Hindawi Publishing Corporation ξ e Scientiο¬c World Journal Volume 2014, Article ID 174126, 11 pages http://dx.doi.org/10.1155/2014/174126
Research Article Certain Inequalities Involving Generalized ErdΓ©lyi-Kober Fractional π-Integral Operators Praveen Agarwal,1 Soheil Salahshour,2 Sotiris K. Ntouyas,3 and Jessada Tariboon4 1
Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 3 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece 4 Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkutβs University of Technology North Bangkok, Bangkok 10800, Thailand 2
Correspondence should be addressed to Jessada Tariboon;
[email protected] Received 21 June 2014; Accepted 26 August 2014; Published 11 September 2014 Academic Editor: Junesang Choi Copyright Β© 2014 Praveen Agarwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In recent years, a remarkably large number of inequalities involving the fractional π-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized ErdΒ΄elyiKober fractional π-integral operator due to GauluΒ΄e, whose special cases are shown to yield corresponding inequalities associated with Kober type fractional π-integral operators. The cases of synchronous functions as well as of functions bounded by integrable functions are considered.
for any π₯, π¦ β [π, π], then we have (see, e.g., [2, 3])
1. Introduction Let us start by considering the following functional (see [1]): π (π, π, π, π) π
= β« π (π₯) ππ₯ β« π (π₯) π (π₯) π (π₯) ππ₯ π
π
π
π
π
(π (π₯) β π (π¦)) (π (π₯) β π (π¦)) β€ 0,
+ β« π (π₯) ππ₯ β« π (π₯) π (π₯) π (π₯) ππ₯ π
π
π
π
(1)
β (β« π (π₯) π (π₯) ππ₯) (β« π (π₯) π (π₯) ππ₯) π
π
π
π
β (β« π (π₯) π (π₯) ππ₯) (β« π (π₯) π (π₯) ππ₯) , where π, π : [π, π] β R are two integrable functions on [π, π] and π(π₯) and π(π₯) are positive integrable functions on [π, π]. If π and π are synchronous on [π, π], that is, (π (π₯) β π (π¦)) (π (π₯) β π (π¦)) β₯ 0,
(3)
The inequality in (2) is reversed if π and π are asynchronous on [π, π]; that is,
π
π
π (π, π, π, π) β₯ 0.
(2)
(4)
for any π₯, π¦ β [π, π]. If π(π₯) = π(π₯) for any π₯, π¦ β [π, π], we get the Chebyshev inequality (see [1]). Ostrowski [4] established the following generalization of the Chebyshev inequality. If π and π are two differentiable and synchronous functions on [π, π] and π is a positive integrable function on [π, π] with |πσΈ (π₯)| β₯ π and |πσΈ (π₯)| β₯ π for π₯ β [π, π], then we have π (π, π, π) = π (π, π, π, π) β₯ πππ (π₯ β π, π₯ β π, π) β₯ 0. (5) If π and π are asynchronous on [π, π], then we have π (π, π, π) β€ πππ (π₯ β π, π₯ β π, π) β€ 0.
(6)
2
The Scientific World Journal
If π and π are two differentiable functions on [π, π] with |πσΈ (π₯)| β€ π and |πσΈ (π₯)| β€ π
for π₯ β [π, π] and π is a positive integrable function on [π, π], then we have σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π (π, π, π)σ΅¨σ΅¨σ΅¨ β€ ππ
π (π₯ β π, π₯ β π, π) β€ 0.
(7)
Here, it is worth mentioning that the functional (1) has attracted many researchersβ attention mainly due to diverse applications in numerical quadrature, transform theory, probability, and statistical problems. Among those applications, the functional (1) has also been employed to yield a number of integral inequalities (see, e.g., [5β11]). The study of the fractional integral and fractional πintegral inequalities has been of great importance due to the fundamental role in the theory of differential equations. In recent years, a number of researchers have done deep study, that is, the properties, applications, and different extensions of various fractional π-integral operators (see, e.g., [12β16]). The purpose of this paper is to find π-calculus analogs of some classical integral inequalities. In particular, we will find π-generalizations of the Chebyshev integral inequalities by using the generalized ErdΒ΄elyi-Kober fractional π-integral operator introduced by GaluΒ΄e [17]. The main objective of this paper is to present some new fractional π-integral inequalities involving the generalized ErdΒ΄elyi-Kober fractional π-integral operator. We consider the case of synchronous functions as well as the case of functions bounded by integrable functions. Some of the known and new results are as follows, as special cases of our main findings. We emphasize that the results derived in this paper are more generalized results rather than similar published results because we established all results by using the generalized ErdΒ΄elyi-Kober fractional πintegral operator. Our results are general in character and give some contributions to the theory π-integral inequalities and fractional calculus.
1, (π = 0) { { πβ1 (π; π)π := { {β (1 β πππ ) , (π β N) , { π=0
1 (1 β ππβ1 ) (1 β ππβ2 ) β
β
β
(1 β ππβπ )
(9)
(π β N0 ) . We also write
π=0
(π β Z) ,
(πππ ; π)β
σ΅¨ σ΅¨ (π, π β C; σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ < 1) .
(10)
(11)
which can be extended to π = πΌ β C as follows: (π; π)πΌ =
(π; π)β
(πππΌ ; π)β
σ΅¨ σ΅¨ (πΌ β C; σ΅¨σ΅¨σ΅¨πσ΅¨σ΅¨σ΅¨ < 1) ,
(12)
where the principal value of ππΌ is taken. We begin by noting that F. J. Jackson was the first to develop π-calculus in a systematic way. For 0 < π < 1, the π-derivative of a continuous function π on [0, π] is defined by π·π π (π‘) :=
ππ ππ π‘
π (π‘) =
π (π‘) β π (ππ‘) , (1 β π) π‘
π‘ β (0, π] ,
(13)
and π·π π(0) = limπ‘ β 0 π·π π(π‘). It is noted that lim π·π π (π‘) =
πβ1
π π (π‘) , ππ‘
(14)
if π(π‘) is differentiable. The function πΉ(π‘) is a π-antiderivative of π(π‘) if π·π πΉ(π‘) = π(π‘). It is denoted by β« π (π‘) ππ π‘.
(15)
The Jackson integral of π(π‘) is thus defined, formally, by β
β« π (π‘) ππ π‘ := (1 β π) π‘β ππ π (ππ π‘) , π=0
(16)
which can be easily generalized as follows: β
(17)
Suppose that 0 < π < π. The definite π-integral is defined as follows: π
β
0
π=0
β« π (π‘) ππ π‘ := (1 β π) π βππ π (ππ π) ,
(8)
where π, π β C and it is assumed that π =ΜΈ πβπ (π β N0 ). The π-shifted factorial for negative subscript is defined by
β
(π; π)β
π=0
In the sequel, we required the following well-known results to establish our main results in the present paper. The π-shifted factorial (π; π)π is defined by
(π; π)β := β (1 β πππ )
(π; π)π =
β« π (π‘) ππ π (π‘) = βπ (ππ π‘) (π (ππ π‘) β π (ππ+1 π‘)) .
2. Preliminaries
(π; π)βπ :=
It follows from (8), (9), and (10) that
π
π
π
π
0
0
β« π (π‘) ππ π‘ = β« π (π‘) ππ π‘ β β« π (π‘) ππ π‘.
(18)
(19)
A more general version of (18) is given by π
β
0
π=0
β« π (π‘) ππ π (π‘) = βπ (ππ π) (π (ππ π) β π (ππ+1 π)) . (20) The classical Gamma function Ξ(π§) (see, e.g., [18, Section 1.1]) was found by Euler while he was trying to extend the factorial π! = Ξ(π + 1)(π β N0 ) to real numbers. The πfactorial function [π]π ! (π β N0 ) of π! defined by [π]π ! := {
1, if π = 0, [π]π [π β 1]π β
β
β
[2]π [1]π , if π β N,
(21)
The Scientific World Journal
3 On the same way each term in the series of Kober πintegral operator (27) is also nonnegative and thus
can be rewritten as follows: βπ
β
(1 β π) β
(1 β π
π=0 (1 β
π+1
)
(π; π)β
=
ππ+1+π )
βπ
(ππ+1 ; π)β
(1 β π)
:= Ξπ (π + 1)
(0 < π < 1) .
Replacing π by π β 1 in (22), Jackson [19] defined the πGamma function Ξπ (π) by Ξπ (π) :=
(π; π)β
1βπ
(ππ ; π)β
(1 β π)
(0 < π < 1) .
(23)
The π-analogue of (π‘ β π)π is defined by the polynomial 1, (π = 0) (π‘ β π)(π) := { (π‘ β π) (π‘ β ππ) β
β
β
(π‘ β ππβ1 π) , (π β N) , π = π‘ ( ; π) π‘ π π
(π β N0 ) . (24)
More generally, if πΎ β R, then β
1 β (π/π‘) π , πΎ+π 1 π=0 β (π/π‘) π
for all π > 0 and π β C.
3. Inequalities Involving a Generalized ErdΓ©lyi-Kober Fractional π-Integral Operator for Synchronous Functions This section begins by presenting two inequalities involving generalized ErdΒ΄elyi-Kober π-integral operator (26) stated in Lemmas 4 and 5 below. Lemma 4. Let 0 < π < 1, let π and π be two continuous and synchronous functions on [0, β), and let π’, V : [0, β) β [0, β) be continuous functions. Then, the following inequality holds true:
π‘ =ΜΈ 0.
(25)
+ πΌππ,π,π½ {V} (π‘) πΌππ,π,π½ {π’ππ} (π‘)
Definition 1. Let R(π½), R(π) > 0 and π β C. Then a generalized ErdΒ΄elyi-Kober fractional integral πΌππΌ,π½,π for a real-valued continuous function π(π‘) is defined by (see, [17]) πΌππ,π,π½
β₯ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
for all π, π½ > 0 and π β C.
(πβ1) π½(π+1)β1 π½π‘βπ½(π+π) π‘ π½ π π (π) ππ π β« (π‘ β ππ½ π) Ξπ (π) 0 πβ1
= π½ (1 β π1/π½ ) (1 β π)
β
β π=0
(ππ ; π)π (π; π)π
ππ(π+1) π (π‘ππ/π½ ) . (26)
Definition 2. A π-analogue of the Kober fractional integral operator is given by (see, [20]) πΌππ,π {π} (π‘) : = (πΌππ,π,1 {π} (π‘)) =
π‘βπβπ π‘ (πβ1) π π π (π) ππ π, β« (π‘ β ππ) Ξπ (π) 0
(31)
+ πΌππ,π,π½ {Vπ} (π‘) πΌππ,π,π½ {π’π} (π‘) ,
{π} (π‘) =
(30)
πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vππ} (π‘)
π
(π‘ β π)(πΎ) := π‘πΎ β
πΌππ,π {π} (π‘) β₯ 0,
(22)
Proof. Let π and π be two continuous and synchronous functions on [0, β). Then, for all π, π β (0, π‘) with π‘ > 0, we have (π (π) β π (π)) (π (π) β π (π)) β₯ 0, or, equivalently, π(π) π (π) + π (π) π (π) β₯ π (π) π (π) + π (π) π (π) .
(27)
(π > 0; π β C; 0 < π < 1) .
(32)
(33)
Now, multiplying both sides of (33) by (π½π‘βπ½(π+π) / Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 π’(π), integrating the resulting inequality with respect to π from 0 to π‘, and using (26), we get
Remark 3. It is easy to see that Ξπ (π) > 0;
(ππ ; π)π > 0,
(28)
for all π > 0 and π β N0 . If π : [0, β) β [0, β) is a continuous function, then we conclude that, under the given conditions in (26), each term in the series of generalized ErdΒ΄elyi-Kober π-integral operator is nonnegative and thus πΌππ,π,π½ {π} (π‘) β₯ 0, for all π½, π > 0 and π β C.
(29)
πΌππ,π,π½ {π’ππ} (π‘) + π (π) π (π) πΌππ,π,π½ {π’} (π‘) β₯ π (π) πΌππ,π,π½ {π’π} (π‘) + π (π) πΌππ,π,π½ {π’π} (π‘) .
(34)
Next, multiplying both sides of (34) by (π½π‘βπ½(π+π) / Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 V(π), integrating the resulting inequality with respect to π from 0 to π‘, and using (26), we are led to the desired result (31).
4
The Scientific World Journal
Lemma 5. Let 0 < π < 1, let π and π be two continuous and synchronous functions on [0, β), and let π’, V : [0, β) β [0, β) be continuous functions. Then, the following inequality holds true: πΌππ,],πΏ {V} (π‘) πΌππ,π,π½ {π’ππ} (π‘)
β₯ πΌππ,],πΏ {Vπ} (π‘) πΌππ,π,π½ {π’π} (π‘)
(35)
Proof. Multiplying both sides of (34) by (]β1) πΏ(π+1)β1 πΏπ‘βπΏ(π+]) πΏ π V (π) , (π‘ β ππΏ π) Ξπ (])
(36)
which remains nonnegative under the conditions in (35), integrating the resulting inequality with respect to π from 0 to π‘, and using (26), we get the desired result (35). Theorem 6. Let 0 < π < 1, let π and π be two continuous and synchronous functions on [0, β), and let π, π, π : [0, β) β [0, β) be continuous functions. Then, the following inequality holds true: 2πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
(37)
+ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘) + πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)]
(41)
Theorem 7. Let 0 < π < 1, let π and π be two continuous and synchronous functions on [0, β), and let π, π, π : [0, β) β [0, β) be continuous functions. Then, the following inequality holds true:
+ πΌππ,π,π½ {π} (π‘) πΌππ,],πΏ {πππ} (π‘)
+ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
+ πΌππ,],πΏ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)]
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)] ,
+ πΌππ,π,π½ {πππ} (π‘) [πΌππ,π,π½ {π} (π‘) πΌππ,],πΏ {π} (π‘)
for all π, π½ > 0 and π β C.
+ πΌππ,π,π½ {π} (π‘) πΌππ,],πΏ {π} (π‘)]
Proof. By setting π’ = π and V = π in Lemma 4, we get
β₯ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,],πΏ {ππ} (π‘)
πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘) .
(40)
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)] ,
πΌππ,π,π½ {π} (π‘) [2πΌππ,π,π½ {π} (π‘) πΌππ,],πΏ {πππ} (π‘)
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)]
β₯ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
β₯ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
Finally, by adding (39), (40), and (41), side by side, we arrive at the desired result (37).
{ππ} (π‘)
+ πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
+ πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)]
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)] .
+ 2πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)]
(39)
πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
β₯ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
+ πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)]
β₯
β₯ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
Similarly replacing π’, V by π, π and π’, V by π, π, respectively, in (31) and then multiplying both sides of the resulting inequalities by πΌππ,π,π½ {π}(π‘) and πΌππ,π,π½ {π}(π‘) both of which are nonnegative under the given assumptions, respectively, we get the following inequalities:
for all π, ], π½, πΏ > 0 and π, π β C.
{ππ} (π‘) πΌππ,π,π½
πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)] .
+ πΌππ,],πΏ {Vπ} (π‘) πΌππ,π,π½ {π’π} (π‘) ,
{π} (π‘) [πΌππ,π,π½
both sides of (38) by πΌππ,π,π½ {π}(π‘), we have
+ πΌππ,π,π½ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)]
+ πΌππ,],πΏ {Vππ} (π‘) πΌππ,π,π½ {π’} (π‘)
πΌππ,π,π½
Since πΌππ,π,π½ {π}(π‘) β₯ 0 under the given conditions, multiplying
(38)
+ πΌππ,π,π½ {ππ} (π‘) πΌππ,],πΏ {ππ} (π‘)] + πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,],πΏ {ππ} (π‘) + πΌππ,π,π½ {ππ} (π‘) πΌππ,],πΏ {ππ} (π‘)]
The Scientific World Journal
5
+ πΌππ,π,π½ {π} (π‘) [πΌππ,π,π½ {ππ} (π‘) πΌππ,],πΏ {ππ} (π‘) + πΌππ,π,π½ {ππ} (π‘) πΌππ,],πΏ {ππ} (π‘)] , (42) for all π, ], π½, πΏ > 0 and π, π β C.
Corollary 10. Let 0 < π < 1, let π and π be two continuous and synchronous functions on [0, β), and let π, π, π : [0, β) β [0, β) be continuous functions. Then, the following inequality holds true:
Proof. Setting π’ = π and V = π in (35), we have πΌππ,],πΏ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
2πΌππ,π {π} (π‘) [πΌππ,π {π} (π‘) πΌππ,π {πππ} (π‘)
+ πΌππ,],πΏ {πππ} (π‘) πΌππ,π,π½ {π} (π‘)
(43)
β₯ πΌππ,],πΏ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘) +
πΌππ,],πΏ
{ππ} (π‘) πΌππ,π,π½
Multiplying both sides of (43) by simplification, we get
+ πΌππ,π {π} (π‘) πΌππ,π {πππ} (π‘)] + 2πΌππ,π {π} (π‘) πΌππ,π {π} (π‘) πΌππ,π {πππ} (π‘)
{ππ} (π‘) .
πΌππ,π,π½ {π}(π‘),
Remark 9. We remark further that we can present a large number of special cases of our main inequalities in Theorems 6 and 7. Here, we give only two examples: setting π½ = 1 in (37) and π½ = πΏ = 1 in (42), we obtain interesting inequalities involving ErdΒ΄elyi-Kober fractional integral operator.
after a little
β₯ πΌππ,π {π} (π‘) [πΌππ,π {ππ} (π‘) πΌππ,π {ππ} (π‘) + πΌππ,π {ππ} (π‘) πΌππ,π {ππ} (π‘)] + πΌππ,π {π} (π‘) [πΌππ,π {ππ} (π‘) πΌππ,π {ππ} (π‘)
πΌππ,π,π½ {π} (π‘) [πΌππ,],πΏ {π} (π‘) πΌππ,π,π½ {πππ} (π‘) + πΌππ,],πΏ {πππ} (π‘) πΌππ,π,π½ {π} (π‘)] β₯ πΌππ,π,π½ {π} (π‘) [πΌππ,],πΏ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)
+ πΌππ,π {ππ} (π‘) πΌππ,π {ππ} (π‘)] (44)
+ πΌππ,π {π} (π‘) [πΌππ,π {ππ} (π‘) πΌππ,π {ππ} (π‘) + πΌππ,π {ππ} (π‘) πΌππ,π {ππ} (π‘)] ,
+ πΌππ,],πΏ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)] . Now, by replacing π’, V by π, π and π’, V by π, π in (35), respectively, and then multiplying both sides of the resulting inequalities by πΌππ,π,π½ {π}(π‘) and πΌππ,π,π½ {π}(π‘), respectively, we get the following two inequalities: πΌππ,π,π½ {π} (π‘) [πΌππ,],πΏ {π} (π‘) πΌππ,π,π½ {πππ} (π‘)
{π} (π‘) [πΌππ,],πΏ +
β₯
πΌππ,π,π½
{π} (π‘) πΌππ,π,π½
πΌππ,],πΏ
{πππ} (π‘)
{πππ} (π‘) πΌππ,π,π½
{π} (π‘) [πΌππ,],πΏ +
πΌππ,],πΏ
+ πΌππ,] {π} (π‘) πΌππ,π {πππ} (π‘)] (45)
{π} (π‘)]
{ππ} (π‘) πΌππ,π,π½
{ππ} (π‘)
{ππ} (π‘) πΌππ,π,π½
Corollary 11. Let 0 < π < 1, let π and π be two continuous and synchronous functions on [0, β), and let π, π, π : [0, β) β [0, β) be continuous functions. Then, the following inequality holds true:
+ πΌππ,π {π} (π‘) πΌππ,] {πππ} (π‘)
β₯ πΌππ,π,π½ {π} (π‘) [πΌππ,],πΏ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘) + πΌππ,],πΏ {ππ} (π‘) πΌππ,π,π½ {ππ} (π‘)] ,
for all π > 0 and π β C.
πΌππ,π {π} (π‘) [2πΌππ,π {π} (π‘) πΌππ,] {πππ} (π‘)
+ πΌππ,],πΏ {πππ} (π‘) πΌππ,π,π½ {π} (π‘)]
πΌππ,π,π½
(46)
{ππ} (π‘)] .
Finally, we find that the inequality (42) follows by adding the inequalities (44) and (45), side by side. Remark 8. It may be noted that inequalities (37) and (42) in Theorems 6 and 7, respectively, are reversed if the functions are asynchronous on [0, β). The special case of (42) in Theorem 7 when π½ = πΏ, π = π, and π = ] is easily seen to yield inequality (37) in Theorem 6.
+ πΌππ,π {πππ} (π‘) [πΌππ,π {π} (π‘) πΌππ,] {π} (π‘) + πΌππ,π {π} (π‘) πΌππ,] {π} (π‘)] β₯ πΌππ,π {π} (π‘) [πΌππ,π {ππ} (π‘) πΌππ,] {ππ} (π‘) + πΌππ,π {ππ} (π‘) πΌππ,] {ππ} (π‘)] + πΌππ,π {π} (π‘) [πΌππ,π {ππ} (π‘) πΌππ,] {ππ} (π‘) + πΌππ,π {ππ} (π‘) πΌππ,] {ππ} (π‘)] + πΌππ,π {π} (π‘) [πΌππ,π {ππ} (π‘) πΌππΎ,πΏ {ππ} (π‘) + πΌππ,π {ππ} (π‘) πΌππ,] {ππ} (π‘)] , for all π, ] > 0 and π, π β C.
(47)
6
The Scientific World Journal
Remark 12. If we take π = 0 and π½ = 1 in Theorem 6 and π = π = 0 and π½ = πΏ = 1 in Theorem 7, then we obtain the known results due to Dahmani [21].
4. Inequalities Involving a Generalized ErdΓ©lyi-Kober Fractional π-Integral Operator for Bounded Functions In this section we obtain some new inequalities involving ErdΒ΄elyi-Kober fractional π-integral operator in the case where the functions are bounded by integrable functions and are not necessary increasing or decreasing as are the synchronous functions. Theorem 13. Let 0 < π < 1, let π be an integrable function on [0, β), and let π’, V : [0, β) β [0, β) be continuous functions. Assume the following. (π»1 ) There exist two integrable functions π1 , π2 on [0, β) such that π1 (π‘) β€ π (π‘) β€ π2 (π‘) ,
βπ‘ β [0, β) .
(48)
As special cases of Theorems 13, we obtain the following results. Corollary 14. Let 0 < π < 1, let π be an integrable function on [0, β) satisfying π β€ π(π‘) β€ π, for all π‘ β [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π, π β R. Then, for π‘ > 0, π, π½ > 0, and π β C, we have ππΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ} (π‘) + ππΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘) β₯ πππΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {V} (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) . Corollary 15. Let 0 < π < 1, let π be an integrable function on [1, β), and let π’, V : [0, β) β [0, β) be continuous functions. Assume that there exists an integrable function π(π‘) on [0, β) and a constant π > 0 such that π (π‘) β π β€ π (π‘) β€ π (π‘) + π, for all π‘ > 0, π, π½ > 0, and π β C; we have
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + β₯
πΌππ,π,π½
{π’π} (π‘) πΌππ,π,π½
{π’π2 } (π‘) πΌππ,π,π½
{Vπ1 } (π‘)
{Vπ1 } (π‘)
+ ππΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ} (π‘) + ππΌππ,π,π½ {V} (π‘) πΌππ,π,π½ {π’π} (π‘)
(49)
+ π2 πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {V} (π‘)
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) .
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) (50)
+ ππΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ} (π‘)
Therefore,
+ ππΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘) . π2 (π) π (π) + π1 (π) π (π) β₯ π1 (π) π2 (π) + π (π) π (π) .
(51)
Multiplying both sides of (51) by (π½π‘βπ½(π+π) /Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 π’(π), π β (0, π‘), and integrating both sides with respect to π on (0, π‘), we obtain πΌππ,π,π½
(55)
β₯ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
Proof. From (π»1 ), for all π β₯ 0 and π β₯ 0, we have (π2 (π) β π (π)) (π (π) β π1 (π)) β₯ 0.
(54)
πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
Then, for π‘ > 0, π, π½ > 0, and π β C, we have
πΌππ,π,π½
(53)
{π’π2 } (π‘) π (π) +
πΌππ,π,π½
{π’π} (π‘) π1 (π)
β₯ πΌππ,π,π½ {π’π2 } (π‘) π1 (π) + πΌππ,π,π½ {π’π} (π‘) π (π) .
Theorem 16. Let 0 < π < 1, let π be an integrable function on [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π1 , π2 > 0 satisfying 1/π1 + 1/π2 = 1. Suppose that (π»1 ) holds. Then, for π‘ > 0, π, π½ > 0, and π β C, we have 1 π,π,π½ π πΌ {V} (π‘) πΌππ,π,π½ {π’(π2 β π) 1 } (π‘) π1 π +
(52)
Multiplying both sides of (52) by (π½π‘βπ½(π+π) /Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 V(π), π β (0, π‘), and integrating both sides with respect to π on (0, π‘), we get inequality (49) as requested. This completes the proof.
1 π,π,π½ π πΌ {π’} (π‘) πΌππ,π,π½ {V(π β π1 ) 2 } (π‘) π2 π
+ πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) β₯ πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘) .
(56)
The Scientific World Journal
7
Proof. According to the well-known Young inequality [3] 1 π1 1 π2 π₯ + π¦ β₯ π₯π¦, π1 π2 π1 , π2 > 0,
βπ₯, π¦ β₯ 0, (57)
1 1 + = 1, π1 π2
and setting π₯ = π2 (π) β π(π) and π¦ = π(π) β π1 (π), π, π β₯ 0, we have 1 1 π π (π2 (π) β π (π)) 1 + (π (π) β π1 (π)) 2 π1 π2
by setting π₯ = π2 (π) β π(π) and π¦ = π(π) β π1 (π), π, π > 1, we have π1 (π2 (π) β π (π)) + π2 (π (π) β π1 (π)) π
(πβ1) π½ (πβ1) π½2 π‘β2π½(π+π) π½ (π‘ β ππ½ π) (π‘ β ππ½ π) 2 Ξπ (π)
(58)
π½(π+1)β1
Γ (ππ)
π½(π+1)β1
(59)
π’ (π) V (π) ,
for π, π β (0, π‘), and integrating with respect to π and π from 0 to π‘, we deduce the desired result in (56). Corollary 17. Let 0 < π < 1, let π be an integrable function on [0, β) satisfying π β€ π(π‘) β€ π, for all π‘ β [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π, π β R. Then, for π‘ > 0, π, π½ > 0, and π β C, we have (π + π)2 πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {V} (π‘) +
2πΌππ,π,π½
{π’π} (π‘) πΌππ,π,π½
{Vπ} (π‘) (60)
β₯ 2 (π + π) (πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘) + πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ} (π‘)) . Theorem 18. Let 0 < π < 1, let π be an integrable function on [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π1 , π2 > 0 satisfying π1 + π2 = 1. In addition, suppose that (π»1 ) holds. Then, for π‘ > 0, π, π½ > 0, and π β C, we have π1 πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {V} (π‘)
Corollary 19. Let 0 < π < 1, let π be an integrable function on [0, β) satisfying π β€ π(π‘) β€ π, for all π‘ β [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π, π β R. Then, for π‘ > 0, π, π½ > 0, and π β C, we have (π β π) πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {V} (π‘) + πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ} (π‘) β₯ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘) + 2πΌππ,π,π½ {π’βπ β π} (π‘) πΌππ,π,π½ {Vβπ β π} (π‘) . (65)
π π β π π/π ππ/π β€ ( π(πβπ)/π π + π ), π π
π/π
(π) πΌππ,π,π½ {π’(π2 β π) β€
β₯ π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘)
(61)
+ π2 πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ1 } (π‘) π
Proof. From the well-known Weighted AM-GM inequality [3] βπ₯, π¦ β₯ 0, π1 , π2 > 0, π1 + π2 = 1,
(62)
} (π‘) +
π (πβπ)/π π,π,π½ πΌπ {π’π} (π‘) π π
π β π π/π π,π,π½ π (πβπ)/π π,π,π½ πΌπ {π’π2 } (π‘) + π π πΌπ {π’} (π‘) , π π (67)
(ππ) πΌππ,π,π½ {π’(π β π1 ) β€
+ πΌππ,π,π½ {π’(π2 β π) 1 } (π‘) πΌππ,π,π½ {V(π β π1 ) 2 } (π‘) .
πππ πππ¦ π > 0. (66)
Theorem 21. Let 0 < π < 1, let π be an integrable function on [0, β), let π’ : [0, β) β [0, β) be a continuous function, and let constants π β₯ π β₯ 0, π =ΜΈ 0. In addition, assume that (π»1 ) holds. Then, for any π > 0, π‘ > 0, π, π½ > 0, and π β C, the following two inequalities hold:
+ π2 πΌππ,π,π½ {π’} (π‘) πΌππ,π,π½ {Vπ} (π‘)
π1 π₯ + π2 π¦ β₯ π₯π1 π¦π2 ,
π’ (π) V (π) ,
Lemma 20 (see [22]). Assume that π β₯ 0, π β₯ π β₯ 0, and π =ΜΈ 0. Then,
+ πΌππ,π,π½ {Vπ2 } (π‘) (πΌππ,π,π½ {π’} (π‘) + πΌππ,π,π½ {V} (π‘))
π
(64)
for π, π β (0, π‘), and integrating with respect to π and π from 0 to π‘, we deduce inequality (61).
Multiplying both sides of (58) by
Γ (ππ)
(63)
Multiplying both sides of (63) by
β₯ (π2 (π) β π (π)) (π (π) β π1 (π)) . (πβ1) π½ (πβ1) π½2 π‘β2π½(π+π) π½ (π‘ β ππ½ π) (π‘ β ππ½ π) Ξπ2 (π)
π
β₯ (π2 (π) β π (π)) 1 (π (π) β π1 (π)) 2 .
π/π
} (π‘) +
π (πβπ)/π π,π,π½ πΌπ {π’π1 } (π‘) π π
π (πβπ)/π π,π,π½ π β π π/π π,π,π½ πΌπ {π’π} (π‘) + π π πΌπ {π’} (π‘) . π π (68)
Proof. By condition (π»1 ) and Lemma 20, for π β₯ π β₯ 0, π =ΜΈ 0, it follows that (π2 (π) β π (π))
π/π
β€
π (πβπ)/π π β π π/π π π , (π2 (π) β π (π)) + π π (69)
8
The Scientific World Journal (πV) πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘)
for any π > 0. Multiplying both sides of (69) by (π½π‘βπ½(π+π) / Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 π’(π), π β (0, π‘), and integrating the resulting identity with respect to π from 0 to π‘, one has inequality (π). Inequality (ππ) is proved by setting π = π(π) β π1 (π) in Lemma 20. Corollary 22. Let 0 < π < 1, let π be an integrable function on [0, β) satisfying π β€ π(π‘) β€ π, for all π‘ β [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π, π β R. Then, for π‘ > 0, π, π½ > 0, and π β C, we have (π) 2πΌππ,π,π½ {π’βπ β π} (π‘) + πΌππ,π,π½ {π’π} (π‘) β€ (π + 1) πΌππ,π,π½ {π’} (π‘) ,
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) β₯ πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘) . (72) Proof. To prove (π), from (π»1 ) and (π»2 ), we have for π‘ β [0, β) that (π2 (π) β π (π)) (π (π) β π1 (π)) β₯ 0. Therefore,
(70)
π2 (π) π (π) + π1 (π) π (π) β₯ π1 (π) π2 (π)
(ππ) 2πΌππ,π,π½ {π’βπ β π} (π‘) + (π β 1) πΌππ,π,π½ {π’} (π‘)
+ π (π) π (π) .
β€ πΌππ,π,π½ {π’π} (π‘) . Theorem 23. Let 0 < π < 1, let π and π be two integrable functions on [0, β), and let π’, V : [0, β) β [0, β) be continuous functions. Suppose that (π»1 ) holds and moreover we assume the following. (π»2 ) There exist π1 and π2 integrable functions on [0, β) such that π1 (π‘) β€ π (π‘) β€ π2 (π‘)
βπ‘ β [0, β) .
(71)
Then, for π‘ > 0, π, π½ > 0, and π β C, the following inequalities hold:
π (π) πΌππ,π,π½ {π’π2 } (π‘) + π1 (π) πΌππ,π,π½ {π’π} (π‘) β₯ π1 (π) πΌππ,π,π½ {π’π2 } (π‘) + π (π) πΌππ,π,π½ {π’π} (π‘) .
(ππ) (π2 (π) β π (π)) (π (π) β π1 (π)) β₯ 0,
+
{Vπ} (π‘) ,
(ππ) πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘) β₯
πΌππ,π,π½
{π’π2 } (π‘) πΌππ,π,π½
{Vπ1 } (π‘)
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) , (πππ) πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ2 } (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) β₯ πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ2 } (π‘) ,
(76)
(πV) (π1 (π) β π (π)) (π (π) β π1 (π)) β€ 0.
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘)
{π’π} (π‘) πΌππ,π,π½
(75)
Multiplying both sides of (75) by (π½π‘βπ½(π+π) /Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 V(π), π β (0, π‘), and integrating both sides with respect to π on (0, π‘), we get the desired inequality (π). To prove (ππ)β(πV), we use the following inequalities:
(πππ) (π2 (π) β π (π)) (π (π) β π2 (π)) β€ 0,
β₯ πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘)
(74)
Multiplying both sides of (74) by (π½π‘βπ½(π+π) /Ξπ (π))(π‘π½ β ππ½ π)(πβ1) ππ½(π+1)β1 π’(π), π β (0, π‘), and integrating both sides with respect to π on (0, π‘), we obtain
(π) πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘)
πΌππ,π,π½
(73)
Theorem 24. Let π and π be two integrable functions on [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π1 , π2 > 0 satisfying 1/π1 + 1/π2 = 1. Suppose that (π»1 ) and (π»2 ) hold. Then, for π‘ > 0, π, π½ > 0, and π β C, the following inequalities hold: (π)
1 π,π,π½ π πΌ {π’(π2 β π) 1 } (π‘) πΌππ,π,π½ {V} (π‘) π1 π +
1 π,π,π½ π πΌ {V(π2 β π) 2 } (π‘) πΌππ,π,π½ {π’} (π‘) π2 π
+ πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ2 } (π‘) β₯ πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ2 } (π‘) + πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) ,
The Scientific World Journal (ππ)
9
1 π,π,π½ π π πΌ {π’(π2 β π) 1 } (π‘) πΌππ,π,π½ {V(π2 β π) 1 } (π‘) π1 π
(ππ) π1 πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ2 } (π‘)
1 π π + πΌππ,π,π½ {π’(π2 β π) 2 } (π‘) πΌππ,π,π½ {V(π2 β π) 2 } (π‘) π2 β₯
πΌππ,π,π½ Γ
{π’ (π2 β π) (π2 β π)} (π‘)
πΌππ,π,π½
{V (π2 β π) (π2 β π)} (π‘) ,
β₯ π1 πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) + π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ2 } (π‘)
1 π,π,π½ π πΌ {V(π β π1 ) 2 } (π‘) πΌππ,π,π½ {π’} (π‘) π2 π
+ π2 πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘)
+ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘)
+ π2 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ2 } (π‘)
+ πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ} (π‘)
+ πΌππ,π,π½ {π’(π2 β π) 1 (π2 β π) } (π‘)
β₯ πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
β₯
{π’ (π β π1 ) (π β π1 )} (π‘)
β₯ π1 πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {V} (π‘) + π2 πΌππ,π,π½ {Vπ1 } (π‘) πΌππ,π,π½ {π’} (π‘) π
(77) Proof. The inequalities (π)β(πV) can be proved by choosing the parameters in the Young inequality [3]:
π
(πV) π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) + π1 πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘) + π2 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
π¦ = π2 (π) β π (π) ,
(ππ) π₯ = (π2 (π) β π (π)) (π2 (π) β π (π)) ,
+ π2 πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘)
π¦ = (π2 (π) β π (π)) (π2 (π) β π (π)) , π¦ = π (π) β π1 (π) ,
(πππ) π₯ = π (π) β π1 (π) ,
π
+ πΌππ,π,π½ {π’(π β π1 ) 1 } (π‘) πΌππ,π,π½ {V(π β π1 ) 2 } (π‘) ,
Γ πΌππ,π,π½ {V (π β π1 ) (π β π1 )} (π‘) .
(π) π₯ = π2 (π) β π (π) ,
π
+ π2 πΌππ,π,π½ {Vπ} (π‘) πΌππ,π,π½ {π’} (π‘)
1 π,π,π½ π π πΌ {π’(π β π1 ) 2 } (π‘) πΌππ,π,π½ {V(π β π1 ) 2 } (π‘) π2 π
πΌππ,π,π½
π2
(πππ) π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘)
1 π,π,π½ π π πΌ {π’(π β π1 ) 1 } (π‘) πΌππ,π,π½ {V(π β π1 ) 1 } (π‘) π1 π +
π
Γ πΌππ,π,π½ {V(π2 β π) 1 (π2 β π) 2 } (π‘) ,
+ πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘) , (πV)
+ π2 πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {Vπ2 } (π‘) + π2 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
1 π (πππ) πΌππ,π,π½ {π’(π β π1 ) 1 } (π‘) πΌππ,π,π½ {V} (π‘) π1 +
+ π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘)
(78)
(πV) π₯ = (π (π) β π1 (π)) (π (π) β π1 (π)) ,
β₯ π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘) + π1 πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ} (π‘)
π¦ = (π (π) β π1 (π)) (π (π) β π1 (π)) .
+ π2 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘)
Theorem 25. Let π and π be two integrable functions on [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let π1 , π2 > 0 satisfying π1 + π2 = 1. Suppose that (π»1 ) and (π»2 ) hold. Then, for π‘ > 0, π, π½ > 0, and π β C, the following inequalities hold:
+ π2 πΌππ,π,π½ {π’π1 } (π‘) πΌππ,π,π½ {Vπ} (π‘) π
π2
π
π
+ πΌππ,π,π½ {π’(π β π1 ) 1 (π β π1 ) } (π‘) Γ πΌππ,π,π½ {V(π β π1 ) 1 (π β π1 ) 2 } (π‘) . (79)
(π) π1 πΌππ,π,π½ {π’π2 } (π‘) πΌππ,π,π½ {V} (π‘)
Proof. The inequalities (π)β(πV) can be proved by choosing the parameters in the Weighted AM-GM [3]:
+ π2 πΌππ,π,π½ {Vπ2 } (π‘) πΌππ,π,π½ {π’} (π‘) β₯ π1 πΌππ,π,π½ {π’π} (π‘) πΌππ,π,π½ {V} (π‘) +
π2 πΌππ,π,π½
+
πΌππ,π,π½
{Vπ} (π‘) πΌππ,π,π½ π1
{π’(π2 β π)
(π) π₯ = π2 (π) β π (π) ,
{π’} (π‘)
} (π‘) πΌππ,π,π½
π¦ = π2 (π) β π (π) ,
(ππ) π₯ = (π2 (π) β π (π)) (π2 (π) β π (π)) , π2
{V(π2 β π) } (π‘) ,
π¦ = (π2 (π) β π (π)) (π2 (π) β π (π)) .
10
The Scientific World Journal (πππ) π₯ = π (π) β π1 (π) ,
π/π
(πV) πΌππ,π,π½ {π’(π β π1 )
π¦ = π (π) β π1 (π) ,
(πV) π₯ = (π (π) β π1 (π)) (π (π) β π1 (π)) , π¦ = (π (π) β π1 (π)) (π (π) β π1 (π)) . (80)
Theorem 26. Let π and π be two integrable functions on [0, β), let π’, V : [0, β) β [0, β) be continuous functions, and let constants π β₯ π β₯ 0, π =ΜΈ 0. Assume that (π»1 ) and (π»2 ) hold. Then, for any π > 0, π‘ > 0, π, π½ > 0, and π β C, the following inequalities hold: π/π
(π) πΌππ,π,π½ {π’(π2 β π)
β€
} (π‘)
+
π (πβπ)/π π,π,π½ πΌπ {π’π2 π} (π‘) π π
+
π (πβπ)/π π,π,π½ πΌπ {π’ππ2 } (π‘) π π
+
π/π
+
π (πβπ)/π π,π,π½ πΌπ {π’π} (π‘) πΌππ,π,π½ {Vπ2 } (π‘) π π
π (πβπ)/π π,π,π½ πΌπ {π’π1 } (π‘) πΌππ,π,π½ {Vπ1 } (π‘) π π
+
π β π π/π π,π,π½ π πΌπ {π’} (π‘) πΌππ,π,π½ {V} (π‘) . π
(82)
} (π‘)
π (πβπ)/π π,π,π½ πΌπ {π’π2 } (π‘) πΌππ,π,π½ {Vπ2 } (π‘) π π +
π (πβπ)/π π,π,π½ πΌπ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) π (π‘) π π
+
π β π π/π π,π,π½ π πΌπ {π’} (π‘) πΌππ,π,π½ {V} (π‘) , π π/π
(π β π1 )
} (π‘)
π (πβπ)/π π,π,π½ πΌπ {π’π1 π} (π‘) π π
π + π(πβπ)/π πΌππ,π,π½ {π’π1 π} (π‘) π β€
+
(πV) π = (π (π) β π1 (π)) (π (π) β π1 (π)) .
π (πβπ)/π π,π,π½ πΌπ {π’π2 } (π‘) πΌππ,π,π½ {Vπ} (π‘) π π
+
π (πβπ)/π π,π,π½ πΌπ {π’π} (π‘) πΌππ,π,π½ {Vπ} (π‘) π π
(πππ) π = (π (π) β π1 (π)) (π (π) β π1 (π)) ,
} (π‘) πΌππ,π,π½ {V(π2 β π)
π/π
π (πβπ)/π π,π,π½ πΌπ {π’π1 } (π‘) πΌππ,π,π½ {Vπ} (π‘) π π
(ππ) π = (π2 (π) β π (π)) (π2 (π) β π (π)) ,
+
(πππ) πΌππ,π,π½ {π’(π β π1 )
+
(π) π = (π2 (π) β π (π)) (π2 (π) β π (π)) ,
π β π π/π π,π,π½ π πΌπ {π’} (π‘) , π π/π
π (πβπ)/π π,π,π½ πΌπ {π’π} (π‘) πΌππ,π,π½ {Vπ1 } (π‘) π π
Proof. The inequalities (π)β(πV) can be proved by choosing the parameters in Lemma 20:
π (πβπ)/π π,π,π½ πΌπ {π’ππ} (π‘) π π
(ππ) πΌππ,π,π½ {π’(π2 β π)
+
} (π‘)
(81)
π (πβπ)/π π,π,π½ πΌπ {π’π2 π2 } (π‘) π π +
β€
π/π
(π2 β π)
β€
π/π
} (π‘) πΌππ,π,π½ {V(π β π1 )
π (πβπ)/π π,π,π½ πΌπ {π’ππ} (π‘) π π +
π (πβπ)/π π,π,π½ πΌπ {π’π1 π1 } (π‘) π π
+
π β π π/π π,π,π½ π πΌπ {π’} (π‘) , π
5. Concluding Remark We conclude our present investigation with the remark that the results derived in this paper are general in character and give some contributions to the theory of π-integral inequalities and fractional calculus. Moreover, they are expected to find some applications for establishing uniqueness of solutions in fractional boundary value problems and in fractional partial differential equations. In last, use of the generalized ErdΒ΄elyi-Kober fractional π-integral operator due to GauluΒ΄e is the advantage of our results because after setting suitable parameter values in our main results, we get known results established by number of authors.
Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments The research of J. Tariboon is supported by King Mongkutβs University of Technology North Bangkok, Thailand. Sotiris K. Ntouyas is a Member of Nonlinear Analysis and Applied Mathematics (NAAM) Research Group at King Abdulaziz University, Jeddah, Saudi Arabia.
The Scientific World Journal
References [1] P. L. Chebyshev, βSur les expressions approximati ves des integrales definies par les autres prises entre les memes limites,β Proceedings of the Mathematical Society of Kharkov, vol. 2, pp. 93β98, 1882. [2] J. C. Kuang, Applied Inequalities, Shandong Sciences and Technologie Press, Shandong, China, 2004. [3] D. S. MitrinoviΒ΄c, Analytic Inequalities, Springer, Berlin, Germany, 1970. [4] A. M. Ostrowski, βOn an integral inequality,β Aequationes Mathematicae, vol. 4, pp. 358β373, 1970. [5] G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, NY, USA, 2011. [6] S. Belarbi and Z. Dahmani, βOn some new fractional integral inequalities,β Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 3, article 86, 5 pages, 2009. [7] Z. Dahmani, O. Mechouar, and S. Brahami, βCertain inequalities related to the Chebyshevβs functional involving a RiemannLiouville operator,β Bulletin of Mathematical Analysis and Applications, vol. 3, no. 4, pp. 38β44, 2011. [8] S. S. Dragomir, βSome integral inequalities of GrΒ¨uss type,β Indian Journal of Pure and Applied Mathematics, vol. 31, no. 4, pp. 397β415, 2000. [9] V. Lakshmikantham and A. S. Vatsala, βTheory of fractional differential inequalities and applications,β Communications in Applied Analysis, vol. 11, no. 3-4, pp. 395β402, 2007. Β¨ guΒ¨ nmez and U. M. Ozkan, Β¨ [10] H. OΛ βFractional quantum integral inequalities,β Journal of Inequalities and Applications, vol. 2011, Article ID 787939, 7 pages, 2011. [11] W. T. Sulaiman, βSome new fractional integral inequalities,β Journal of Mathematical Analysis, vol. 2, no. 2, pp. 23β28, 2011. [12] G. A. Anastassiou, βπ-fractional inequalities,β Cubo: A Mathematical Journal, vol. 13, no. 1, pp. 61β71, 2011. [13] D. Baleanu and P. Agarwal, βCertain inequalities involving the fractional q integral operators,β Abstract and Applied Analysis, vol. 2014, Article ID 371274, 10 pages, 2014. [14] J. Choi and P. Agarwal, βCertain fractional integral inequalities involving hypergeometric operators,β East Asian Mathematical Journal, vol. 30, no. 3, pp. 283β291, 2014. [15] J. Choi and P. Agarwal, βCertain new pathway type fractional integral inequalities,β Honam Mathematical Journal, vol. 36, no. 2, pp. 437β447, 2014. [16] J. Choi and P. Agarwal, βCertain inequalities associated with Saigo fractional integrals and their q-analogues,β Abstract and Applied Analysis, vol. 2014, Article ID 579260, 11 pages, 2014. [17] L. GaluΒ΄e, βGeneralized ErdΒ΄elyi-Kober fractional π-integral operator,β Kuwait Journal of Science & Engineering, vol. 36, no. 2, pp. 21β34, 2009. [18] H. M. Srivastava and J. Choi, Zeta and q -Zeta Functions and Associated Series and Integrals, Elsevier Science, New York, NY, USA, 2006. [19] F. H. Jackson, βOn q-definite integrals,β The Quarterly Journal of Pure and Applied Mathematics, vol. 41, pp. 193β203, 1910. [20] R. P. Agarwal, βCertain fractional q-integrals and q-derivatives,β Mathematical Proceedings of the Cambridge Philosophical Society, vol. 66, pp. 365β370, 1969. [21] Z. Dahmani, βNew inequalities in fractional integrals,β International Journal of Nonlinear Science, vol. 9, no. 4, pp. 493β497, 2010.
11 [22] F. Jiang and F. Meng, βExplicit bounds on some new nonlinear integral inequalities with delay,β Journal of Computational and Applied Mathematics, vol. 205, no. 1, pp. 479β486, 2007.