

1 n

sin ( x)dx   cos( x)sin

n 1 2

2

( x)sin ( x)

1 1 (  1) 2 n 2

1 1 1 3 F1 ( , (1  ); ;cos 2 ( x))  C 2 2 n 2

(18)

Here H1( x ) is Generalized Harmonic number. 1

   x sin n ( x)dx    C

(19)

Here ζ(x) is Generalized Riemann zeta function.

© 2015, IRJET.NET- All Rights Reserved

Page 387

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

1 1 1 ; (3  );sin 2 ( x))} 2n 2 n  H1 ( x) sin ( x)dx  sin ( x)[ 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n 1 n

1 1 n

2 x cos( x){2 F1 (1,1 

(20)

Here H1 (x) is Hermite polynomials.

1 1 1 ; (3  );sin 2 ( x))} 2n 2 n  U1 ( x) sin ( x)dx  sin ( x)[ 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n 1 n

1 1 n

2 x cos( x){2 F1 (1,1 

(21)

Here U1 (x) is Chebyshev polynomial of the second kind.

1 1 1 ; (3  );sin 2 ( x))} 2n 2 n 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n 1 n

1 1n 1 T ( x ) sin ( x ) dx  sin ( x)[ 1 2

2 x cos( x){2 F1 (1,1 

(22)

Here T1 (x) is Chebyshev polynomial of the first kind.

1 1 1 ; (3  );sin 2 ( x))} 2n 2 n 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n 1 n

1 1n 1 P ( x ) sin ( x ) dx  sin ( x)[ 1 2

2 x cos( x){2 F1 (1,1 

(23)

Here P1 (x) is Legendre function of the first kind.

 H ( x)sec 1

1 n

( x)dx  sin( x) cos ( x) 2

1

n 1 2n

1

sec

1 n

1 1 ( 1) n

( x) 2  H1 cos ec n ( x)dx   cos( x)sin ( x) 2

© 2015, IRJET.NET- All Rights Reserved

1 1 1 3 ( x){2 F1 ( , (1  ); ;sin 2 ( x))}  C 2 2 n 2

(24)

1 1 1 1 1 3 cos ec n ( x)2 F1 ( , (1  ); ;cos 2 ( x))  C (25) 2 2 n 2

Page 388

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

1 1 1 ; (3  );sin 2 ( x))} 1 2n 2 n  F1 ( x) sin ( x)dx  2 sin ( x)[ 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n

(26)

1 1 1 ; (3  );sin 2 ( x))} 2n 2 n 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n

(27)

1 1 1 ; (3  );sin 2 ( x))} 2n 2 n  C1 ( x) sin ( x)dx  sin ( x)[ 1 1 n 1   1 1 1 1 1 1 1   2 n (1  ) sin( x){3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x))}]  C n 2n 2n 2 n 2n

(28)

1 n

2 x cos( x){2 F1 (1,1 

1 1 n

1 n

1 1n 1 L ( x ) sin ( x ) dx  sin ( x)[  1 2

1 n

1 1 n

2 x cos( x){2 F1 (1,1 

2 x cos( x){2 F1 (1,1 

Here C1 (x) is Gegenbauer polynomials. 1

1 1 1  1 1 1 cos n ( x)[  ( 2 n )(1  ) cos( x) 2 n  1 1 1 1 1 *3 F 2 (1,1  ,1  ; (3  ), 2  ; cos 2 ( x)) 2n 2n 2 n 2n 1 1 1 2 x sin( x){2 F1 (1,1  ; (3  ); cos 2 ( x))} 2n 2 n  1 1 n 1 1 1 1 1 1 1 sin( x) cos n ( x){2 F1 ( , (1  ); (3  ); cos 2 ( x) 2 2 n 2 n  C 1 2 2(1  ) sin ( x ) n

 B1 ( x) cos n ( x)dx 

(29)

Here B1 (x) is Bernoulli Polynomial. 1

1 1 1 1 1 1 sin( x) cos n ( x)2 F1 ( , (1  ); (3  );cos 2 ( x) ( x) 2 2 n 2 n C .  H1 cos ( x)dx  1 (1  ) sin 2 ( x) n 1 n

© 2015, IRJET.NET- All Rights Reserved

(30)

Page 389

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

1 n

1 1 1  1 1 1 n  L1 ( x) sin ( x)dx   2 sin ( x)[  2 n (1  n ) sin( x)  1 1 1 1 1 *3 F 2 (1,1  ,1  ; (3  ), 2  ; sin 2 ( x)) 2n 2n 2 n 2n n 1  1 n 1 3 2 cos( x) sin 2 ( x) 2 n 2 F1 ( , ; ; cos 2 ( x)) 2 2n 2 1 1 1 2nx cos( x) 2 F1 (1,1  ; (3  ); sin 2 ( x)) 2n 2 n  ]C n 1

(31)

Here L1(x) is Laguerre polynomials. 1 n

1 1 1 1 1 1 n n B ( x ) cos ec ( x ) dx  cos ec ( x )[  (  2 )(1  ) sin( x) 1  2 n  1 1 1 1 1 *3 F 2 (1,1  ,1  ; (3  ), 2  ;sin 2 ( x)) 2n 2n 2 n 2n 1 1 ( 1) 1 1 1 3  cos( x) sin 2 ( x) 2 n 2 F1 ( , (1  ); ; cos 2 ( x)) 2 2 n 2 1 1 1 2nx cos( x) 2 F1 (1,1  ; (3  );sin 2 ( x)) 2n 2 n  ]C n 1

REFERENCES [1] A. P. Prudnikov, O. I. Marichev, , and Yu. A. Brychkov, Integrals and Series, Vol. 3: More Special Functions., NJ:Gordon and Breach, 1990. [2] G. Arfken, Mathematical Methods for Physicists, Orlando, FL: Academic Press. [3] L.C. Andrews, Special Function of mathematics for Engineers,Second Edition,McGraw-Hill Co Inc., New York, 1992. [4] Milton Abramowitz, Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1965. [5]. Richard Bells, , Roderick Wong, Special Functions , A Graduate Text, Cambridge Studies in Advanced Mathematics, 2010. [6] T. J. Rivlin, Chebyshev Polynomials., New York: Wiley, 1990.

© 2015, IRJET.NET- All Rights Reserved

[7] Wikipedia(2013,October), Retrived from website:http: /Bernoulli_polynomials.

(32)

Bernoulli Polynomials. //en.wikipedia.org/wiki

[8] Wikipedia(2013,October), Gegenbaur Polynomials. Retrived from website: http: //en.wikipedia.org /wiki /Gegenbauer_polynomials. [9] WolframMathworld(2013,October),Riemann Zeta function. Retrived from website: http: //mathworld.wolfram.com /RiemannZetaFunction.html. [10] WolframMathworld(2013,October), Harmonic Number . Retrived from website: http: //mathworld.wolfram.com/HarmonicNumber.html. [11]WolframMathworld(2013,October), LaguerrePolynomials. Retrived from website: http://mathworld.wolfram.com/LaguerrePolynomial.html . [12] WolframMathworld(2013,October), Hermite Polynomials. Retrived from website: http://mathworld.wolfram.com/HermitePolynomial.html.

Page 390

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395 -0056

Volume: 02 Issue: 01 | Apr-2015

p-ISSN: 2395-0072

www.irjet.net

[13]WolframMathworld(2013,October),Legendre Polynomial. Retrived from website: http://mathworld.wolfram.com/LegendrePolynomial.htm

[15] WolframMathworld(2013,October), Lucas polynomials. Retrived from website: http://mathworld.wolfram.com/LucasPolynomials.html.

[14]WolframMathworld(2013,October), Chebyshev Polynomial of the first kind. Retrived from website: http://mathworld.wolfram.com/ChebyshevPolynomialoft heFirstKind.html.

© 2015, IRJET.NET- All Rights Reserved

Page 391

Suggest Documents