COUPLING EXPERT SYSTEMS WITH DATABASE ... - Archive@NYU

8 downloads 135432 Views 5MB Size Report
policy that satisfies the customer's needs and has an affordable premiun. ... relieve a bottleneck which seriously impedes service quality,. QI the other hand, such a ... In a rule-based expert system, the "inference-engine" uses a set. o f r u l e s .... execution of a progran involves a depth-first search with backtracking on theseĀ ...
COUPLING EXPERT SYSTEMS WITH DATABASE MANAGEMENT SYSTEMS

Matthias J a r k e Yannis V a s s i l i o u

May 1983

C e n t e r f o r Research on Information Systems Computer A p p l i c a t i o n s and Information Systems Area Graduate School o f Business A d m i n i s t r a t i o n New York U n i v e r s i t y

Working Paper S e r i e s CRIS #54 GBA #83-53(CR)

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

ABSTRACT

The combined u s e o f Database Management Systems (DBMS) and A r t i f i c i a l I n t e l l i g e n c e - b a s e d Expert Systems (ES) i s p o t e n t i a l l y v e r y v a l u a b l e f o r modern b u s i n e s s a p p l i c a t i o n s . The l a r g e body o f f a c t s u s u a l l y r e q u i r e d i n b u s i n e s s i n f o r mation systems can b e made a v a i l a b l e t o an ES t h r o u g h an e x i s t i n g commercial DBMS. Furthermore, t h e DBMS i t s e l f can b e used more i n t e l l i g e n t l y and o p e r a t e d more e f f i c i e n t l y i f enhanced w i t h ES f e a t u r e s . However, t h e implementation o f a DBMS-ES c o o p e r a t i o n i s v e r y d i f f i c u l t . We e x p l o r e p r a c t i c a l b e n e f i t s o f t h e c o o p e r a t i v e u s e of DBMS and ES, a s w e l l a s t h e r e s e a r c h c h a l l e n g e s i t p r e s e n t s . S t r a t e g i e s f o r p r o v i d i n g d a t a from a DBMS t o an ES a r e given; complementary s t r a t e g i e s f o r p r o v i d i n g i n t e l l i g e n c e from an ES t o a DBMS a r e a l s o p r e s e n t e d . F i n a l l y , we d i s c u s s a r c h i t e c t u r a l i s s u e s such a s d e g r e e o f c o u p l i n g , and combination with q u a n t i t a t i v e methods. A s an i l l u s t r a t i o n , a r e s e a r c h e f f o r t a t New York Univers i t y t o i n t e g r a t e a l o g i c - b a s e d b u s i n e s s ES w i t h a r e l a t i o n a l DBMS i s d e s c r i b e d .

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 2 1 .0 INTRODUCTION

I n t h e m i d - s i x t i e s t h e world watched w i t h f a s c i n a t i o n off

the

fishing

of

town

Surtsey, o u t o f its ashes. particular

creation

Heimaey,

Iceland,

create

its

Such t h i n g s had happened b e f o r e , and

process

creation

but

volcano

a new i s l a n d ,

went on f o r four y e a r s .

seemed

determined to s t a y .

this

B u t , u n l i k e on

p r e v i o u s o c c a s i o n s , t h e new i s l a n d d i d n o t v a n i s h i n t h e after

a

sea

shortly

S t i l l , it i s a

r a t h e r t i n y l i t t l e i s l a n d made v i s i b l e t o t h e m r l d m a i n l y b y t h e

big

v o l c a n i c c l o u d s t h a t accompanied its c r e a t i o n . Some p e o p l e began t o p o p u l a t e t h e arose

new i s l a n d

and

the

problem

how t o p r o v i d e them w i t h t h e n e c e s s a r y t h i n g s o f l i f e f'rom t h e

n e i g h b o r i n g is1a n d s ( I c e l a n d being t h e most i m p o r t a n t ) , a'l t h e hand,

researchers

from

other

a l l o v e r t h e world f l o c k e d i n t o u n r a v e l t h e

hidden t r e a s u r e s o f t h i s new p i e c e o f l a n d i n t h e hope t o c l a r i f y and r e s o l v e some o f t h e problems i n o t h e r a r e a s .

Currently, fishing boats

manage t h e t r a f f i c b u t soon something more s o l i d w i l l be r e q u i r e d cope w i t h t h e growing i n t e r a c t i o n .

L

What d o e s a l l t h i s h a v e t o d o w i t h e x p e r t s y s t e m s and The

reader

might

have

noticed

a

strong

Once

catch the

a

the

past

few

o f f s h o t o f a r t i f i c i a l i n t e l l i g e n c e , t h e y now

small

spotlight

databases?

resemblance o f S u r t s e y t s

d e v e l o p e n t w i t h t h e emergence o f e x p e r t s y s t e m s o v e r years.

to

of

publicity

after

a

prolonged

period

of

1a b o r a t o r y e x i s t e n c e .

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Much r e s e a r c h h a s been n e c e s s a r y t o commercial

feasibility.

improve

expert

systems t o

With t h e a c t u a l i n t r u s i o n o f e x p e r t systems

i n t o t h e b u s i n e s s m r l d , however, t h e f u r t h e r question a r i s e s how t o i n t e g r a t e them i n t o t h e e x i s t i n g manag anent i n f o r m a t i o n systems Can b r i d g e s ( o r a t l e a s t f i s h i n g boats) be subsystems

that

built

to

( MIS).

the

other

s u p p l y t h e e x p e r t system with t h e n e c e s s a r y b u s i n e s s

to

d a t a and a l l o w them

use

corporate

planning

models

and

other

mathematical models a s a human e x p e r t m a d ? Can, v i c e v e r s a , t h e existing

MIS w i t h

more

expert

system

intelligence

idea

be

used

to

enhance

i n systems d e s i g n , u s a g e , and

operation? Researchers kiho have addressed t h e s e p r o b l a n s t y p i c a l l y looked a t c e r t a i n a s p e c t s o f one o f t h e t w o q u e s t i o n s .

In t h i s p a p e r , we t r y t o

view them t o g e t h e r , w i t h a primary f o c u s on t h e i n t e r a c t i o n o f systems

with

large

existing

p i c t u r e , we t r y t o o u t l i n e a allows

for

two-way

traffic

databases. b r i d g e between

expert

To remain i n our o r i g i n a l the

t

systems t h a t

enhancing t h e qua1 i t y and e f f i c i e n c y o f

b o t h t y p e s o f systems.

'

?he p a p r w i l l analyze on a h i g h l e v e l o p p o r t m i t i e s and s o l u t i o n

s t r a t e g i e s f o r g e t t i n g b u s i n e s s d a t a k o m a commercial d a t a b a s e system i n t o an e x p e r t system, and f o r p-oviding e x p e r t knowledge t o systems.

For more t e c h n i c a l d e t a i l s o f t h e first problem, t h e r e a d e r

i s r e f e r r e d t o a companion paper [ V a s s i l i o u e t a l .

mrk

in

database

19831 and to

some

t h e Japanese F i f t h Generation Computer p - o j e c t [ K u n i f u j i and

Yokota 19821.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 4 C e r t a i n a s p e c t s o f t h e second problan a r e addressed in [ J a r k e and Koch 19831, others

[ ~ a r k e and

( e .g

C ~ i n g19791,

.,

Shalev 19831, a s well a s i n t h e m r k o f many

C Chang 1 978 I ,

[ R e i t e r 1 978 1,

[~enschen e t

a l . 19821).

[Kellogg 1 981 I ,

However, t h e c o n t r i b u t i o n o f

t h i s paper i s t o m i f y a l l these approaches i n a common franemrk

of

we

what

architectural

b e l i e v e might b e t h e paradigm of forthcoming

advanced d e c i s i o n support systems. For an i l l u s t r a t i o n , we w i l l use from time t o time exanples an

ongoing

project

at

York

New

from

University i n which a logic-based

business e x p e r t system is developed and i n t e r f a c e d

with

an

existing

r e l a t i o n a l database and mathematical subroutine l i b r a r i e s . ?he p a p r i s organized a s review o f major

follows.

subsystems and

Section

requirements

gives a

2

in

brief

a business,

In

sub sequent s e c t i o n s , we study t h e i n t e r a c t i o n between these components focusing

on

knowledge stage-wise

the

b a s e s and

inference

approach t o

e x p e r t system. system

re1ationships

the

between

d a t a b a s e s and e x p e r t system

engines.

systems.

Finally,

technical

problans o f

the

section the

3

presents

a

question how t o g e t d a t a f o r a b u s i n e s s

Section 4 d e a l s with v a r i o u s

technology t o

Section

design,

5

use,

addresses

coup1 ing

applications o f and some

between

expert

operation o f d a t a b a s e architectural expert

and

managanent systems t h a t have t o b e solved r e g a r d l e s s o f t h e

and

database directior!

of the interaction.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 5 REVIEW OF BUSINESS SUBSYSTEMS AND REQUIRMENTS

2.0

i s l a n d st' to b e connected i n a b u s i n e s s w i l l

In t h i s s e c t i o n , t h e be

identified,

type

of

current

transaction

business

processing,

systems i s characterized

governed

databases.

Ihe

by

backbone

knowledge

required

for

centralized

or

building

and

working with such systems i s t y p i c a l l y hidden i n procedural cannot

be

easily

applications. office

changed

nor

carried

Modern t r a n s a c t i o n processing

automation

systems,

make

One

rules o f what can b e c a l l e d a

by

b u s i n e s s program, and t y p i c a l l y c e n t e r e d around l a r g e distributed

.

and t h e i r i n t e r a c t i o n requirements i n v e s t i g a t e d

these

form* and

to o t h e r

over system

types,

r u l e s more

similar such

explicit

formalize t h e n o t i o n o f d o c m e n t s a s a c e n t r a l c a r r i e r o f

as and

information

t o b e handled [ T s i c h r i t z i s 19821. Another supporting

type

of

decisions

business on

s y s t e m s d e a l s more levels.

various

d i r e c t l y with

Decision s u p p o r t s y s t e m s

o f t e n have t h e i r knowledge b u i l t i n mathematical formulas which

and

models

a r e handled by model managanent a l g o r i t h m s o r b y t h e u s e r v i a a

f l e x i b l e and m w e r f u l user i n t e r f a c e [ S t o h r and White 19821. F i n a l l y , t h e r e i s a l a r g e nunber o f ex per i e n c e databases

and via

hunan

specialists

rjho

use

ex per t i s e t o g e t h e r w i t h f a c t u a l knowledge gained from

query

1ang uag es

to

develop

explanations i n t h e i r area o f .expertise

.

recommend a t i o n s

Recently, e x p e r t s y s t e m s t r y

t o e f f i c i e n t l y s u p p o r t o r p a r t i a l l y r e p l a c e such s p e c i a l i s t s . systems t y p i c a l l y o r g a n i z e

their

knowledge

r u l e s and perform m e form o f p a t t e r n

and

matching

Expert

i n t h e form o f i f - t h e n

to

find

out

which

rules apply.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 6 To sunmarize t h i s d i s c u s s i o n , it can be said t h a t businesses use: l a r g e databases,

(1)

mathematical

(2)

formulas and

(3)

models,

business r u l e s and forms (docunents), ( 4 ) experience and expertise various

human

specialists.

w i l l be another type o f

of

If e x p e r t systems a r e introduced, t h e r e

subsystem

which

interacts

with

the

hunan

d ec ision-maker s t o complement t h e i r e x p e r t i s e . In t h i s kind of s e t t i n g it i s n o t hard to see t h a t much e f f o r t i s

duplicated i f a l l these systems operate independently o f each o t h e r . Today, most mathematical and expert manag anent

data

facilities.

subsystems have

This

own

If d a t a from a database system are used

they a r e t y p i c a l l y extracted a s snapshots before the session.

their

beginning

of

a

approach causes p r o b l a n s i f t h e amountof d a t a t o b e

extracted is l a r g e o r cannot e a s i l y b e determined in advance,

If

the

snapshots a r e kept over an extended period of time, t h e r e i s a problem of keeping them c o n s i s t e n t w i t h t h e main database. Database ( e.g

.,

managanent

aggreg ation)

systems u s u a l l y o f f e r

capabil i t i e s i n

e l anentar y r ule-based

techniques

their

However,

operations.

sophisticated mathematical user. built

retrieval

( integrity

often

facilities

operations on

the

their

the

which

data

some mathematical

user

i n t e r f a c e s and

constraints) user perform

muld

to

check

like

more

reasoning

or

before presenting them to the

A higher l e v e l o f semantic knowledge and deductive c a p a b i l i t i e s

into

the

database

system

muld

not

o n l y make

it

more

user-friendly but a l s o s a f e r and more e f f i c i e n t t o operate.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 7 F i n a l l y , on a higher

it

level,

can

observed

that

system

e f f o r t i s d u p l i c a t e d or! a l a r g e s c a l e i n t h e a n a l y s i s and

developnent

d e s i g n o f b u s i n e s s i n f o r m a t i o n systems. anong

be

This happens within b u t

also

systems o f t h e same t y p e a r e developed s a i n

o r g a n i z a t i o n s *en

and g a i n without t a k i n g e x p l i c i t advantage o f knowledge from previous ex per i e n c es. Some r e s e a r c h h a s been done t o i n t e g r a t e t h e s e p a r a t e subsystems. Decision

support

systems h a v e

c a p a b i l i t i e s on cost-effective.

solid

t o b a s e t h e i r mathematical modelling manag anent

database

technology

to

the

become

By analogy, i t can b e argued t h a t many e x p e r t systems

which use a l a r g e population o f s p e c i f i c f a c t s need channel

to

a

communication

Going a s t e p f u r t h e r , we argue

corporate databases,

t h a t f u t u r e d e c i s i o n s u p p o r t systems w i l l have t o i n t e g r a t e a l l components:

d a t a b a s e , mathematical subsystem, and knowledge b a s e .

A s an e x a n p l e f o r consulting The

system

insurance

three

expert

system

develops, policies

such

for

a

system,

currently

recommends, a

life

insurance

under d e v e l o p n e n t i n our group.

and

customer.

a

consider

explains

customized

life

The system w i l l a s s i s t a s a l e s

agent by ( a) e x t r a c t i n g customer information from t h e

corporate

database

and from i n t e r v i e w s t o deduce t h e n e e d s f o r l i f e i n s u r a n c e c o v e r a g e i n d i f f e r e n t s t a g e s o f t h e l i f e o f a customer; (b) c l a s s i f y i n g t h e r e q u i r e m e n t s types o f

in

terms o f

basic

actuarial

i n s u r a n c e , and re1 a t i n g them to appl i c a b l e a c t u a r i a l models J

i n t h e mathematical subsystem;

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 8 (c) computing a premiun f o r t h e customized p o l i c y , reducing it b y

already

existing

coverage from previous i n s u r a n c e , and canparing t h e

remainder to t h e premiun paying c a p a b i l i t i e s o f t h e customer; ( d l analyzing t h e f e a s i b i l i t y o f t h e proposed p o l i c y i n terms o f l e g dl r e q u i r e m e n t s and c o r p o r a t e o b j e c t i v e s ; ( e l i n t e r a c t i n g with t h e customer to come up with policy

that

satisfies the

customer's

needs

an

acceptable

and h a s an a f f o r d a b l e

premiun. C u r r e n t l y , customized p o l i c i e s a r e f e a s i b l e o n l y f o r major policies

since

there

is

process a s o u t l i n e d above. choose

among

( insurance

a

limited

products)

.

a

lack

group

o f a c t u a r i a l experts t o support a

I n d i v i d u a l customers can e s s e n t i a l l y o n l y nunber

o f p r e p a c k a g e d p o l i c y combinations

When o p e r a t i o n a l , t h e ex p e r t system

will

thus

r e l i e v e a b o t t l e n e c k which s e r i o u s l y impedes s e r v i c e q u a l i t y , QI t h e o t h e r hand, s u c h a system needs:

( a ) information about customers and a c t u a r i a l t a b l e d a t a

from

a

d atab ase system; (b) a mathematical sub system to

execute

actuarial

canputations

efficiently; (c) an ( ex t e n s i b l e ) knowledgebased ex pert subsystem information,

to

ex t r a c t

t o c l a s s i f y insurance needs, t o check t i m e v a r y i n g l e g a l

and c o r p o r a t e c o n s t r a i n t s , and to e x p l a i n p r o b l a n s and a l t e r n a t i v e s .

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 9 We a r e implementing Prolog,

a

system

using

the

logic

language

database system, and a mathematical subroutine

Tnis p r o j e c t i s meant t o

library. typical

relational

such a

serve

as a

demonstration

of

a

we expect f o r upcoming knowledge-based business

architecture

d e c i s i o n support systems.

In t h e remainder o f t h i s paper, we s h a l l focus on t h e i n t e r a c t i o n of

t m

of

the

subsystems discussed

knowledge-based e x p e r t

systems and

in

this

databases.

section, First,

we

naanely, explore

a l t e r n a t i v e s o f e x t r a c t i n g d a t a fiom l a r g e and/or e x i s t i n g d a t a b a s e s g e t t i n g supply t o t h e i n h a b i t a n t s o f t h e new i s l a n d . turn

our

attention

the

other

way:

Later

on,

-

we

how can e x i s t i n g subsystems,

e s p e c i a l l y database management systems, b e improved when e x p e r t system technology becomes a v a i l able?

3.0

DATA FOR EXPERT SYSTEMS I n a rule-based

of

rules

(the to

(database)

expert system, t h e "inference-engine"

base) knowledge simulate

the

and

behaviour

uses a

set

a collection o f specific facts of

a

hman

expert

in

a

system

of

s p e c i a l i z e d problem domain. For i n s t a n c e , t h e l i f e

insurance

consulting

expert

Section 2 u s e s r u l e s 1ike :

i s a customer o f a c e r t a i n age and when t h e customer d i e s a c e r t a i n m o u n t becomes payable THEN t h e customer i s s a i d to have a *ole l i f e insurance b e n e f i t . IF

C

and a database containing d a t a about a c t u a l customers,

insurance

and

annuity b e n e f i t s , m o r t a l i t y v a l u e s , e t c .

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 10 A database i s represented

variety the

and population.

different

reflect

logic

in

two

terms o f

basic

dimensions:

For example, i n a logic-based representation

predicates

(ncustomern, "covered

by",

etc.)

t h e v a r i e t y , and the i n s t a n c e s o f t h e s e p-edicates ("Smith i s

a customert1, "Smith i s covered by term a n n u i t y t , e t c .) r e f e r

to

the

po pul a t i o n .

b s t ex p e r t system databases e x h i b i t a 1arg e v a r i e t y o f In

contrast,

variable;

the

population

of

ranging from a m a l l

collection

of

Tnus,

facts.

in

facts

such databases i s m o r e

"laboratory" expert

facts.

set

system

to

a very

large

databases d i f f e r from

t r a d i t i o n a l commercial databases i n t h a t they tend t o b e more

"wide1*

and l e s s "deepI1.

In [Vassiliou e t a1 19831 we system

database

representation

exanined and

summaryof our r e s u l t s .

We s t a r t with

in

Then,

approach

Section 3.1.

the

retrieval. an

for

an

outline

problan We

of

expert

now p r e s e n t a

of

a

four-stage

we

illustration

d e s c r i b e i n Section 3.2 a w r k i n g implementation o f t h i s

.

briefly

approach

in

the programming language Prolog.

3.1

Of Database Managanent Developent Four-Stages -

Four s t r a t e g i e s between been

the

deductive

i d en ti fied

retrieval

for

.

establishing and

Starting

a

cooperative communication

d a t a canponents o f an e x p e r t system have kom

e l an en t a r y

f a c il i t i e s

for

data

we progress t o a generalized DBMS within the e x p e r t system,

t o a 'loose1 coupling of t h e ES with

an

existing

cmmercial

DBMS,

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 11 finally,

to

a

t i g h t t coupling w i t h an external DBMS.

Expert system

designers may opt for one configuration over another depending on d a t a volune, m u l t i p l i c i t y o f d a t a use, d a t a v o l a t i l i t y c h a r a c t e r i s t i c s (how frequently

i s changed),

data

requirements.

or

data

protection

,

and

security

Regardless, i n a c a r e f u l design these enhancements a r e

incremental, allowing for a smooth t r a n s i t i o n kom a l e s s

to

a more

sophisticated environment.

-t a g e 1: 3. 1. 1 S

-

Elementary Data Managanent Within The ES

I n the simplest c a s e , a l l d a t a i s kept most1 y ad-hoc data s t r u c t u r e s ,

in

core

and

in

stored

Appl i c ation-specific r o u t i n e s f o r d a t a

r e t r i e v a l and modification a r e implemented.

3.1.2

-Stage

2:

Generalized Data Management Within The ES

When the expert system database i s l a r g e enough n o t core,

elementary d a t a

managanent i s n o t s u f f i c i e n t .

needed for external f i l e managanent directory,

.

e t c .)

(e.g

.

to

fit

in

Techniques a r e

secondary

indexes,

data

These techniques should preferably be a p p l i c a t i o n

independent, s i n c e a s m a l l

change

in

application

d e s c r i p t i o n s may

r e q u i r e an altogether d i f f e r e n t mechanism. Furthermore, depending on the m u l t i p l i c i t y o f the

extent

fact

database managanent f a c i l i t i e s may b e needed.

Such f a c i l i t i e s i n c l u i e

database

required

and

the ES, general purpose

dynamic

variety

use

for

tlviewslt, o r

of

database

windows,

available

in

most

mdern

r e l a t i o n a l D B M S CSQL, INGRES, ORACLE].

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 12 Another f a c i l i t y i s an i n t e g r a t e d d a t a d i c t i o n a r y t h a t allows f o r q u e r i e s about

the

DBMS i n t e g r a t e d

in

database s t r u c t u r e .

In a n u t s h e l l , a generalized

the

may b e

expert

system

necessary t o

deal

e f f e c t i v e l y with 1arg e d atab ase s. This s t a g e o f enhancing database manag anent f a c i l i t i e s be

the

norm

seems t o

for e x p e r t systems t h a t d e a l with l a r g e d a t a b a s e s , even

though n o t a l l such systems e x h i b i t t h e same l e v e l o f s o p h i s t i c a t i o n .

-Stage

3.1.3

3:

Often, t h e need f o r

consulting

existing

very

l a r g e databases

Such d a t a b a s e s w i l l normally b e managed by a commercial DBMS.

arises.

In a t y p i c a l exanple, [Olson and E l l i s 19821 r e p r t

PROBWELL,

experience

with

an e x p e r t system used to determine problems with o i l wells.

A v e r y i m p r t a n t source o f information f o r

1arg e

-

Loose Coupling Of The ESWith An Existing DBMS

database

is a

such d e t e r m i n a t i o n

stored md er the IMS database system.

Un'for t m a t e 1 y,

t h i s database cannot b e made a v a i l a b l e t o the ES i n a t i m e l y manner. Existing e x t e r n a l d a t a b a s e s a r e

typically

v o l a t i l e , and used by s e v e r a l a p p l i c a t i o n s . maintaining

consistency may p r o h i b i t

very

large,

highly

Costs o f s t o r i n g d a t a and

the

duplication

of

such a

database for the sake o f t h e e x p e r t system alone. b o x coupling of an ES w i t h presence o f

a

communication

an

channel

existing

DBMS r e f e r s t o

between t h e t w o systems a i c h

allows f o r d a t a ex t r a c t i o n kom t h e e x i s t i n g d a t a b a s e , and storage o f

this

wsnapshottt a s an

the

expert

system

subsequent

database.

Data

ex t r a c t i o n s occur s t a t i c a l l y b e f o r e t h e a c t u a l o p e r a t i o n o f t h e ES.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 13 managsnent

We n o t e t h a t t h e a v a i l a b i l i t y o f generalized database facilities process.

within

the

expert

system

may g r e a t l y

facilitate this

After the i n t e r n a l expert system database has been

expanded

w i t h an e x t e r n a l database mapshot, i t can b e accessed a s i n s t a g e 2.

S -t a g e 4:

3.1.4

Tight Coupling Of An ES With An Existing DBMS

The main disadvantage o f loose coupling is t h e

in

cases

where

automated

dynamic

portion i s r e q u i r e d , a r e necessary. different

portions

different

times;

the

addition,

if

external

the

of

the

decisions,

-

non-applicability

a s t o which database

Daring the same ES s e s s i o n ,

external

database may b e

requirements may n o t database

be

many

required a t

In

p-edictable.

i s continuously

updated

, for

instance in databases f o r commodity t r a d i n g or t i c k e t r e s e r v a t i o n , t h e snapshots become r a p i d l y obsolete. Tight coup1 ing of an ES w i t h an e x t e r n a l DBMS r e f e r s t o of

the

communication

channel

use

between t h e t w o systems i n such a way

t h a t t h e external database appears t o the ES a s an own.

the

extension

of

its

Clearly, t h e most important consideration for the implanentation

o f t i g h t coupling is t h e " i n t e l l i g e n t n managanent o f t h e communication channel

-when and how t o

use the channel.

Our suggested s t r a t e g y , which Section 3.2.5,

assumes t h e

mechanism w i t h i n the ES requests

for

data

- an

while

we

describe

in

more

detail

in

e x i s t e n c e o f a high-level, s o p h i s t i c a t e d expert system i t s e l f

- that

collects

simulating the ES deduction process.

expert e x t r a c t s and t r a n s l a t e s t h e

necessary d a t a .

The

ES This

facilities

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 14 described

in

Stages 2

and 3 a r e n e c e s s a r y f o r t h e implementation o f

t i g h t coupling. This completes our general d i s c u s s i o n o f g e t t i n g d a t a i n t o e x p e r t

In

systems.

t h e following s u b s e c t i o n , we d e s c r i b e an a p p l i c a t i o n o f

t h i s stage-wise approach t o the problan o f d a t a s t o r a g e and for

a Prolog-based

systems.

retrieval

ex p e r t system using re1 a t i o n a l database manag anent

Most o f t h e mechanisms described below have been implemented

and

t e s t e d i n experimental . Prolog programs presented in [ V a s s i l iou e t

al.

19831.

Illustration

- Data ----

For A Prolog-based

B r i e f Introduction To Prolog

3.2.1

Expert System

-

Prolog is a progranming language based on a s u b s e t o f f i r s t - o r d e r logic,

the

brn-clauses.

Rowhly,

to

dropping

d i s j u?c t i o n from l o g i c a l consequents, and t a l k i n g only about

definite

an teced ent-consequent r e l a t i o n s h i p s .

this

amounts

There a r e t h r e e b a s i c statements

i n Prolog [Nau 1983 1: :- P.

m ean s

P i s a goal to b e paved

P.

m ean s

P i s an a s s e r t i o n

P :- Q,R,S

m ean s

Q and R and S imply P

A Prolog program is a sequence o f

considered

to

be

clauses

universally quantified.

d e e l a r a t i v e and a procedural i n t e r p r e t a t i o n

.

A

aose

variables

clause

are

has b o t h

a

nus,

P :- Q , R,S

can b e read d e c l a r a t i v e l y :

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 15 P i s true i f Q and R and S a r e true

o r , procedurally: To s a t i s f y P f i r s t s a t i s f y Q and R and S. Since more than one clause may be needed to (goal)

, there

define

a

predicate

i s a corresponding AND/OR graph for each predicate.

The

execution o f a progran involves a depth-first search with backtracking on

these

graphs,

and

uses

the

unification

process

based on the

resolution principle [Robinson 19651. A knowledge base can be represented i n first-order l o g i c formulas

a r e suitably interpreted.

the knowledge representation. that

it

if

the

m e r e f o r e , Prolog may be used for

Furthermore, Prolog has

the

advantage

already has a very powerful inference engine i n place.

unification algorithm used i n Prolog

is more

powerful

than

The

simple

pattern matching algorithms common i n production systems. %

-

Elementary Data Managanent

3.2.2 On

the

enhancements,

simplest

level

s t a g e 1,

represented d i r e c t l y

the

a s the

of

---- Naive

Use Of Prolog

database mole

expert

managanent

population system

-

of

facilities

facts

database.

can

While

be this

approach i s f e a s i b l e for any expert system, using Prolog can take us a step further. progrms,

Since Prolog does n o t

i t can

distinguish

between

data

and

be used both a s a ( r e l a t i o n a l ) data representation

and as a query 1anguage.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 16 Relational databases can be represented d i r e c t l y i n Prolog 1isting

of

all

instantiated

tuples.

For instance, consider

small

portion

of

a

to r e l a t i o n

predicates corresponding a

as

the

insurance

d atab ase :

customer(3163, s m i t h , 1935, london) customer(3154, jones, 1942, a t l a n t a )

...

covered by( 3 1 63, * term i n sur ancel ) covered-by(3163, *whole l i f e annuity1 )

... -

Q

While general r e l a t i o n a l schemas a r e defined only the

predicate

nmes,

define "generalized viewst1 via additional rules. DBMS t o allow f o r more f l e x i b l e data access.

v a r i a b l e s they respect t o the programming

can

[Date 19821 i n

Views

are

used

in

Prolog r u l e s d i f f e r kom that

with

the

use

of

accept par m e t e r s making them equiv a1 ent i n t h i s

selector

languages

by

can be used a s a pwerful mechanism to

Prolog

t r a d i t i o n a l view mechanisms

implicitly

language

[Mall

et

construct

proposed

.

Consider the following

a1

19831.

for

database

exanples:

-

covered-by-many( Custom-id) : covered by( Custom i d , Benefit1 ) coveredmby(Custom-id, Benefit21, not( Eienefitl = ~ e n e f i t 2 ) . special-customer( C-id) :- not( covered by many(C i d ) ) or ( custom erTc i d ,N 1, Y?, 1ondon) , customer( C-id - ,N2,Y2,paris) 1

.

lhe f i r s t of these Prolog statements can b e read as: with

customer

" A customer

i d Custom-i d ( a variable) i s covered by many b e n e f i t s ,

i f he/she i s covered by a t l e a s t t w o b e n e f i t s Similarly, the second exanple reads:

aich

are

different1*.

-

* * A customer i s special i f he/she

.

is not covered b y many b e n e f i t s and l i v e s i n Paris o r bndonT*

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 17

I n a d d i t i o n t o representing d a t a and view d e f i n i t i o n s , Prolog can also

d i r e c t l y r e p r e s e n t q u e r i e s about base d a t a o r views.

A query i s

simply a g o a l : :- covered-by-many(C-i d ) .

which when executed w i l l r e t u r n in C-i d the customer id o f a

customer

who is covered by many i n s u r a n c e b e n e f i t s .

-- -A -DBMS

Generalized Data Managanent

3.2.3

-

Implemented In Prolop

A f u r t h e r s t e p towards i n t e g r a t i n g the d e d u c t i v e c a p a b i l i t i e s

Prolog

with

of

DBMS c a p a b i l i t i e s can b e taken by implementing a g e n e r a l

purpose DBMS d i r e c t l y i n Prolog

-

s t a g e 2 i n our approach This can

be

done q u i t e e a s i l y , and provides a means o f adding f l e x i b l e and general d a t a access mechanisms t o t h e i n f e r e n c e engine without t h e need f o r

a

compl i c ated i n t e r f a c e t o e x t e r n a l database f i l e s . In order to e f f e c t t h i s s t a g e

i s the

requirement

r e 1 a t i o n a l database. define

definition

in

of

Given such a

ES-DBMS an

coupling,

first

the

internal representation o f a

representation

scheme,

one

can

any nunber o f generalized o p e r a t i o n s t o provide t h e f a c i l i t i e s

o f a DBMS.

Our approach [ V a s s i l i o u e t a l ,

19831

provides

a

simple

way t o s p e c i f y g ener a1 ized re1 a t i o n a l o p e r a t o r s a c t i n g on any r e l a t i o n and s e t

of

attributes.

user-oriented

view

Prolog

programs

map

from

of

logical

simpler,

o f t h e o p e r a t i o n s t o t h e i r implanentation f o r t h e

p a r t i c u l a r database and r e p r e s e n t a t i o n scheme chosen. degree

this

data

This p r o v i d e s a

independence a s i n t h e t r a d i t i o n a l l e v e l l e d

a r c h i t e c t u r e o f DBMSs [Date 19821.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 18 A more a p p l i c a t i o n - s p e c i f i c

Yokota 19821.

s o l u t i o n i s proposed in [ K u n i f u j i and

[Kowalski 1981 I d e t a i l s t h e use o f Prolog f o r i n t e g r i t y

c o n s t r a i n t s , d a t a b a s e upd a t e s and h i s t o r i c a l . d a t a b a s e s . Another efficiency. s t r a t e g y ( e .g schemes,

advantage

is

It

.,

of

possible

B-Trees)

hashing,

a

etc.

,

and

generalized

t o d e v i s e a more s o p h i s t i c a t e d s t o r a g e perhaps

to

use

19781.

[Tarnlund

a m il i a r y

Ihe

work

indexing

appl i c a t i o n s ,

read

into

the

internal

database

can

be

However, t h e s e s t r a t e g i e s a r e n o t e a s i l y g e n e r a l i z a b l e .

Loo se Co up1 ing Conceptually t h e existing

in

schemes t h a t g u i d e d e c i s i o n s about a i c h p o r t i o n s o f

e x t e r n a l f i l e s should b e devised.

indexing

reported

[ P e r e i r a and Porto 1 982 1 demonstrates t h a t f o r s p e c i f i c clever

is

Prolog

DBMS within

With -

Prolog- based simplest

to

solution

the

--

Re1 a t i o n a l DBMS problem

of

using

d a t a b a s e s i s t o e x t r a c t a snapshot o f t h e r e q u i r e d d a t a from

the DBMS b e f o r e t h e ES b e g i n s t o m r k on a s e t o f r e l a t e d s t a g e 3 of t h e approach.

problems

-

The p o r t i o n o f t h e d a t a b a s e is s t o r e d in t h e

i n t e r n a l database o f t h e ES a s d e s c r i b e d p r e v i o u s l y with Prolog. For t h i s s c e n a r i o to m r k , t h e following mechanisms a r e r e q u i r e d :

1.

Link t o a DBMS w i t h unload f a c i l i t i e s ;

2,

Automatic g e n e r a t i o n o f an ES d atab ase ;

3.

Knowing i n advance which p o r t i o n o f t h e d a t a b a s e is r e q u i r e d f o r ex t r a c t i o n ( s t a t i c d e c i s i o n )

database

kom

the

extracted

.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 19

3.2.5

T i g h t Coup1 ing o f-a Prolog-based For t h e f o u r t h and f i n a l

implenented

with

Prolog,

stage

-

ES w i t h a R e l a t i o n a l BMS

A - -

of

our

approach

as

has

been

we c o n s i d e r a v e r y l a r g e e x i s t i n g database

s t o r e d under a r e l a t i o n a l commercial

DBMS.

comm~n?ication channel

ES

between

the

The

use

of

the

and t h e DBMS w i l l a s s m e t h e

r e d i r e c t i o n o f a l l ES q u e r i e s , on p r e d i c a t e s

representing

re1 a t i o n s ,

Any such approach i s bound

t o t h e DBMS f o r stored database r e l a t i o n s .

to f a c e a t l e a s t t m major d i f f i c u l t i e s :

naive

t h e nmber o f database c a l l s

w i l l b e p r o h i b i t e v e l y many ( each Prolog goal corresponds t o a s e p a r a t e

DBMS c a l l )

, and

impossible

to

recursion)

it

t h e complexity o f Prolog g o a l s ( q u e r i e s ) may make translate

them

directly

to

DBMS q u e r i e s

(e.g.

.

These d i f f i c u l t i e s can b e executing

database

whenever r e q u i r e d approach o f

by

Prolog

calls the

overcome

rather ES.

than

In

is replaced

by

executing

essence, by

collecting

the

and

them pure

jointly

separately depth-first

a combination o f a d e p t h - f i r s t

reasoning and a b r e a d t h - f i r s t d a t a b a s e c a l l execution [ R e i t e r 19781.

I n p r a c t i c e , we use an analganation o f t h e ES l a n g u a g e om

meta-lang uag e ,

[Weyhrauch 19801. requiring

based

on

the

' r e f 1 ec t i o n

its

pr i n c i p l e'

This allows f o r a d e f e r r e d e v a l u a t i o n o f p r e d i c a t e s

database c a l l s , w h i l e a t t h e same time t h e i n f e r e n c e engine

(theorem prover) o f t h e ES i s m r k i n g

.

Since a l l i n f e r e n c e s a r e per formed a t t h e meta-level of

with

object-level

proofs)

, we

( simulation

a r e a b l e t o b r i n g t h e complex ES q u e r i e s

i n t o a form where some o p t i m i z a t i o n and d i r e c t t r a n s l a t i o n t o a s e t o f

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 20

is

DBMS q u e r i e s

feasible.

Note,

that

t h i s p o i n t i t w u l d be

at

d e s i r a b l e t o have an i n t e l l i g e n t DBMS t h a t c o l l e c t i v e l y o p t i m i z e s execution

of

all

the

queries.

We

shall

discuss

such

the

ideas in

s e c t i o n 4 . 3 , below. The q u e r i e s a r e d i r e c t e d to the DBMS, answers

to

transformed The

ES

can

invocation

are

obtained

and

the format accepted by t h e ES f o r i n t e r n a l d a t a b a s e s ,

continue

i t s reasoning

at

the

object

level.

Each

o f p r e d i c a t e s corresponding to database r e l a t i o n s w i l l now

amount t o an ES database g o a l , r a t h e r than a c a l l to an e x t e r n a l DBMS. By t i g h t coupling, we a r e now

able

to

use

an

existing

large

r e l a t i o n a l database a s an extension o f any i n t e r n a l Prolog database.

4.0

EXPERTS FOR DATABASE SYSTEMS When compared to requirements f o r advanced business

such

as

decision

support

for

managerial

users,

we a

c u r r e n t database

In

managanent systems d i s p l a y a nunber o f weaknesses.

applications

this

section,

h i g h l i g h t t h e s e problans and i d e n t i f y some s t r a t e g i e s how t h e y can

b e overcome by t h e use o f rule-based detail

techniques.

We s h a l l not g o i n t o

about o t h e r a r t i f i c i a l i n t e l l i g e n c e approaches such a s n a t u r a l

language modelling

inter faces techniques

[ H a r r i s 1977, [Brodie

and

Wahlster 1981 I

or

conceptual

Z i l l e s 1980, Brodie e t a l .

19831

which c o n t r i b u t e t o b e t t e r d a t a b a s e d e s i g n and usage.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 21 4, I

Problems With Current Database Systems With t h e advent o f d e c i s i o n s u p p o r t systems and t h e p - o l i f e r a t i o n

of

computers and d a t a b a s e s i n g e n e r a l , t h e t a r g e t user p o p u l a t i o n f o r

d a t a b a s e query l a n g u a g e s h a s user s t s u c h

changed :

there

a r e more

( potential)

a s managers and a p p l i c a t i o n s p e c i a l i s t s rd?o have a h i g h

d e g r e e o f a p p l i c a t i o n knowledge b u t l i t t l e p a t i e n c e

to

acquire

much

f a m i l i a r i t y w i t h programming c o n c e p t s EJarke and V a s s i l i o u 19821, For such user s t h i g her- l e v el query 1ang uag es a r e r e q u i r e d

which

a l l o w powerful o p e r a t i o n s without denanding major i n t e r a c t i o n s k i l l s . B e s i d e s t h e more ergonomic approach t a k e n generation

[Vassiliou

languages

by

and

the

so-called

J a r k e 19831,

second

reasoning

c a p a b i l i t i e s embedded i n t h e system could a l l o w f o r a wider r a n g e

and

more c o n c i s e formulation o f q u e r i e s . A second problen a r i s e s i f u s e r s want f a i r l y

to

be

performed

language. language

on

Currently, [Schnidt

et

the

data

they

which

can

only

complex

a r e n o t provided b y t h e q u e r y

a

use

database

This i s

not

easy

s p e c i a l i s t s and o f t e n also p r e v e n t s t h e use o f DBMS

non-computer

report

progrmming

a l . 19821 i n s t e a d o f an ad-hoc q u e r y l a n g u a g e ,

and program t h e o p e r a t i o n s on t h e d a t a e x p l i c i t l y . for

operations

generation

f a c i l i t i e s burdening

the

user

with

even

more

programming t a s k s . A t h i r d d i f f i c u l t y w i t h most c u r r e n t

for

operations

performed

in

a context.

p a r t n e r model o f t h e user CWahlster 1981 I.

DBMS i s t h e lack o f

support

The system d o e s n o t have a Neither d o e s it

recognize

t h a t m u l t i p l e u s e r s m r k i n g on t h e system a t t h e same time a s k q u e r i e s

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 22 t h a t could b e a n s w r e d c o l l e c t i v e l y [ J a r k e e t a1 user

who

wishes

to

issue

. 19821.

Finally,

a

a query t h a t i s based on t h e r e s u l t o f a

previous query h a s t o s t o r e t h a t r e s u l t e x p l i c i t l y . Besides n o t being a s user-supportive a s t h e y could systems could

be

improved

be,

database

towards more s a f e t y o f t h e d a t a and more

e f f i c i e n c y o f t h e execution o f read and w r i t e t r a n s a c t i o n s . Safety constraints, control.

i s guaranteed and

in

a

database

by maintaining

it

only rather

to

i s hard

combinations o f c o n s t r a i n t s e f f i c i e n t l y . support

enforcing

consistency through

Howver, many DBMS s u p p o r t

i n t e g r i t y c o n s t r a i n t s because

by

integrity concurrency

simple test

Also, most

types o f

more

complex

systems d o

not

t h e resubmission o f (sequences o f ) t r a n s a c t i o n s a f t e r f a i l u r e

o r user e r r o r s [Gray 1981 I. Efficiency mainly r e f e r s t o queries.

Many systems d o

the

time

response

evaluating

n o t recognize a l l s p e c i a l c a s e s o f query

s t r u c t u r e o r c o n t e n t t h a t permit t h e use o f e f f i c i e n t algorithms.

for

special-pur pose

Neither d o they recognize sequences o f q u e r i e s where t h e

output o f one can b e used a s t h e input o f t h e n e x t

(e.g.,

recursion,

.

focusing , e t c .)

In t h e n e x t t t m s u b s e c t i o n s , we e x p l o r e how rule-based technology can

b e used to improve on t h e s e problans.

A s i n s e c t i o n 3 , we t a k e a

stag +wise approach t o t h e problem going kom t h e t h e system towards i t s i n t e r n a l o p e r a t i o n s . o f t h e problans a r e

related

to

each o t h e r

user

interface

of

It w i l l b e seen t h a t many and

allow f o r

common

solution str ateg i e s .

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 23 Again

as in

s t r a t e g i e s can

s e c t i o n 3,

be

the

question

arises

whether

these

used only i n newly developed database systems, o r

whether an e x t e r n a l e x p e r t system can b e used v i a a b r i d g e on an

existing

database

system.

top o f

We s h a l l not address t h i s question i n

t h i s s e c t i o n but postpone it t o s e c t i o n 5

where

discuss general

we

i s s u e s common t o b o t h d i r e c t i o n s o f i n t e r a c t i o n .

4.2

Expert Application 1: I n t e l l i g e n t Database Usage In t h e past few y e a r s , much r e s e a r c h h a s been

making

database

i n t e r f a c e s more

intelligent.

directed ?he

towards

main t h r u s t i s

towards more d e d u c t i v e c a p a b i l i t i e s while l e s s i s known about enhanced f u n c t i o n s t o b e applied to r e t r i e v e d d a t a . Ihe f i r st DBMS allowed access o n l y t o t h e stored f i l e s ,

and model

f i e l d s ( r e l a t i o n s , t u p l e s , and a t t r i b u t e v a l u e s i n t h e r e l a t i o n a l of

data

[Codd 19701).

mechanisns t h a t

More r e c e n t

called

systems

provide

view

a l l o w t h e user to name windows through which o n l y a

s u b s s t o f t h e database i s v i s i b l e . often

records,

virtual

relations.

In t h e r e l a t i o n a l model, views a r e

For

exmple,

a virtual relation

"whole l i f e insurance bearerst1 can b e defined t h a t c o n t a i n s customers who have a whole 1i f e insurance policy. T r a d i t i o n a l view mechanisms a r e somewhat 1imited exanple,

a

separate

In

the

above

view o f customers m u l d have to b e defined f o r

each type o f i n s u r a n c e b e n e f i t . [Mall e t a1

.

?he s e l e c t o r

concept

. 1982 1 allows t h e d e f i n i t i o n o f views

introduced

in

with parameters.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 24 In our exanple, a s e l e c t o r

with-b e n e f i t (T ) for customer-re1 ation

can

be

defined

where

T can

.

insurancell or "term a n n u i t p

assme values

such a s

The user can now request o r

"whole l i f e alter

the

value o f a selected v a r i a b l e

customer[ w i t h-b e n e f i t ( "term annuity'!) I

which

defines

a

moving

window whose focus depends on t h e parameter

chosen. For querying facilities

in

(not

the

updating)

definitions,

and

the stored d a t a

can

offers

similar

view" r u l e s presented i n section 3 .

"generalized

The Prolog inference engine

Prolog

purposes,

perform

deductions

on

these

view

thus answer q u e r i e s n o t immediately answerable kom

.

A nunber o f r e s e a r c h e r s have inv e s t i g ated these po s s i b il i t i e s and

some

implemented

systems e x i s t .

The s o l u t i o n s can b e c l a s s i f i e d in

dr

much t h a same way a s t h e

[Warren 1981 I;

There

are:

l o o s e l y coupled systems where t h e ES d o e s a l l i t s mrk

the

DBMS

is

called

[Chang 19781,

[ R e i t e r 19781, CHenschen and Naqvi 19821, and

s e c t i o n 3.

in

systems containing both t h e ES and the DBMS EMinker 19781,

integrated

before

s t a g e s given

finally

the

tightly

coupled

i n t e r l e a v e s deduction i n the ES with

system

[Fishman

DADM

partial

E C r i s h m a n 19781,

and

Naqvi 19821;

EKellogg 19821 t h a t

search

in

the

DBMS.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 25 Besides offering

the

user

a

systems can a l s o s u p p o r t o t h e r

d e d u c t i v e formal query language, s u c h high-level

user

interfaces

such

as

n a t u r a l language [Sagalowicz 19771. Other approaches a i c h a d d i t i o n a l l y a d d r e s s i n t e l l i g e n t mechanisms w i l l b e described in s e c t i o n 4.3.2,

updating

below. .)

4.3

Ex p e r t Application 2: In t e l l i g en t Database Operation The a d d i t i o n o f g e n e r a l

rules

and

i n f e r e n c e mechanisms t o

a

d a t a b a s e system may improve t h e user i n t e r f a c e , b u t i t a l s o p r e s e n t s a c h a l l e n g e t o t h e database implenentationresearcher goal

.

i s the

Not only

to execute d e d u c t i v e processing e f f i c i e n t l y b u t t h e new approach

can b e e x p l o i t e d a s we11 to improve t h e execution o f more database o p e r a t i o n s . optimization

We i n v e s t i g a t e t m a r e a s :

methods,

and

deduction-based

traditional

deduc tion-based

integrity

checking

query for

upd a t e t r an sac t i o n s .

4.3.1

Query Optimization

-

I t i s o f foremost importance t o a DBMS t h a t it c o n t a i n s evaluation

subsystem

which

identifies

To t h i s purpose, a query

simplified,

transformed

fast

special-pur pose

Simplification

and

in

algoriths

query

t h e f a s t e s t way t o execute a

submitted query. and

a

is

usually

standardized,

a way t h a t makes t h e a p p l i c a t i o n o f feasible

[J a r k e

and

Koch 19821.

s t a n d a r d i z a t i o n can b e q u i t e ccanplex i f d i f f i c u l t

q u e r i e s a r e asked.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 26 A d e d u c t i v e component may use meta r u l e s t h a t

guide

among the many a p p l i c a b l e query transformation r u l e s . and

[ R e i t e r 19781 d e s c r i b e

simplification

applications

C Warren 1981 ]

step.

transformation heuristics o f t e s t i n g

range n e s t i n g howver,

that

combines b o t h

i s deterministic

compiler.

An

and

to

extension

to

deduction

the

f i r st, and

.

generalized ideas.

contained

compare

heuristic

called

The deduction mechanism, in

t h i s mechanism

g e n e r a t e a l t e r n a t i v e s t r a t e g i e s and

[Grishman 19781

sharp r e s t r i c t i o n s

a

choice

implements t h e well-known query

separating detachable sub quer i e s i n log i c [ J a r k e and Koch 19831 develop

of

the

the

query

language

w i l l use meta r u l e s t o their

evaluation

costs

based on knowledge about s t o r a g e s t r u c t u r e s and database s t a t i s t i c s . Another transformation s t r a t e g y t h a t u s e s deduction direct

use

of

[ R e i t e r 1978 1.

the

makes more

g e n e r a l r u l e s t h a t d e f i n e t h e database i n t e n s i o n

Semantic query processing [King 1979,

1981 1,

[Hammer

Zdonik 1980 1 a p p l i e s t h e i n t e g r i t y c o n s t r a i n t s o f t h e d a t a b a s e t o

and

s i m p l i f y t h e execution o f q u e r i e s . Assume, f o r exanple, t h a t t h e ES c o n t a i n s a l e g a l c o n s t r a i n t t h a t a

minor

may n o t

g e t more

than

$3000 annuity income.

database i s queried for customers with a n n u i t i e s o f more (or

$5000,

etc.)

, minors

can b e excluded from the search.

on t h e physical database s t r u c t u r e , t h i s may o r execution.

Thus,

this

strategy

appl i c ation o f c o n s t r a i n t s

may n o t

I f now t h e than

$3000

Depending speed

up

a l s o n e e d s m e t a rules t o g u i d e t h e

.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 27 F i n a l l y , t h e simultaneous optimization o f m u l t i p l e q u e r i e s [Jarke et

al.

19821 can b e supported by an ES.

We s t r a t e g y i s t o raroanber

selected query r e s u l t s t o b e used l a t e r [ F i n k e l s t e i n 19821, another to recognize

common

subexpressions

i n a b a t c h o f queries.

A l a s t area

where e x p e r t knowledge i s h e l p f u l is t h e complex problgn o f

selecting

-

physical s t o r a g e s t r u c t u r e s and access paths [Paige 19821.

Transaction Managenent

4.3.2

-

Changes i n the database must obey t h e static

i . . ,

laws

defined

d a t a v a l u e , r e f e r e n t i a l ) and dynamic ( i . e , ,

change) i n t e g r i t y c o n s t r a i n t s . the

general

by

d a t a value

The DBMS h a s t o determine i s which

of

many general laws apply t o a s p e c i f i c operation on s p e c i f i c d a t a .

Ag ain

,a

pattern-matching

[Nicolas

oriented

deduction

p-ocess

and Yazdanian 19781, [Henschen e t a l , 19821.

b e used to determine the p s s i b l e d e l a y o f

can

be

Meta r u l e s can

i n t e g r i t y checking

the changed data i s a c t u a l l y needed [Lafue 1982 1.

used

until

While t h i s i d e a may

improve system e f f i c i e n c y it i s unclear whether it i s f e a s i b l e from managenent

standpoint

to

a

keep t h e i n t e g r i t y o f t h e database unknown

over an extended period of t i m e , A,second question a1 so a f f e c t s t h e user i n t e r f a c e o f t h e how t o

react

alternatives:

t o violations?

system:

[Nicolas and Yazdanian 19781 see t h r e e

r e j e c t the operation;

accept t h e o p e r a t i o n b u t d o

not

change the database u n t i l f u r t h e r o p e r a t i o n s a r e submitted so t h a t t h e t r a n s a c t i o n a s a whole l e a v e s t h e [Gray 1981 I;

or

trigger

database

automatic

changes

bring the database back t o a c o n s i s t e n t s t a t e .

in

a

consistent

state

t o other data i t e n s t o ,

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 28 The a p p r o p r i a t e c h o i c e depends on many f a c t o r s partially

controlled

knowledge-based

by meta

database

rules

and

architecture

which

can

be

p a r t i a l l y b y t h e user.

p r o p sed

EJarke

in

A

and

Shalev 1983 1 c o n t a i n s an input manag anent system t o avoid unnecessary resubmission o f t r a n s a c t i o n s i n such c a s e s . Language c o n s t r u c t s such a s t h e s e l e c t o r mechanism s e c t i o n 4.2 control. to

can

be

optimization candidate

and

update

physical

control.

access

paths

Second,

the

selector

defines

which may lend themselves t o "view of

answrs to

s e l e c t i o n p-edicate is s t o r e d a s a physical. access

parameterized

[ P a i g e 19821 d e s c r i b e s a method of " f i n i t e d i f f e r e n c i n g n

dynamically

used

a p p l i c a b l e i n t e g r i t y c o n s t r a i n t s f o r semantic query

indexing" [Roussopoulos 19821 in which t h e c o l l e c t i o n

path.

in

used for both query o p t i m i z a t i o n and t r a n s a c t i o n

F i r s t , t h e d e f i n i t i o n predicate o f t h e s e l e c t o r ean b e

identify the

the

described

generates

which

and m a i n t a i n s views f o r query o p t i m i z a t i o n and 1

i n t e g r i t y c o n t r o l purposes.

5.0

ARCHITECTURAL AND TECHNICAL ISSUES I N COUPLING To

smmarize

managgnent,

it

our

can

overview o f

are

very

similar.

proposed s t r a t e g i e s i n feasible.

(k,

the

database

b e said t h a t t h e techniques used both within and

between t h e t m proposed s t a g e s o f operation

ES a p p l i c a t i o n s t o

a

other

intelligent

use

and

intelligent

A system t h a t i n c o r p o r a t e s most o f t h e

uniform hand,

architecture such

systems

should muld

be c l e a r l y need t h e same

coupling mechanisms a s t h e ones described in s e c t i o n 3 which might

g r e a t l y b e n e f i t from more i n t e l l i g e n t d a t a b a s e s .

in

turn

'berefore, i n

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 29 t h i s l a s t s e c t i o n o f t h e paper we pose

some

looking

ES

at

the

interaction

between

architectural

and

questions

B M S from

a

higher

per spec t i v e. Cne might t h i n k t h a t t h e natural a r c h i t e c t u r e would be a system written i n and usable through one language:

integrated

an extended database programming language [Schnidt e t deductive

capabilities,

or

an

uniform either

a l . 19821 with

ES language with general programming

c a p a b i l i t i e s , such a s Prolog [Kowal ski 1981, Walker 1 9831. However,

not

only has

each o f

these

complex computations i n Prolog), but a l s o whole

methods.

purpose

own

it awkward to use i n c e r t a i n subsystems (e.g.,

i d i o s y n c r a s i e s making

the

its

languages

of

exploiting

We t h e r e f o r e have

to

this

existing

exclu3e

architecture defeats DBMS

this

and

quantitative

theoretically

elegant

alternative. Three coup1 ing

candidate of

a r c h i t e c t u r e s have been

independent

systems.

This

where processing t a k e s place and how t h e

identified

for

the

c a t e g o r i z a t i o n i s based on interaction

i s controlled.

We d i s c u s s each a r c h i t e c t u r e i n t u r n . Cne a r c h i t e c t u r e c a l l s f o r a t o t a l d i s t r i b u t i o n o f processing and control.

The

two

systems i n t e r a c t by exchanging messages, a s i n an

"actors approach CHewitt 1976, m a r 19831. master

to

s l a v e r e 1 a t i o n s h i p between t h e o r i g i n a t o r and the r e c e i v e r

o f t h e message, operated degree

but

both

independently. of

Each i n t e r a c t i o n assumes a

appl i c a t i o n

systems a r e

self-contained

and

can

be

An advantage o f t h i s a r c h i t e c t u r e is a l a r g e

and

system

independence,

allowing

for

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

transportability

to

other

introduce

The

the

duplication

dangers o f

How much each system each

capabilities is

other's

system has t o know about t h e consideration.

and D B M S .

ES

of

knowledge

imprtant

representations

may

inconsistency

and

namely

redundancy,

an

incmpatibil ity. A t t h e o t h e r extreme, concentration o f processing and c o n t r o l ,

system

integration

can b e envisioned.

Ckte o f t h e t m subsystems (ES

o r DBMS) may assume a more daninant r o l e . been

followed

a

This approach h a s n a t u r a l l y

by most r e s e a r c h e r s who focus on one d i r e c t i o n o f t h e

i n t e r a c t i o n between ES and DBMS, f o r exanple IChang 1978, Fordyce Kellogg19821.

Sullivan 1983,

v a r i a b l e d i s t r i b u t i o n o f labor

The

architecture

(e.g.

where

suggests

a

and more

is

query o p t i m i z a t i o n

done) than t h e t y p i c a l l y predetermined l a b o r s e p a r a t i o n o f d i s t r i b u t e d systems.

There

architecture, with

this

i s much

and

potential

a t t h e expense o f t r a n s p o r t a b i l i t y .

is the

solution

sub system s

flexibility

integration

of

in

such

an

Another d i f f i c u l t y

additional

external

.

F i n a l l y , i n a t h i r d a r c h i t e c t u r e , processing i s d i s t r i b u t e d control

is now t h e

supervisor progran. necessary

steps

translations)

, and

In for

responsibility o f essence,

the

interfacing

a

separate

supervisor

ES w i t h

the

subsystem,

performs the

manages t h e i n t e r a c t i o n between them.

but

all

DBMS

a the

(e.g

.,

This a p p e a r s

a s a compromise a r c h i t e c t u r e with t h e main advantage o f allowing f o r a snoother i n t e r a c t i o n with o t h e r subsystems. mathematical

Such

sub systems i n c l u d e

models and modules f o r knowledge a c q u i s i t i o n , g e n e r a t i o n

o f a l t e r n a t i v e s o l u t i o n s [Reitman 1982 I,

database

design,

and

user

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 31 interfaces.

?he

challenging

research

question

wuld

be

how t o

implement a s u p e r v i s o r t h a t makes f u l l use o f t h e c a p a b i l i t i e s o f

the

v a r i o u s subsystems without d u p l i c a t i n g t h e i r f e a t u r e s . Within e a c h a r c h i t e c t u r e , means must

be

to

provided

translate

h o w l e d g e r e p r e s e n t a t i o n s and t r a n s a c t i o n r e q u e s t s between sub systems. A s pointed o u t i n s m t i o n 3 , t h e s i m i l a r i t y

relational database

data models

optimization

model are

steps

makes t h i s used,

between

Prolog

and

t a s k r e l a t i v e l y easy.

however,

become n e c e s s a r y .

intermediate

the

If o t h e r

translation

and

Depending on t h e a r c h i t e c t u r e

c h o s e n , i t must b e decided which subsystem

is responsible

for

this

task.

6.0

CONCLUDING REMARKS S e v e r a l p r a c t i c a l b e n e f i t s from t h e

cooperative

use

systems with d a t a b a s e management s y s t e m s were i d e n t i f i e d .

of

expert

?he o v e r a l l

g o a l o f our m r k i s an advanced system e f f e c t i v e l y s u p p o r t i n g b u s i n e s s decisions.

Such

a system m u l d i n t e g r a t e d a t a b a s e managanent, model

managanent, and e x p e r t system technology within t h e same a r c h i t e c t u r e . A t New York U n i v e r s i t y , w e a r e e x p l o r i n g s e v e r a l

t h i s goal.

strategies

for

A s t a g e - w i s e a p p r o a c h r e q u i r i n g simultaneous r e s e a r c h o n

complanentary t o p i c s a s o u t l i n e d i n t h i s paper i s being

designed

and

implemented.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 32

The w o r k r e p o r t e d i n t h i s paper i s s u p p o r t e d in p a r t b y a j o i n t s t u d y w i t h I n t e r n a t i o n a l Ebsiness Machines Corporation. Jim C l i f f o r d desig ned and implemented t h e i n t e r n a l r e 1 a t i o n a l d a t a b a s e system in Prolog and co-developed the staged approach t o g e t t i n g d a t a i n t o t h e e x p e r t system. Taracad Sivasankaran d i d a major p a r t of+ t h e i n i t i a l d e s i g n and preliminary implementation o f t h e i n s u r a n c e e x p e r t system used a s an ex m p l e i n t h i s paper. We a1 so thank t h e o t h e r p r o j e c t members, Hank Lucas, Ted S t o h r , Norm White, and e s p e c i a l l y Walt Reitman f o r encour ag ement and many h e l p f u l d i s c u s s i o n s . F i n a l l y , we thank S i b y l l e Hentsch o f Hamburg U n i v e r s i t y f o r aquainting us with t h e i n t r i c a c i e s o f volcanoes o f f Iceland.

References 1.

K. A. Bowen, R. A. Kowalski , Amalganating Language and Metalanguage i n Logic ProgrammingB, Logic Programming, K. Clark and S.A. Tarnlund , ed s., Academic P r e s s , 1982.

2.

R.Brachnan, "Q1 t h e Epistemological S t a t u s o f Semantic Netmrks", i n N . ~ . F i n d l e + (ed .), A s s o c i a t i v e N e t m r k s : Representation and Use o f Knowledge b y Computer, Acadanic P r e s s , 1977, 3-50.

--

-

3.

M.Brodie, S. Z i l l e s , Proc. Workshop on Data Abstraction, Databases, and Conceptual b d e l l i n g , SIGMOD Record 1 1, 2 (1 980 1.

4.

M.Brodie, J.Mylopoulos, J.W,Schnidt Conceptual b d e l 1ing , Spring er 1 983.

5.

B. Chandrasekaran , "Expert Systems: Matching Techniques to Tasksn, NYU Symposiun on A r t i f i c i a l I n t e l l i g e n c e A p p l i c a t i o n s f o r E u s i n e s s , New York, May 1983.

6.

C.L.Chang , "DEDUCE 2: F u r t h e r I n v e s t i g a t i o n s o f Deduction i n Relational Databasestt, i n H - G a l l a i r e , J.Minker ( 4 s . ) , Logic and Databases, Plenun 1978, 201-236.

7.

W.F. Clocksin, and C. S.Mellish, Progranming 1981.

8.

E.F. Codd, " A R e l a t i o n a l b d e l f o r Large Shared Data l h s e s f t , CACM, Vol.13, b . 6 , June 1970, 377-387.

9.

V. Dhar , "Designing an I n t e l l i g e n t Decision Support System f o r Long Range Planning: An A r t i f i c i a l I n t e l l i g e n c e Approachtt, Ph.D. Thesis Overview Report, P i t t s b u r g h , February 1983,

10.

R.I)avis, "Expert Systems: Where a r e we? And where d o we g o from here?", Proc. 7 t h IJCAI, Vancouver, August 1981.

( 4 s . ), Perspectives

on

--

in

Prolog,

Springer

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 3 3

"Common Expression Analysis in Database Proc. ACM-SIGMOD Conf., Orlando, Fl., 1982,

11.

S.Finkelstein, Application&\ 235-245.

12.

D.Fishman, S.Naqvi, "An I n t e l l i g e n t Database Proc. Workshop on Logical Bases f o r Data December 1 982.

System: AIDSn, Bases, Toulouse,

----

13.

K. J.Fordyce, G.A. S u l l i v a n , " A r t i f i c i a l I n t e l l i g e n c e i n Decision Support Systems: Presentation o f an A 1 Technology and i t s Application in Working DSSn, unpublished manuscript, Poughkeepsie, April 1983.

14.

H.Gallaire,

15.

J. Gray, " ' h e Transaction Concept : V i r t u e s Proc. - 7th VLDB Conf., Cannes 1981, 144-1 54.

16.

R . G r i s h m a n , "?he S i m p l i f i c a t i o n o f R e t r i e v a l Requests Generated by Question Ansmring Systems", Proc. 4th VLDB Conf., Berlin 1978, 400-406.

17.

B.Grosz, "TEAM Extended Abstractff9 - Proc. Philadelphia Database I n t e r f a c e Workshop (P.Buneman , ed .), P h i l a d e l p h i a , October 1982.

1 8.

J.Minker (eds.)

, Logic

and Databases, Plenun 1978.

---

and

Limitationstt ,

---

M. Hammer, S. Zdonik:

"KnowledgeBased Query Processingtf, Proc 1980, 137-147.

6 t h VLDB Conf., Montreal ---

.

19.

L. R. H a r r i s , "User-Oriented Language Query System", 303-312.

20.

L.Henschen , W.McCune, S. Naqvi, "Compiling Constraint-Checking on Logical Formulas from First-Order Formulastf, Proc. Workshop Bases f o r Data Bases, Toulouse, December 1982.

21.

L.Henszhen, S.Naqvi, "C)n Compiling First-Order Databasestf, Proc. Workshop Bases, Toulouse , December 1982,

22.

C.Hewitt, lfViewing Control S t r u c t u r e s a s P a t t e r n s o f k s s a g e s t l , A 1 Memo 410, MIT, Cambridge, December 1 976.

23.

M. J a r k e , J. Koch, Survey o f Query Optimization i n Centralized Database Systemstf , NYU Working Paper S e r i e s , CRIS#44, GBA 82-73 (CR), November 1982.

24.

M.Jarke, J.Koch, "Range Nesting A F a s t Method to Evaluate Quantified Queriestf9 - Proc. A C M S I G M O D Conf,, San J o s e , May 1983.

25.

M. J a r k e , J.Koch, M.Mal1, J.W.Schnidt, "Query Optimization Research i n t h e Database Programming Languages (DBPL) P r o j e c t n , Database Engineering 5 (September 1 9 8 2 ) , 11-14.

Data Base Query with t h e ROBOT Natural Tokyo 1977,

Proc. 3rd VLDB Conf.,

-

Queries i n Recursive Logical --Bases f o r Data

on

Passing

Q

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 34

M. Jarke , J. Shal ev , I * A Database Architecture for Supporting h s i n e s s pans action^^^, NYU Working Paper S e r i e s CRIS E l , G 3 A 8 3 4 7 ( C R ) , submitted for p u b l i c a t i o n . M.Jarke, Y.Vassiliou: "Choosing a Database submitted for p u b l i c a t i o n , Novgnber 1 982.

Query Language1*,

C.Kellogg: "Knowledge Managanent: A Practical h a l g a n Proc N C A I 1982. Knowledge and Data Base Technology" , -

.

of

J. J.King, **Exploring the Use o f Ibmain Knowledge f o r Query Processing Efficiency" , Technical Report STAN-CS-79-781, Stanford W i v e r s i t y , December 1979. J. J. King, "QUIST: A System for Semantic Query Optimization i n Relational Data Bases1*, Proc. 7th VLDB Conf., Cannes 1981, 510-51 7.

- ---

R. Kowal s k i , "Logic a s a Database Language1*, manuscript, Imperial College, London, J u l y 1981.

unpublished

S. Kunifuj i , H. Yokota, "Prolog and Relational Databases f o r F i f t h Generation Computer Systems1*, Proc. Workshop on Logical Bases f o r Data Bases, Toulouse, December 1982.

---

G. Lafue , " Logical Fomd a t i o n s f o r Delayed I n t e g r i t y Checking1*, Roc. Workshop on Logical Bases f o r Data Bases, Toulouse, December 1982.

-

----

M.Mal1, M.Reiaer, J.W.Schnidt, "Data S e l e c t i o n , Sharing, and Access Control in a Relational Scenariow, i n M.Brodie, J.Mylopoulos, J.W.Schnidt ( e d s . ) , Perspectives on Conceptual lubd e l l ing , Springer 1 983.

-

M.Minsky, " A Framewrk for Representing Knowledge?', ?he Psychology o f Computer Vision, P.H. Winston, ed., McGraw-Hill, New York, 1 9 E , 211-277. 36.

S.Naqvi, D.Fishrnan, L.Henschen, "An Improved Compiling Technique Bases f o r for First-Order Databases1*, Proc. Workshop on k g i c a l -Data Bases, Toulouse, December 1982, --

37.

D.Nau, "Expert Computer SystemsI1, Computer, February 1983, 63-85.

38.

J. 44. Nicolas, K. Yazdanian , I n t e g r i t y Checking in Deductive Databases1*, i n H.Gallaire, J.Minker (eds.) , Logic and Databases, P l e n m 1978, 325-3114,

39.

J.-M.Nicolas, R.Demolombe, " Q t h e S t a b i l i t y o f Relational Queries1*, Proc. Workshop on Logical Bases f o r Data Bases, Toulouse, December 1982.

-

--

-

--

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 35

-

40.

J.P.Olson, S.P.Rlis, "PROBWELL An Expert Advisor for Determining Problgns with Producing Wells" , Proc IBM S c i e n t i f i c / Ehg ineer ing Conference, Poug hkeepsie/N. Y. , November 1 982, 95-1 01

41.

R. Paig e , "Applications o f F i n i t e Differencing to Database I n t e g r i t y Control snd Query/Transaction Q t i m i z a t i o n " , Proc. Workshop on Logical Bases f o r Data -9Bases Toulouse, December 1982.

-

.

-

42.

L.M.Pereira, A.Porto, " A Prolog Implementation o f a Large System on a Small Machinev, Departmento d e Informatics, U n i v e r s i d d e Nova d e Lisboa, 1982.

43.

R. Reiter , "Deductive Question-Anstering on Relational Data Bases1', i n H.Gallaire, J. Minker (eds.) , Logic and Databases, Plenun 1978, 149-1 78.

44.

W . Reitman, "Applying A r t i f i c i a l I n t e l l i g e n c e t o Decision Support: Where Do the Good A l t e r n a t i v e s Come From?", i n M. J. Ginzberg , W. Reitman, E. A. Stohr ( e d s . ) , Decision Support Systems, North Holland Publ. Co., 1982.

45.

J. A. Robinson, " A Machine CX-iented Logic Based on Principler1,JACM, 1965, Vol.1, No.4, 23-41.

46.

N. Roussopulos, "View Indexing i n Relational Databases", ACM-TODS 7 (June 1982).

47.

D.Sagdlowicz, " I D A : An I n t e l l i g e n t Data 3rd VLDB Conf., Tokyo 1977, 293-302.

---

Access

the

Resolution

System",

Proc.

48.

J.W.Schnidt, M.Mal1, J. Koch, M. J a r k e , "Database Progranming Languages1', i n P.Bunanan ( e d . ) , Proc. Philzrfelphia Database I n t e r face Workshop, Philzrfelphia, October 1982.

49.

E.A. Stohr , N.H. White, "User I n t e r f a c e s f o r Decision Support An Overview" , I n t e r n a t i o n a l -J o u r n a l o f P o l i c y Analysis Systems: and In f ~ r m a t i o n Systems 6, 4 (1 982 , 393-423. -

50,

R. C. Schan k, Conceptual In formation Processing, North-Holland York, 1975.

51.

S. A. Tarnlund , "Log i c a l Basis f o r Data Bases1' , unpublished

52.

L.Travis, C.Kellogg, "Deductive Power i n Knoaedge Management Systems: I d e a s and Ex perimentstl, Proc Workshop on Logical Bases f o r Data Bases, Toulouse, December 1982.

---53.

,

, New 1978.

.

D . T s i c h r i t z i s , "Form Managanentfi 9 - CACM 25 (1 9821, 453-478.

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53

Page 36 54.

Y. V a s s i l i o u , J. C l i f f o r d , M. Jarke, " b w does System Get Its Data?", NW Working Paper CRIS 850 (CR), submitted for p u b l i c a t i o n .

55.

Y.Vassiliou; M. J a r k e , "Query Languages Y.Vassiliou ( e d .), Human Factors and Systems, Ablex, Norwood, N. J. 1983.

56.

W.Wahlster, "Natural Language A 1 Systems: S t a t e o f t h e Proc. Research Perspectivet1, i n J. Siekmann ( ed .I , Spring er 1 981

-

-

an

, GBA

Expert 83-26

A Taxonomqr'l , i n I n t e r a c t i v e Computer

.

Art and GWAI 81 --'

57.

A.Walker, "Data Bases, Expert Systems, and PROLOG1', NYU Symposim on A r t i f i c i a l I n t e l l i g e n c e Applications f o r Businessn, New York, May 1983.

58.

D. H. D.Warren , L.M. P e r e i r a , F. P e r e i r a , IIPROLOG The Language and i t s Implementation Compared with LISPn, Proc. Synp. on A 1 and Programming Languages, -SIGPLAN ~ o t i c e s , Vo1.12; - No .8, 1977, 109-1 15.

59.

D. H. D.Warren , " E f f i c i e n t Processing of I n t e r a c t i v e Relational Data Base a e r i e s Expressed i n Logicn, Proc. --7 t h VLDB Conf., Cannes 1981, 272-282.

60.

D.Waterman , F.Hayes-Roth ( eds) Systems, Academic P r e s s , 1979.

61.

R.Weyhrauch, I1Prolegmena to a Theory o f Mechanical Formal Reasoningn, A r t i f i c i a l I n t e l l i g e n c e , Vo1.13, 1980, 133-1 70.

-

,

Pattern

Directed

Inference

Center for Digital Economy Research Stem School of Business IVorking Paper IS-83-53