Christian MUSSO (ONERA) and Nadia OUDJANE (EDF/R&D). 1. The filtering ..... the error due to the Monte Carlo approximation is reduced and its propagation ...
1
Data reduction for Particle Filters Christian MUSSO (ONERA) and Nadia OUDJANE (EDF/R&D)
1. The filtering problem: motivations 2. Gauss Legendre quadrature 3. Application to the filtering problem 4. Simulations results
C. MUSSO - ONERA and N. OUDJANE - EDF/R&D
´ GDR 10 fevrier - Paris 2006
1. The filtering problem: motivations
2
The filtering problem
(Xn )n≥0 ∈ E = Rd
⊲ State process (signal) Xn
Markov chain
⊲ Observation process
∼ (π0 , Qn )
Ex :
Xn = Fn (Xn−1 , Wn )
(Yn )n≥0 ∈ Rq
Yn = h(Xn ) + Vn
Vn ∼ gn
⊲ Computing the optimal filter
πn (dx) = P[ Xn ∈ dx | Y1:n ]
C. MUSSO - ONERA and N. OUDJANE - EDF/R&D
(πn )n≥0 ∈ P(E)
with
Y1:n = (Y1 , · · · , Yn )
´ GDR 10 fevrier - Paris 2006
1. The filtering problem: motivations
3
Interacting Particle Filter (IPF) (1)
(2)
N N N N N −−−−−−−−→ πn|n−1 ) −−−−−→ πn πn−1 = S N (Qn πn−1 = Ψn ·πn|n−1 Correction
Sampled Prediction
N 1 N 1 πn−1 = { ωn−1 δξn−1|n−2 + · · · + ωn−1 δξ N
n−1|n−2
↓
(1.a)
}
↓
Sampling
1 N { ξn−1 , · · · ξn−1 }
(1.b)
N πn|n−1
↓
Evolution
Qn
↓
1 1 1 δN } + ··· + = { δξn|n−1 N N ξn|n−1 (2)
↓
Correction
Yn
↓
i ωni ∝ Ψn (ξn|n−1 )
1 πnN = { ωn1 δξn|n−1 + · · · + ωnN δξN
n|n−1
C. MUSSO - ONERA and N. OUDJANE - EDF/R&D
}
´ GDR 10 fevrier - Paris 2006
1. The filtering problem: motivations
4
Exponential growth of the error with time ⊲ The error of particle filters grows exponentially with the observations number sup E[ |hπn − πn′ , φi| | Yt1 , · · · , Ytn ] ≤
kφk=1
n X
C n−k+1 δ
k=1
where δ is a bound for the local error and C is a positive real.
⊲ We propose to reduce the number of observations with the same amount of information
• to avoid the exponential growth of the error with time • to reduce the computing time
C. MUSSO - ONERA and N. OUDJANE - EDF/R&D
´ GDR 10 fevrier - Paris 2006
2. Gauss Legendre quadrature
5
Definitions ⊲ Legendre Polynomial of degree m ∈ {1, · · · , n} tn X
Ψm
Ψm (t)tj = 0 for any integer 0 ≤ j ≤ m − 1
t=t1
⊲ Lagrange polynomial of degree m − 1 Φi , 1 ≤ i ≤ m 1 if t = Ti Φi (t) = 0 if t = Tj 6= Ti . ⊲ (T1 , · · · , Tm ) are the roots of Ψm C. MUSSO - ONERA and N. OUDJANE EDF/R&D
´ GDR 10 fevrier - Paris 2006
2. Gauss Legendre quadrature
6
Gauss-Legendre quadrature for discrete sums: result ⊲ Gauss-Legendre quadrature for discrete sums • t1 < · · · < tn
positive reals
m ∈ {1, · · · , n}
• f : R 7→ R having its derivatives continuous up to the order m tn X
f (t) =
t=t1
m X
kΦi k22 f (Ti ) + Em (f ) with
i=1
1 Em (f ) = kΨm k22 f (2m) (ξ) where t1 < ξ < tn (2m)! ⇒ If f is a polynomial with a degree p ≤ 2m − 1, then any sum of n values of f is equal to a weighted sum of m ≤ n values of f ⊲ kΦi k22 is of order n/m C. MUSSO - ONERA and N. OUDJANE EDF/R&D
´ GDR 10 fevrier - Paris 2006
Gauss-Legendre quadrature for discrete sums m
1
∑ || Φ i || = n
1 ˜ || Φ i || = n ∫ Φ i (t)dt + o( ) n 0
2 2
2 2
i=1
Example : m=3 with t k +1 − t k = 1 || Φ1 ||22 =
0
•
T3 = T2 − τ
5n(n 2 − 1) || Φ 2 || =|| Φ 3 || = 6(3n 2 − 7)
4n(n − 4) 3(3n 2 − 7) 2
2 2
•
T1 = (n + 1) /2 τ=
3n 2 − 7 20
2 2
• T = T +τ 2
1
n
3. Application to the filtering ptoblem
7
Initial filtering problem ⊲ Initial filtering problem Xt0 ∼ π0 X˙ t = f (Xt ) Y = h(Xtk ) + σεk tk
for
t≥0
for
1≤k ≤n,
• π0 is a given probability distribution on Rd (modelling the error on Xt0 ) • (ε1 , · · · , εn ) are i.i.d. ∼ N(0, 1) • g : R+ 7→ R such that
g(t) = h(X(t)) , for all t ∈ R+ derivatives continuous up to the order 2m
C. MUSSO - ONERA and N. OUDJANE EDF/R&D
´ GDR 10 fevrier - Paris 2006
has its
3. Application to the filtering ptoblem
8
Building a new set of observations ⊲ New observations (Y˜1 , · · · , Y˜m ) tn X 1 Φi (t) Yt for all i ∈ {1, · · · , m} Y˜i = 2 kΦi k t=t 1
⊲ The new set of observations is related to the state process (X) σ ˜ Yi = h(XTi ) + εi for all i ∈ {1, · · · , m} where kΦi k2 (ε1 , · · · , εm ) are approximately i.i.d. ∼ N(0, 1) ⊲ The Fisher matrix I associated to (Yt1 , · · · , Ytn ) is approximately equal to ˜1 , · · · , Y˜m ) the Fisher matrix I˜ associated to t (Y I ≈ I˜
C. MUSSO - ONERA and N. OUDJANE EDF/R&D
´ GDR 10 fevrier - Paris 2006
Properties of this new set of observations tn 1 Y˜i = 2 ∑ Φ i (t)Yt || Φ i ||2 t1
- iid Gaussian tn
∑ Φ (t)Φ i
t =t1
j
(t) = δ (i = j)
- No loss of information (Fisher matrix) GQ T
1 t n ⎛ ∂h ⎞ ⎛ ∂h ⎞ 1 m 2 ⎛ ∂h ⎞ I = 2 ∑⎜ ≈ || Φ || ⎟⎜ ⎟ ∑ i 2 ⎜⎝ ∂X ⎟⎠ σ t =t1 ⎝ ∂X t ⎠ ⎝ ∂X t ⎠ σ 2 i=1 t
T
t =Ti
⎛ ∂h ⎞ ⎜ ⎟ = I(Y˜ ) ⎝ ∂X t ⎠ t =T i
3. Application to the filtering ptoblem
9
New filtering problem ⊲ Initial filtering problem ≈ ”Data reduced filtering problem” Xt0 ∼ π0 X˙ t = f (Xt ) for t ≥ 0 σ ˜ ˜i εi with σ ˜i = = h(XTi ) + σ Yi kΦi k2 where the observation noises (ε1 , · · ·
, εm ) are approximately i.i.d. ∼ N(0, 1).
˜i is smaller that the original one σ ⊲ The new standard deviation σ ⊲ The modified filter is updated less frequently than the original filter but the modified filter remains in a sense “piecewise recursive”
C. MUSSO - ONERA and N. OUDJANE EDF/R&D
´ GDR 10 fevrier - Paris 2006
New filtering problem - Design - Data reduction rate - Choice of m Depending on observation process variation and Computing time reduction (m=n gives original problem)
- Computing cost of the roots t k +1 − t k = Δt t k +1 − t k ≠ Δt
Of line On line (Laguerre method)
- Piecewise recursive - Choice of n
Very fast
4. Simulations results
10
Bearing only: problem formulation ′ ⊲ The goal is to estimate the target state Xt = (x(t), x(t), ˙ y(t), y(t)) ˙ X ∼ π0 0 X˙ t = F Xt for t ≥ 0 Y = Arctan x(tk )−xo (tk ) + σε for 1 ≤ k ≤ n tk
C. MUSSO - ONERA and N. OUDJANE EDF/R&DN
y(tk )−yo (tk )
k
´ GDR 10 fevrier - Paris 2006
4. Simulations results
11
Simulation parameters
• Initial observer position: (xo (1), yo (1)) = (0, 0) • Observer velocity norm: 20m/s • Legs angle: 45o ; • Initial target position: (x(1), y(1)) = (10km, 10km) • Target velocity: (x(t), ˙ y(t)) ˙ = (10m/s, 10m/s); • Number of observations n = 800; • Initial law of the state X0 ∼ N(M, Σ) with Σ=diag[(5km, 10m/s, 5km, 10m/s)2 )] and M ∼ N(X0 , Σ); • Standard deviation of the observation noise σ = 1o .
C. MUSSO - ONERA and N. OUDJANE EDF/R&DN
´ GDR 10 fevrier - Paris 2006
4. Simulations results
12
SMISE of the x-position estimate w.r.t. the time ⊲ RPF with N = 5000 particles and DRPF with N = 30000 particles The computing cost for the RPF is more than five times greater than the computing cost of the DRPF 4000 PCRB RPF DRPF
3500
3000
X-position std (m)
2500
2000
1500
1000
500
0
0
100
200
C. MUSSO - ONERA and N. OUDJANE EDF/R&DN
300
400 Time (s)
500
600
700
´ GDR 10 fevrier - Paris 2006
800
4. Simulations results
13
SMISE of the x-velocity estimate w.r.t. the time ⊲ RPF with N = 5000 particles and DRPF with N = 30000 particles The computing cost for the RPF is more than five times greater than the computing cost of the DRPF 12 PCRB RPF DRPF 10
Vx-velocity std (m/s)
8
6
4
2
0
0
100
200
C. MUSSO - ONERA and N. OUDJANE EDF/R&DN
300
400 Time (s)
500
600
700
´ GDR 10 fevrier - Paris 2006
800
14
Conclusion
⊲ We have proposed a method which allows data reduction in filtering problems and keeps approximately the amount of information unchanged
• the computing time is drastically reduced which allows to increase the number of particles
• the error due to the Monte Carlo approximation is reduced and its propagation along the time
⊲ The new filter has shown good performances in simulations when applied to the bearing only tracking problem
C. MUSSO - ONERA and N. OUDJANE - EDF/R&D
´ GDR 10 fevrier - Paris 2006