DAMAGE MODELS FOR CYCLIC AND DYNAMIC ...

1 downloads 0 Views 14MB Size Report
E, ν + damage threshold κ0 + damage parameters A, a. ˜σ = [(1 − D)−1/2 σ. D(1 − D)−1/2]D. +. 1. 3 [. (trσ)+. 1 − ηDH. + (trσ)−]1. ˜σ = E : ∈ f = ˆ∈ nl. − κ(trD).
DAMAGE MODELS FOR CYCLIC AND DYNAMIC LOADING Thermodynamics and induced anisotropy Part IV- Strain rate effect - Regularization aspects

Rodrigue Desmorat LMT Cachan ENS Cachan, 61 av. du Pt Wilson 94235 Cachan Cedex [email protected]

CISM course, Udine, may 2009

Numerical Modeling of Concrete Cracking

Outline I- Thermodynamics of damage (isotropic vs anisotropic damage) 1. 2. 3. 4. 5. 6.

Standard framework Non standard Mazars damage model Micro-defects closure effect : isotropic damage case Second order anisotropic damage Micro-defects closure effect: anisotropic damage case Positivity of intrinsic dissipation (second order damage case)

II- Cyclic and hysteretic isotropic damage models 1. 2. 3.

Laborderie model Damage model with internal sliding and friction Dissymmetry due to micro-cracks closure

III- An anisotropic damage model for concrete 1. 2. 3. 4.

Anisotropic damage model for monotonic applications Numerical scheme Effective damage – Extension to cyclic loading Multifiber modeling for (PSeudo-)Dynamics testing

IV- Strain rate effect - Regularization aspects 1. 2. 3. 4.

Nonlocal anisotropic damage model Visco-damage and strain rate effect Nonlocal versus visco-damage Internal time for nonlocal theories

III- STRAIN RATE EFFECT REGULARIZATION ASPECTS

IV- Strain rate effect - Regularization aspects 1. 2. 3. 4.

Nonlocal anisotropic damage model Visco-damage and strain rate effect Nonlocal versus visco-damage Internal time for nonlocal theories

1- NON LOCAL ANISOTROPIC DAMAGE MODEL Effective stress and elasticity law !

σ ˜ = (1 − D)−1/2 σ D (1 − D)−1/2

σ ˜ =E :"

"D

# $ 1 "tr σ#+ + + "tr σ#− 1 3 1 − ηDH

Nonlocal Mazars damage criterion (Pijaudier-Cabot Bazant 1987) f = !ˆ − κ(tr D) nl

1 !ˆnl (x) = Vr

!



α∞ (x − s) !ˆ(s) ds

! !ˆ = !!"+ : !!"+ Vr (x) =

!



α∞ (x − s)ds

Damage evolution law ˙ 2 ˙ = λ!"" D +

!

"κ # trD 0 κ(tr D) = a · tan + arctan aA a

Total of 5 material parameters: E, ν + damage threshold κ0 + damage parameters A, a

$

Nonlocal anisotropic damage model for concrete Effective stress and elasticity law !

σ ˜ = (1 − D)−1/2 σ D (1 − D)−1/2

σ ˜ =E :"

"D

# $ 1 "tr σ#+ + + "tr σ#− 1 3 1 − ηDH

Nonlocal Mazars damage criterion (Aifantis 1987, Peerlings 1996) f = !ˆ − κ(tr D) nl

!ˆnl − "2 ∇2 !ˆnl = !ˆ

! !ˆ = !!"+ : !!"+

Damage evolution law ˙ 2 ˙ = λ!"" D +

!

"κ # trD 0 κ(tr D) = a · tan + arctan aA a

Total of 5 material parameters: E, ν + damage threshold κ0 + damage parameters A, a

$

FE: Nooru-Mohamed test Nooru-Mohamed (1992) Desmorat, Gatuingt, Ragueneau (2004-2006)

classical mesh dependency

Local FE

D22 field

Non local FE

D22 field

F

FE: Reinforced concrete beam MECA Benchmark (Ghavamian & Delaplace 2003)

Non local FE

lc=150 mm

lc=250 mm

2- VISCO-DAMAGE AND STRAIN RATE EFFECT Strain rate effect in tension

(a) strain rate effect in tension

t σR

σ

!˙ Strength increase in tension (experiments)

! Strain-rate effect (model)

(a) strain effect in tension Strain raterate effect in compression

(b) strain rate effect in compression

Visco-plasticity : viscous stress

σ σv = KN p˙

R+X

σy

1/N

viscous stress function of accumulated plastic strain rate (Norton-Perzyna power law) p˙ =

σy

E εp

E

!

2 p p !˙ : !˙ 3

ε

εe

In plasticity

In visco-plasticity

f = |σ − X| − R − σy = 0 → f = |σ − X| − R − σy = σv f = (σ − X)eq − R − σy = σv

Visco-damage for isotropic damage (Ladevèze 1991, Dubé 1994) Visco-damage

Strain rate independent model

f = g(Y ) − D = 0



f = g(Y ) − D = Dv

D = g(Y ) − Dv < Dquasi-static = g(Y )

Strength increase when increasing strain rate

Strain energy release rate density ∂ψ ∂ψ ! 1 Y = −ρ =ρ = $e : E : $e ∂D ∂D 2

Visco-damage for isotropic damage (Ladevèze 1991, Dubé 1994) Visco-damage

Strain rate independent model

f = g(Y ) − D = 0



f = g(Y ) − D = Dv

D = g(Y ) − Dv < Dquasi-static = g(Y )

Strength increase when increasing strain rate

Power law

Dv = B D˙ 1/b

Law with damage rate saturation ! " 1 D˙ ∞ − D˙ Dv = − ln b D˙ ∞ Allix-Deü delay-damage law

Visco-damage for isotropic damage (Ladevèze 1991, Dubé 1994) Visco-damage

Strain rate independent model

f = g(ˆ !) − D = 0



f = g(ˆ !) − D = Dv

D = g(ˆ !) − Dv < Dquasi-static = g(ˆ !)

Strength increase when increasing strain rate

Mazars strain (concrete models) ! !ˆ = !!"+ : !!"+

Visco-damage for isotropic damage (Ladevèze 1991, Dubé 1994) Visco-damage

Strain rate independent model

f = g(ˆ !) − D = 0



f = g(ˆ !) − D = Dv

D = g(ˆ !) − Dv < Dquasi-static = g(ˆ !)

Strength increase when increasing strain rate

Power law

Dv = B D˙ 1/b

Law with damage rate saturation ! " 1 D˙ ∞ − D˙ Dv = − ln b D˙ ∞ Allix-Deü delay-damage law

Delay damage law extended to induced anisotropy Damage criterion in classical non viscous case

fini = !ˆnl − κ(tr D)

rewritten

f = g(ˆ !nl ) − tr D

Damage criterion in viscous case (delay-damage)

˙ 1 D˙ ∞ − tr D Dv = − ln b D˙ ∞

˙ f = g(ˆ !nl ) − tr D = Dv (tr D) !

˙ = D˙ ∞ 1 − e(−b(g(ˆ! tr D

Damage governed by the extensions

˙ = λ˙ !""2 D +

!

nl

)−tr D))

"

"

t σR

σ

!˙ Strength increase in tension (experiments)

! Strain-rate effect (model)

Allix-Deü delay damage law extended to induced anisotropy

!

˙ = D˙ ∞ 1 − e(−b(g(ˆ! tr D

nl

)−tr D))

"

Implicit numerical scheme... explicited

Replace

by

Delay damage law extended to induced anisotropy Damage criterion in classical non viscous case

fini = !ˆnl − κ(tr D)

rewritten

f = g(ˆ !nl ) − tr D

Damage criterion in viscous case (delay-damage) !

˙ f = g(ˆ !nl ) − tr D = Dv (H(tr !) tr D) Material strain rate effect in tension only

!

˙ = D˙ ∞ 1 − e(−b(g(ˆ! H(tr !) tr D

Damage governed by the extensions

˙ = λ˙ !""2 D +

˙ 1 D˙ ∞ − H(tr !) tr D Dv = − ln b D˙ ∞

nl

)−tr D))

"

"

Non local anisotropic model with delay-damage Effective stress and elasticity law σ ˜ =E :"

!

σ ˜ = (1 − D)−1/2 σ D (1 − D)−1/2

"D

# $ 1 "tr σ#+ + + "tr σ#− 1 3 1 − ηDH

Nonlocal Mazars damage criterion (Pijaudier-Cabot Bazant 1987) 1 !ˆ = Vr nl

f = !ˆnl − κ(tr D)

!



α∞ (x − s) !ˆ(s) ds

Delay-damage law ˙ = D˙ ∞ H(tr !) tr D

!

nl 1 − e(−b(g(ˆ! )−tr D))

Damage evolution law ˙ 2 ˙ = λ!"" D +

"

κ(tr D) = a · tan

g = κ−1 !

trD + arctan aA

Total of 5 (+1) +2 material parameters: E, ν + damage threshold κ0 + damage parameters A, a D˙ ∞ , b delay damage parameters

" κ #$ 0

a

Non local model with delay-damage (and effective damage) Effective stress and elasticity law σ ˜ =E :"

!

σ ˜ = (1 − D)−1/2 σ D (1 − D)−1/2

"D

# $ 1 "tr σ#+ + + "tr σ#− 1 3 1 − ηDH

Nonlocal Mazars damage criterion (Pijaudier-Cabot Bazant 1987) f = !ˆnl − κ(dε )

D : !!"+ dε = max !I

1 !ˆ = Vr nl

!



α∞ (x − s) !ˆ(s) ds

Delay-damage law ! " −b(g(ˆ "nl )−dε )) ( ˙ ˙ H(tr !) dε = D∞ 1 − e

Damage evolution law ˙ + ˙ = λ!"" D

κ(tr D) = a · tan

g = κ−1 !

trD + arctan aA

Total of 5 (+1) +2 material parameters: E, ν + damage threshold κ0 + damage parameters A, a D˙ ∞ , b delay damage parameters

" κ #$ 0

a

Strain rate effect in compression due to inertial effects

(PhD Chambart)

Figure 2: Inertial effects in compression

Impact on concrete bar

Local model - Delay-damage

Perzyna-type viscous damage law (saturation of damage rate, Allix & Deü 1997, Gatuingt & Desmorat 2006)

9(2:;(2:2>:*1/4*+),-2

Suggest Documents