and programming, for which the book A First Course in Database Systems ... we
shall endeavor to maintain solutions accessible through the book's Web page. ...
Thanks go to Brad Adelberg, Karen Butler, Ed Chang, Surajit Chaudhuri,.
Database System Implementation Hector Garcia-Molina Jeffrey D. Ullman Jennifer Widom Department of Computer Science Stanford University
An Alan R Apt Book
Prentice Hall Upper Saddle River, New Jersey 07458
Preface This book was designed for CS245, the second course in the database sequence at Stanford. Here, the first database course, CS145, covers database design and programming, for which the book A First Course in Database Systems by Jeff Ullman and Jennifer Widom, Prentice-Hall, 1997, was written. The CS245 course then covers implementation of a DBMS, notably storage structures, query processing, and transaction management.
Use of the Book We're on a quarter system at Stanford, so the principal course using this book — CS245 — is only ten weeks long. In the Winter of 1999, Hector Garcia-Molina used a "beta" version of this book, and covered the following parts: Sections 2.1-2.4, all of Chapters 3 and 4, Sections 5.1 and 5.2, Sections 6.1-6.7, Sections 7.1-7A, all of Chapter 8, Chapter 9 except for Section 9.8, Sections 10.1-10.3, Section 11.1, and Section 11.5. The balance of Chapters 6 and 7 (query optimization) is covered in an advanced course, CS346, where students implement their own DBMS. Other portions of the book that are not covered in CS245 may appear in another advanced course, CS347, which talks about distributed databases and advanced transaction processing. Schools that are on the semester system have the opportunity to combine the use of this book with its predecessor: A First Course in Database Systems. We recommend using that book in the first semester, coupled with a databaseapplication programming project. The second semester could cover most or all of the content of this book. An advantage to splitting the study of databases into two courses is that students not planning to specialize in DBMS construction can take only the first course and be able to use databases in whatever branch of Computer Science they enter.
Prerequisites The course on which the book is based is rarely taken before the senior year, so we expect the reader to have a fairly broad background in the traditional areas
iii
iv
of Computer Science. We assume that the reader has learned something about database programming, especially SQL. It is helpful to know about relational algebra and to have some familiarity with basic data structures. Likewise, some knowledge of file systems and operating systems is useful.
Exercises The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The hardest exercises have a double exclamation point. Some of the exercises or parts are marked with a star. For these exercises, we shall endeavor to maintain solutions accessible through the book's Web page. These solutions are publicly available and should be used for self-testing.
Note that in a few cases, one exercise B asks for modification or adaptation of your solution to another exercise A. If certain parts of A have Web-published solutions, then you should expect the corresponding parts of B to have solutions as well.
Support on the World-Wide Web The book's home page is http://www-db.Stanford.edu/~ullman/dbsi.html Here you will find solutions to starred exercises, errata as we learn of them,
and backup materials. We hope to make available the notes for each offering of CS245 and relevant portions of other database courses, as we teach them, including homeworks, exams, and solutions.
Acknowledgements Thanks go to Brad Adelberg, Karen Butler, Ed Chang, Surajit Chaudhuri,
Rada Chirkova, Tom Dienstbier, Xavier Faz, Tracy Fujieda, Luis Gravano, Ben Holzman, Fabien Modoux, Peter Mork, Ken Ross, Mema Roussopolous, and Jonathan Ullman for assistance gathering material and/or discovering errors in earlier drafts of this work. Remaining errors are ours, of course.
H. G.-M. J. D. U. J. W. Stanford, CA
Table of Contents 1 Introduction to DBMS Implementation 1.1 Introducing: The Megatron 2000 Database System . . . . . . . .
1 2
1.1.1 Megatron 2000 Implementation Details . . . . . . . . . . 1.1.2 How Megatron 2000 Executes Queries . . . . . . . . . . . 1.1.3 What's Wrong With Megatron 2000? . . . . . . . . . . . . Overview of a Database Management System . . . . . . . . . . . 1.2.1 Data-Definition Language Commands . . . . . . . . . . . 1.2.2 Overview of Query Processing . . . . . . . . . . . . . . . . 1.2.3 Main-Memory Buffers and the Buffer Manager . . . . . . 1.2.4 Transaction Processing . . . . . . . . . . . . . . . . . . . . 1.2.5 The Query Processor . . . . . . . . . . . . . . . . . . . . . Outline of This Book . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Storage-Management Overview . . . . . . . . . . . . . . . 1.3.3 Query-Processing Overview . . . . . . . . . . . . . . . . . 1.3.4 Transaction-Processing Overview . . . . . . . . . . . . . . 1.3.5 Information Integration Overview . . . . . . . . . . . . . . Review of Database Models and Languages . . . . . . . . . . . . 1.4.1 Relational Model Review . . . . . . . . . . . . . . . . . . 1.4.2 SQL Review . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.3 Relational and Object-Oriented Data . . . . . . . . . . . Summary of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . References for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . .
2 4 5 6 6 8 8 9 10 11 11 12 13 13 13 14 14 15 18 19 20
1.2
1.3
1.4
1.5 1.6
2 Data Storage
21
2.1 The Memory Hierarchy . . . . . . . . . 2.1.1 Cache . . . . . . . . . . . . . . . 2.1.2 Main Memory . . . . . . . . . . . 2.1.3 Virtual Memory . . . . . . . . . 2.1.4 Secondary Storage . . . . . . . . 2.1.5 Tertiary Storage . . . . . . . . . 2.1.6 Volatile and Nonvolatile Storage 2.1.7 Exercises for Section 2.1 . . . . . v
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 22 23 24
25 27 28 29
vi
TABLE OF CONTENTS 2.2
Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 Mechanics of Disks . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 The Disk Controller . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.3 Using
2.4
2.5
2.6
2.7 2.8 3
Disk Storage Characteristics . . . . . . . . . . . . . . . . . 32 Disk Access Characteristics . . . . . . . . . . . . . . . . . 34 Writing Blocks . . . . . . . Modifying Blocks . . . . . . Exercises for Section 2.2 . . Secondary Storage Effectively
. . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
38 39 39 40
2.3.1 The I/O Model of Computation . . . . . . . . . . . . . . 41 2.3.2 Sorting Data in Secondary Storage . . . . . . . . . . . . . 42 2.3.3 Merge-Sort . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.4 Two-Phase, Multiway Merge-Sort . . . . . . . . . . . . . . 44 2.3.5 Extension of Multiway Merging to Larger Relations . . . 47 2.3.6 Exercises for Section 2.3 . . . . . . . . . . . . . . . . . . . 48 Improving the Access Time of Secondary Storage . . . . . . . . . 49 2.4.1 Organizing Data by Cylinders . . . . . . . . . . . . . . . . 51 2.4.2 Using Multiple Disks . . . . . . . . . . . . . . . . . . . . . 52 2.4.3 Mirroring Disks . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4.4 Disk Scheduling and the Elevator Algorithm . . . . . . . 54 2.4.5 Prefetching and Large-Scale Buffering . . . . . . . . . . . 58 2.4.6 Summary of Strategies and Tradeoffs . . . . . . . . . . . . 59 2.4.7 Exercises for Section 2.4 . . . . . . . . . . . . . . . . . . . 61 Disk Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.5.1 Intermittent Failures . . . . . . . . . . . . . . . . . . . . . 63 2.5.2 Checksums . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.5.3 Stable Storage . . . . . . . . . . . . . . . . . . . . . . . . 65 2.5.4 Error-Handling Capabilities of Stable Storage . . . . . . . 66 2.5.5 Exercises for Section 2.5 . . . . . . . . . . . . . . . . . . . 67 Recovery from Disk Crashes . . . . . . . . . . . . . . . . . . . . . 67 2.6.1 The Failure Model for Disks . . . . . . . . . . . . . . . . . 67 2.6.2 Mirroring as a Redundancy Technique . . . . . . . . . . . 68 2.6.3 Parity Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.6.4 An Improvement: RAID 5 . . . . . . . . . . . . . . . . . . 73 2.6.5 Coping With Multiple Disk Crashes . . . . . . . . . . . . 73 2.6.6 Exercises for Section 2.6 . . . . . . . . . . . . . . . . . . . 77 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 80 References for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 82
Representing Data Elements "• 83 3.1 Data Elements and Fields . . . . . . . . . . . . . . . . . . . . . . 83 3.1.1 Representing Relational Database Elements . . . . . . . . 84 3.1.2 Representing Objects . . . . . . . . . . . . . . . . . . . . 85
3.1.3 Representing Data Elements . . . . . . . . . . . . . . . . 86 3.2 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
TABLE OF CONTENTS
vii
3.2.1
3.3
3.4
3.5
3.6
3.7
Building Fixed-Length Records . . . . . . . . . . . . . . . 91 3.2.2 Record Headers . . . . . . . . . . . . . . . . . . . . . . . . 93 3.2.3 Packing Fixed-Length Records into Blocks . . . . . . . . . 94 3.2.4 Exercises for Section 3.2 . . . . . . . . . . . . . . . . . . . 95 Representing Block and Record Addresses . . . . . . . . . . . . . 96 3.3.1 Client-Server Systems . . . . . . . . . . . . . . . . . . . . 97 3.3.2 Logical and Structured Addresses . . . . . . . . . . . . . . 98 3.3.3 Pointer Swizzling . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.4 Returning Blocks to Disk . . . . . . . . . . . . . . . . . . 104 3.3.5 Pinned Records and Blocks . . . . . . . . . . . . . . . . . 105 3.3.6 Exercises for Section 3.3 . . . . . . . . . . . . . . . . . . . 105 Variable-Length Data and Records . . . . . . . . . . . . . . . . . 108 3.4.1 Records With Variable-Length Fields . . . . . . . . . . . 108 3.4.2 Records With Repeating Fields . . . . . . . . . . . . . . . 109 3.4.3 Variable-Format Records . . . . . . . . . . . . . . . . . . Ill 3.4.4 Records That Do Not Fit in a Block . . . . . . . . . . . . 112 3.4.5 BLOBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.4.6 Exercises for Section 3.4 . . . . . . . . . . . . . . . . . . . 115 Record Modifications . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.5.1 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.5.2 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.5.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.5.4 Exercises for Section 3.5 . . . . . . . . . . . . . . . . . . . 119 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 120 References for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . 122
4 Index Structures
123
4.1 Indexes on Sequential Files . . . . . . . . . . . . . . . . . . . . . 124 4.1.1 Sequential Files . . . . . . . . . . . . . . . . . . . . . . . . 124 4.1.2 Dense Indexes . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.1.3 Sparse Indexes . . . . . . . . . . . . . . . . . . . . . . . . 128 4.1.4 Multiple Levels of Index . . . . . . . . . . . . . . . . . . . 129 4.1.5 Indexes With Duplicate Search Keys . . . . . . . . . . . . 131 4.1.6 Managing Indexes During Data Modifications . . . . . . . 133 4.1.7 Exercises for Section 4.1 . . . . . . . . . . . . . . . . . . . 140 4.2 Secondary Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.2.1 Design of Secondary Indexes . . . . . . . . . . . . . . . . 142 4.2.2 Applications of Secondary Indexes . . . . . . . . . . . . . 144 4.2.3 Indirection in Secondary Indexes . . . . . . . . . . . . . . 145 4.2.4 Document Retrieval and Inverted Indexes . . . . . . . . . 148 4.2.5 Exercises for Section 4.2 . . . . . . . . . . . . . . . . . . . 151 4.3 B-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.3.1 The Structure of B-trees . . . . . . . . . . . . . . . . . . . 154 4.3.2 Applications of B-trees . . . . . . . . . . . . . . . . . . . . 157 4.3.3 Lookup in B-Trees . . . . . . . . . . . . . . . . . . . . . . 159
viii
TABLE OF CONTENTS 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8
Range Queries . . . . . Insertion Into B-Trees . Deletion From B-Trees . Efficiency of B-Trees . . Exercises for Section 4.3
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
160 161 163 166 167
4.4 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.4.1 Secondary-Storage Hash Tables . . . . . . . . . . . . . . . 171 4.4.2 Insertion Into a Hash Table . . . . . . . . . . . . . . . . . 172 4.4.3 Hash-Table Deletion . . . . . . . . . . . . . . . . . . . . . 172 4.4.4 Efficiency of Hash Table Indexes . . . . . . . . . . . . . . 173 4.4.5 Extensible Hash Tables . . . . . . . . . . . . . . . . . . . 174 4.4.6 Insertion Into Extensible Hash Tables . . . . . . . . . . . 175 4.4.7 Linear Hash Tables . . . . . . . . . . . . . . . . . . . . . . 177 4.4.8 Insertion Into Lineai Hash Tables . . . . . . . . . . . . . 180 4.4.9 Exercises for Section 4.4 . . . . . . . . . . . . . . . . . . . 182 4.5 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 184 4.6 References for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 185 5 Multidimensional Indexes 5.1 Applications Needing Multiple Dimensions . . . . . . . . . . . . 5.1.1 Geographic Information Systems . . . . . . . . . . . . . 5.1.2 Data Cubes . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 Multidimensional Queries in SQL . . . . . . . . . . . . . 5.1.4 Executing Range Queries Using Conventional Indexes . 5.1.5 Executing Nearest-Neighbor Queries Using Conventional Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.6 Other Limitations of Conventional Indexes . . . . . . . 5.1.7 Overview of Multidimensional Index Structures . . . . .
5.1.8
. . . . .
187 188 188 189 190 192
. 193 . 195 . 195
Exercises for Section 5.1 . . . . . . . . . . . . . . . . . . . 196
5.2 Hash-Like Structures for Multidimensional Data . . . . . . . . . 197
5.2.1 5.2.2
5.3
Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Lookup in a Grid File . . . . . . . . . . . . . . . . . . . . 198
5.2.3 Insertion Into Grid Files . . . . . . . . . . . . . . . 5.2.4 Performance of Grid Files . . . . . . . . . . . . . . 5.2.5 Partitioned Hash Functions . . . . . . . . . . . . . 5.2.6 Comparison of Grid Files and Partitioned Hashing 5.2.7 Exercises for Section 5.2 . . . . . . . . . . . . . . . Tree-Like Structures for Multidimensional Data . . . . . . 5.3.1 Multiple-Key Indexes . . . . . . . . . . . . . . . . 5.3.2 Performance of Multiple-Key Indexes . . . . . . . . 5.3.3 fcd-Trees . . . . . . . . . . . . . . . . . . . . . . . . 5.3.4 Operations on kd-Trees . . . . . . . . . . . . . . . 5.3.5 Adapting kd-Trees to Secondary Storage . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. 199 . 201 . 204 . 205 . 206 . 209 . 209 . 211 . 212 . 213 . 216
5.3.6
Quad Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.3.7
R-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
TABLE OF CONTENTS
ix
5.3.8 Operations on R-treos . . . . . . . . . . . . . . . . . . . . 219 5.3.9 Exercises foi Section 5.3 . . . . . . . . . . . . . . . . . . . 222 5.4 Bitmap Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 5.4.1 Motivation for Bitmap Indexes . . . . . . . . . . . . . . . 225 5.4.2 Compressed Bitmaps . . . . . . . . . . . . . . . . . . . . . 227 5.4.3 Operating on Rim-Length-Encoded Bit-Vectors . . . . . . 229 5.4.4 Managing Bitmap Indexes . . . . . . . . . . . . . . . . . . 230 5.4.5 Exercises for Section 5.4 . . . . . . . . . . . . . . . . . . . 232 5.5 Summary of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 233 5.6 References for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 234 6 Query Execution 6.1 An Algebra for Queries . . . . . . . . . . 6.1.1 Union, Intersection, and Difference 6.1.2 The Selection Operator . . . . . . 6.1.3 The Projection Operator . . . . .
6.2
6.3
6.4
6.5
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
237 240 241 242 244
6.1.4 The Product of Relations . . . . . . . . . . . . . . . . . . 245 6.1.5 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 6.1.6 Duplicate Elimination . . . . . . . . . . . . . . . . . . . . 248 6.1.7 Grouping and Aggregation . . . . . . . . . . . . . . . . . 248 6.1.8 The Sorting Operator . . . . . . . . . . . . . . . . . . . . 251 6.1.9 Expression Trees . . . . . . . . . . . . . . . . . . . . . . . 252 6.1.10 Exercises for Section 6.1 . . . . . . . . . . . . . . . . . . . 254 Introduction to Physical-Query-Plan Operators . . . . . . . . . . 257 6.2.1 Scanning Tables . . . . . . . . . . . . . . . . . . . . . . . 257 6.2.2 Sorting While Scanning Tables . . . . . . . . . . . . . . . 258 6.2.3 The Model of Computation for Physical Operators . . . . 258 6.2.4 Parameters for Measuring Costs . . . . . . . . . . . . . . 259 6.2.5 I/O Cost for Scan Operators . . . . . . . . . . . . . . . . 260 6.2.6 Iterators for Implementation of Physical Opeiators . . . . 261 One-Pass Algorithms for Database Operations . . . . . . . . . . 264 6.3.1 One-Pass Algorithms for Tuple-at-a-Time Operations . . 266 6.3.2 One-Pass Algorithms for Unary, Full-Relation Operations 267 6.3.3 One-Pass Algorithms for Binary Operations . . . . . . . . 270 6.3.4 Exercises foi Section 6.3 . . . . . . . . . . . . . . . . . . . 273 Nested-Loop Joins . . . . . . . . . . . . . . . . . . . . . . . . . . 274 6.4.1 Tuple-Based Nested-Loop Join . . . . . . . . . . . . . . . 275 6.4.2 An Iterator for Tuple-Based Nested-Loop Join . . . . . . 275 6.4.3 A Block-Based Nested-Loop Join Algorithm . . . . . . . . 275 6.4.4 Analysis of Nested-Loop Join . . . . . . . . . . . . . . . . 278 6.4.5 Summary of Algorithms so Far . . . . . . . . . . . . . . . 278 6.4.6 Exercises for Section 6.4 . . . . . . . . . . . . . . . . . . . 278 Two-Pass Algorithms Based on Sorting . . . . . . . . . . . . . . 279 6.5.1 Duplicate Elimination Using Sorting . . . . . . . . . . . . 280 6.5.2 Grouping and Aggregation Using Sorting . . . . . . . . . 282
x
TABLE OF CONTENTS 6.5.3 A Sort-Based Union Algorithm . . . . . . . . . . . . . . . 283 6.5.4 Sort-Based Algorithms for Intersection and Difference . . 284 6.5.5 A Simple Sort-Based Join Algorithm . . . . . . . . . . . . 286 6.5.6 Analysis of Simple Sort-Join . . . . . . . . . . . . . . . . 287 6.5.7 A More Efficient Sort-Based Join . . . . . . . . . . . . . . 288 6.5.8 Summary of Sort-Based Algorithms . . . . . . . . . . . . 289 6.5.9 Exercises for Section 6.5 . . . . . . . . . . . . . . . . . . . 289 6.6 Two-Pass Algorithms Based on Hashing . . . . . . . . . . . . . . 291 6.6.f Partitioning Relations by Hashing . . . . . . . . . . . . . 292 6.6.2 A Hash-Based Algorithm for Duplicate Elimination . . . 293 6.6.3 A Hash-Based Algorithm for Grouping and Aggregation . 293 6.6.4 Hash-Based Algorithms for Union, Intersection, and Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 6.6.5 The Hash-Join Algorithm . . . . . . . . . . . . . . . . . . 294 6.6.6 Saving Some Disk I/O's . . . . . . . . . . . . . . . . . . . 295 6.6.7 Summary of Hash-Based Algorithms . . . . . . . . . . . . 297 6.6.8 Exercises for Section 6.6 . . . . . . . . . . . . . . . . . . . 298 6.7 Index-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . 299 6.7.1 Clustering and Nonclustering Indexes . . . . . . . . . . . 299 6.7.2 Index-Based Selection . . . . . . . . . . . . . . . . . . . . 300 6.7.3 Joining by Using an Index . . . . . . . . . . . . . . . . . . 303 6.7.4 Joins Using a Sorted Index . . . . . . . . . . . . . . . . . 304 6.7.5 Exercises for Section 6.7 . . . . . . . . . . . . . . . . . . . 306 6.8 Buffer M a n a g e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . 307 6.8.1 Buffer Management Architecture . . . . . . . . . . . . . . 307 6.8.2 Buffer Management Strategies . . . . . . . . . . . . . . . 308 6.8.3 The Relationship Between Physical Operator Selection and Buffer Management . . . . . . . . . . . . . . . . . . . 310 6.8.4 Exercises for Section 6.8 . . . . . . . . . . . . . . . . . . . 312 6.9 Algorithms Uging More Than Two Passes . . . . . . . . . . . . . 3 1 3 6.9.1 Multipass Sort-Based Algorithms . . . . . . . . . . . . . . 313 6.9.2 Performance of Multipass, Sort-Based Algorithms . . . . 314 6.9.3 Multipass Hash-Based Algorithms . . . . . . . . . . . . . 315 6.9.4 Performance of Multipass Hash-Based Algorithms . . . . 315 6.9.5 Exercises for Section 6.9 . . . . . . . . . . . . . . . . . . . 316 6.10 Parallel Algorithms for Relational Operations . . . . . . . . . . . 317 6.10.1 Models of Parallelism . . . . . . . . . . . . . . . . . . . . 317 6.10.2 Tuple-at-a-Time Operations in P a r a l l e l . . . . . . . . . . . 320 640.3 Parallel Algorithms for Full-Relation Operations . . . . . 321 6.10.4 Performance of Parallel Algorithms . . . . . . . . . . . . . 322 6.10.5 Exercises for Section 6.10 . . . . . . . . . . . . . . . . . . 324 6.11 Summary of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . 325 6.12 References for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . 327
TABLE OF CONTENTS 7
xi
The Query Compiler 7.1 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 Syntax Analysis and Parse Trees . . . . . . . . . . . . . 7.1.2 A Grammar for a Simple Subset of SQL . . . . . . . . .
329 . 330 . 330 . 331
7.1.3 The Preprocessor . . . . . . . . . . . . . . . . . . . . . . . 336 7.1.4 Exercises for Section 7.1 . . . . . . . . . . . . . . . . . . . 337 7.2 Algebraic Laws for Improving Query Plans . . . . . . . . . . . . 337
7.2.1
Commutative and Associative Laws . . . . . . . . . . . . 338
7.2.2 Laws Involving Selection . . . . . . . . . . . . . . . . . . . 340 7.2.3 Pushing Selections . . . . . . . . . . . . . . . . . . . . . . 343 7.2.4 Laws Involving Projection . . . . . . . . . . . . . . . . . . 345
7.2.5
Laws About Joins and Products . . . . . . . . . . . . . . 348
7.2.6 Laws Involving Duplicate Elimination . . . . . . . . . . 7.2.7 Laws Involving Grouping and Aggregation . . . . . . . . 7.2.8 Exercises for Section 7.2 . . . . . . . . . . . . . . . . . . 7.3 From Parse Trees to Logical Query Plans . . . . . . . . . . .
7.3.1 7.3.2
. . . .
348 349 351 354
Conversion to Relational Algebra . . . . . . . . . . . . . . 354 Removing Subqueries From Conditions . . . . . . . . . . . 355
7.3.3 Improving the Logical Query Plan . . . . . . . . . . . . . 362
7.3.4 7.3.5
Grouping Associative/Commutative Operators . . . . . . 364 Exercises for Section 7.3 . . . . . . . . . . . . . . . . . . . 365
7.4 Estimating the Cost of Operations . . . . . . . . . . . . . . . . . 366
7.4.1 Estimating Sizes of Intermediate Relations . . . . . . . . 367 7.4.2 Estimating the Size of a Projection . . . . . . . . . . . . . 368 7.4.3 Estimating the Size of a Selection . . . . . . . . . . . . . . 369
7.4.4 Estimating the Size of a Join . . . . . . . . . . . . . . . . 371 7.4.5 Natural Joins With Multiple Join Attributes . . . . . . . 374 7.4.6
Joins of Many Relations . . . . . . . . . . . . . . . . . . . 375
7.4.7 Estimating Sizes for Other Operations . . . . . . . . . . . 378 7.4.8 Exercises for Section 7.4 . . . . . . . . . . . . . . . . . . . 379 7.5 Introduction to Cost-Based Plan Selection . . . . . . . . . . . . . 380
7.5.1 Obtaining Estimates for Size Parameters . . . . . . . . . . 381 7.5.2 Incremental Computation of Statistics . . . . . . . . . . . 384 7.5.3 Heuristics for Reducing the Cost of Logical Query Plans . 385 7.5.4 Approaches to Enumerating Physical Plans . . . . . . . . 388
7.5.5 Exercises for Section 7.5 . . . . . . . . . . . . . . . . 7.6 Choosing an Order for Joins . . . . . . . . . . . . . . . . . . 7.6.1 Significance of Left and Right Join Arguments . . . 7.6.2 Join Trees . . . . . . . . . . . . . . . . . . . . . . . . 7.6.3 Left-Deep Join Trees . . . . . . . . . . . . . . . . . .
. . . 391 . . . 393 . . 393 . . . 394 . . . 395
7.6.4 Dynamic Programming to Select a Join Order and Grouping398 7.6.5 Dynamic Programming With More Detailed Cost Functions402 7.6.6 A Greedy Algorithm for Selecting a Join Order . . . . . . 403
7.6.7 Exercises for Section 7.6 . . . . . . . . . . . . . . . . . . . 404 7.7 Completing the Physical-Query-Plan Selection . . . . . . . . . . 406
xii
TABLE OF CONTENTS 7.7.1 Choosing a Selection Method . . . . . . . 7.7.2 Choosing a Join Method . . . . . . . . . . 7.7.3 Pipelining Versus Materialization . . . . . 7.7.4 Pipelining Unary Operations . . . . . . . 7.7.5 Pipelining Binary Operations . . . . . . . 7.7.6 Notation for Physical Query Plans . . . . 7.7.7 Ordering of Physical Operations . . . . . 7.7.8 Exercises for Section 7.7 . . . . . . . . . . 7.8 Summary of Chapter 7 . . . . . . . . . . . . . . . 7.9 References for Chapter 7 . . . . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . 406 . . . . . . . . 409 . . . . . . . . 409 . . . . . . . . 410 . . . . . . . . 411 . . . . . . . . 414 . . . . . . . . 417 . . . . . . . . 418 . . . . . . . . 419 . . . . . . . . 421
8 Coping With System Failures 423 8.1 Issues and Models for Resilient Operation . . . . . . . . . . . . . 424 8.1.1 Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . 424 8.1.2 More About Transactions . . . . . . . . . . . . . . . . . . 426 8.1.3 Correct Execution of Transactions . . . . . . . . . . . . . 427 8.1.4 The Primitive Operations of Transactions . . . . . . . . . 429 8.1.5 Exercises for Section 8.1 . . . . . . . . . . . . . . . . . . . 432 8.2 Undo Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 8.2.1 Log Records . . . . . . . . . . . . . . . . . . . . . . . . . . 433 8.2.2 The Undo-Logging Rules . . . . . . . . . . . . . . . . . . 434 8.2.3 Recovery Using Undo Logging . . . . . . . . . . . . . . . 436 8.2.4 Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . 439 8.2.5 Nonquiescent Checkpointing . . . . . . . . . . . . . . . . . 440 8.2.6 Exercises for Section 8.2 . . . . . . . . . . . . . . . . . . . 444 8.3 Redo Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 8.3.1 The Redo-Logging Rule . . . . . . . . . . . . . . . . . . . 446 8.3.2 Recovery With Redo Logging . . . . . . . . . . . . . . . . 447 8.3.3 Checkpointing a Redo Log . . . . . . . . . . . . . . . . . . 448 8.3.4 Recovery With a Checkpointed Redo Log . . . . . . . . . 450 8.3.5 Exercises for Section 8.3 . . . . . . . . . . . . . . . . . . . 451 8.4 Undo/Redo Logging . . . . . . . . . . . . . . . . . . . . . . . . . 451 8.4.1 The Undo/Redo Rules . . . . . . . . . . . . . . . . . . . . 452 8.4.2 Recovery With Undo/Redo Logging . . . . . . . . . . . . 453 8.4.3 Checkpointing an Undo/Redo Log . . . . . . . . . . . . . 454 8.4.4 Exercises for Section 8.4 . . . . . . . . . . . . . . . . . . . 456 8.5 Protecting Against Media Failures . . . . . . . . . . . . . . . . . 457 8.5.1 The Archive . . . . . . . . . . . . . . . . . . . . . . . . . . 458 8.5.2 Nonquiescent Archiving . . . . . . . . . . . . . . . . . . . 459 8.5.3 Recovery Using an Archive and Log . . . . . . . . . . . . 461 8.5.4 Exercises for Section 8.5 . . . . . . . . . . . . . . . . . . . 462 8.6 Summary of Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . 462 8.7 References for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . 464
TABLE OF CONTENTS
xiii
9 Concurrency Control 467 9.1 Serial and Serializable Schedules . . . . . . . . . . . . . . . . . . 468 9.1.1 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 9.1.2 Serial Schedules . . . . . . . . . . . . . . . . . . . . . . . . 469 9.1.3 Serializable Schedules . . . . . . . . . . . . . . . . . . . . 470 9.1.4 The Effect of Transaction Semantics . . . . . . . . . . . . 471 9.1.5 A Notation for Transactions and Schedules . . . . . . . . 473 9.1.6 Exercises for Section 9.1 . . . . . . . . . . . . . . . . . . . 474 9.2 Conflict-Serializability . . . . . . . . . . . . . . . . . . . . . . . . 475 9.2.1 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 9.2.2 Precedence Graphs and a Test for Conflict-Serializability 476 9.2.3 Why the Precedence-Graph Test Works . . . . . . . . . . 479 9.2.4 Exercises for Section 9.2 . . . . . . . . . . . . . . . . . . . 481 9.3 Enforcing Serializability by Locks . . . . . . . . . . . . . . . . . . 483 9.3.1 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 9.3.2 The Locking Scheduler . . . . . . . . . . . . . . . . . . . . 485 9.3.3 Two-Phase Locking . . . . . . . . . . . . . . . . . . . . . 486 9.3.4 Why Two-Phase Locking Works . . . . . . . . . . . . . . 487 9.3.5 Exercises for Section 9.3 . . . . . . . . . . . . . . . . . . . 488 9.4 Locking Systems With Several Lock Modes . . . . . . . . . . . . 490 9.4.1 Shared and Exclusive Locks . . . . . . . . . . . . . . . . . 491 9.4.2 Compatibility Matrices . . . . . . . . . . . . . . . . . . . 493 9.4.3 Upgrading Locks . . . . . . . . . . . . . . . . . . . . . . . 494 9.4.4 Update Locks . . . . . . . . . . . . . . . . . . . . . . . . . 495 9.4.5 Increment Locks . . . . . . . . . . . . . . . . . . . . . . . 497 9.4.6 Exercises for Section 9.4 . . . . . . . . . . . . . . . . . . . 499 9.5 An Architecture for a Locking Scheduler . . . . . . . . . . . . . . 502 9.5.1 A Scheduler That Inserts Lock Actions . . . . . . . . . . 502 9.5.2 The Lock Table . . . . . . . . . . . . . . . . . . . . . . . . 504 9.5.3 Exercises for Section 9.5 . . . . . . . . . . . . . . . . . . . 507 9.6 Managing Hierarchies of Database Elements . . . . . . . . . . . . 508 9.6.1 Locks With Multiple Granularity . . . . . . . . . . . . . . 508 9.6.2 Warning Locks . . . . . . . . . . . . . . . . . . . . . . . . 509 9.6.3 Phantoms and Handling Insertions Correctly . . . . . . . 512 9.6.4 Exercises for Section 9.6 . . . . . . . . . . . . . . . . . . . 514 9.7 The Tree Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 514 9.7.1 Motivation for Tree-Based Locking . . . . . . . . . . . . . 514 9.7.2 Rules for Access to Tree-Structured Data . . . . . . . . . 515 9.7.3 Why the Tree Protocol Works . . . . . . . . . . . . . . . . 516 9.7.4 Exercises for Section 9.7 . . . . . . . . . . . . . . . . . . . 520 9.8 Concurrency Control by Timestamps . . . . . . . . . . . . . . . . 521 9.8.1 Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . 521 9.8.2 Physically Unrealizable Behaviors . . . . . . . . . . . . . 522 9.8.3 Problems With Dirty Data . . . . . . . . . . . . . . . . . 523 9.8.4 The Rules for Timestamp-Based Scheduling . . . . . . . . 525
xiv
TABLE OF CONTENTS 9.8.5 AInltiversion Timostamps . . . . . . . . . . . . . . . . . 9.8.6 Timestamps and Locking . . . . . . . . . . . . . . . . . 9.8.7 Exercises for Section 9.8 . . . . . . . . . . . . . . . . . . 9.9 Concurrency Control by Validation . . . . . . . . . . . . . . . . 9.9.1 Architecture of a Validation-Based Scheduler . . . . . . 9.9.2 The Validation Rules . . . . . . . . . . . . . . . . . . . . 9.9.3 Comparison of Three Concurrency-Control Mechanisms 9.9.4 Exercises for Section 9.9 . . . . . . . . . . . . . . . . . . 9.10 Summary of Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . 9.11 References for Chapter 9 . . . . . . . . . . . . . . . . . . . . . .
10 More About Transaction Management 10.1 Transactions that Read Uncommitted Data 10.1.1 The Dirty-Data Problem . . . . . . . 10.1.2 Cascading Rollback . . . . . . . . . 10.1.3 Managing Rollbacks . . . . . . . . . 10.1.4 Group Commit . . . . . . . . . . . . 10.1.5 Logical Logging . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
10.4
10.5
10.6
. . . . . .
. . . . . .
. . . . . .
. . . . . .
541 541 542 544 545 546 548
10.1.6 Exercises for Section 10.1 . . . . . . . . . . . . . . . . . . 551 . . . . . 552 . . . . . 552 . . . . . 553 . . . . . 556 . . . . . 557 Resolving Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . 558 10.3.1 Deadlock Detection by Timeout . . . . . . . . . . . . . . 558 10.3.2 The Waits-For Graph . . . . . . . . . . . . . . . . . . . . 559 10.3.3 Deadlock Prevention by Ordering Elements . . . . . . . . 561 10.3.4 Detecting Deadlocks by Timestamps . . . . . . . . . . . . 563 10.3.5 Comparison of Deadlock-Management Methods . . . . . . 566 10.3.6 Exercises for Section 10.3 . . . . . . . . . . . . . . . . . . 566 Distributed Databases . . . . . . . . . . . . . . . . . . . . . . . . 568 10.4.1 Distribution of Data . . . . . . . . . . . . . . . . . . . . . 568 10.4.2 Distributed Transactions . . . . . . . . . . . . . . . . . . . 570 10.4.3 Data Replication . . . . . . . . . . . . . . . . . . . . . . . 570 10.4.4 Distributed Query Optimization . . . . . . . . . . . . . . 571 10.4.5 Exercises for Section 10.4 . . . . . . . . . . . . . . . . . . 572 Distributed Commit . . . . . . . . . . . . . . . . . . . . . . . . . 572 10.5.1 Supporting Distributed Atomicity . . . . . . . . . . . . . 573 10.5.2 Two-Phase Commit . . . . . . . . . . . . . . . . . . . . . 573 10.5.3 Recovery of Distributed Transactions . . . . . . . . . . . . 576 10.5.4 Exercises for Section 10.5 . . . . . . . . . . . . . . . . . . 578 Distributed Locking . . . . . . . . . . . . . . . . . . . . . . . . . 579 10.6.1 Centralized Lock Systems . . . . . . . . . . . . . . . . . . 579 10.6.2 A Cost Model for Distributed Locking Algorithms . . . . 579
10.2 View Serializability . . . . . . . . . . . . . . . . . . . . . 10.2.1 View Equivalence . . . . . . . . . . . . . . . . . . 10.2.2 Polygraphs and the Test for View-Serializability 10.2.3 Testing for View-Seriali/ability . . . . . . . . . . 10.2.4 Exercises for Section 10.2 . . . . . . . . . . . . .
10.3
. . . . . .
. 527 . 528 . 530 . 530 . 531 . 532 . 535 . 536 . 536 . 539
TABLE OF CONTENTS
xv
10.6.3 Locking Replicated Elements . . . . . . . . . . . . . . . . 581 10.6.4 Primary-Copy Locking . . . . . . . . . . . . . . . . . . . . 581 10.6.5 Global Locks From Local Locks . . . . . . . . . . . . . . . 582 10.6.6 Exercises for Section 10.6 . . . . . . . . . . . . . . . . . . 584 10.7 Long-Duration Transactions . . . . . . . . . . . . . . . . . . . . . 584 10.7.1 Problems of Long Transactions . . . . . . . . . . . . . . . 585 10.7.2 Sagas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 10.7.3 Compensating Transactions . . . . . . . . . . . . . . . . . 588 10.7.4 Why Compensating Transactions Work . . . . . . . . . . 590 10.7.5 Exercises for Section 10.7 . . . . . . . . . . . . . . . . . . 590 10.8 Summary of Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . 591 10.9 References for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . 593 11 Information Integration
595 11.1 Modes of Information Integration . . . . . . . . . . . . . . . . . . 595 11.1.1 Problems of Information Integration . . . . . . . . . . . . 596 11.1.2 Federated Database Systems . . . . . . . . . . . . . . . . 597 11.1.3 Data Warehouses . . . . . . . . . . . . . . . . . . . . . . . 599 11.1.4 Mediators . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 11.1.5 Exercises for Section 11.1 . . . . . . . . . . . . . . . . . . 604 11.2 Wrappers in Mediator-Based Systems . . . . . . . . . . . . . . . 605 11.2.1 Templates for Query Patterns . . . . . . . . . . . . . . . . 606 11.2.2 Wrapper Generators . . . . . . . . . . . . . . . . . . . . . 607 11.2.3 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 11.2.4 Other Operations at the Wrapper . . . . . . . . . . . . . 610 11.2.5 Exercises for Section 11.2 . . . . . . . . . . . . . . . . . . 611 11.3 On-Line Analytic Processing . . . . . . . . . . . . . . . . . . . . 612 11.3.1 OLAP Applications . . . . . . . . . . . . . . . . . . . . . 613 11.3.2 A Multidimensional View of OLAP Data . . . . . . . . . 614 11.3.3 Star Schemas . . . . . . . . . . . . . . . . . . . . . . . . . 615 11.3.4 Slicing and Dicing . . . . . . . . . . . . . . . . . . . . . . 618 11.3.5 Exercises for Section 11.3 . . . . . . . . . . . . . . . . . . 620 11.4 Data Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 11.4.1 The Cube Operator . . . . . . . . . . . . . . . . . . . . . 622 11.4.2 Cube Implementation by Materialized Views . . . . . . . 625 11.4.3 The Lattice of Views . . . . . . . . . . . . . . . . . . . . . 628 11.4.4 Exercises for Section 11.4 . . . . . . . . . . . . . . . . . . 630 11.5 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632 11.5.1 Data-Mining Applications . . . . . . . . . . . . . . . . . . 632 11.5.2 Association-Rule Mining . . . . . . . . . . . . . . . . . . . 635 11.5.3 The A-Priori Algorithm . . . . . . . . . . . . . . . . . . . 636 11.6 Summary of Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . 639 11.7 References for Chapter 11 . . . . . . . . . . . . . . . . . . . . . . 640 Index
643
About the Authors
Hector Garcia-Molina is the Leonard Bosack and Sandra Lerner Professor in the Computer Science and Electrical Engineering Departments at Stanford University. He has published extensively in the fields of database systems, distributed systems, and digital libraries. His research interests also include distributed computing systems, database systems, and digital libraries.
Jeffrey D. Ullman is the Stanford W. Ascherman Professor of Computer Science at Stanford University. He is the author or coauthor of 15 books and 170 technical publications, including A First Course in Database Systems (Prentice Hall 1997) and Elements of ML Programming (Prentice Hall 1998). His research interests include database theory, database integration, data mining, and education using the information infrastructure. He has received numerous awards such as the Guggenheim Fellowship and election to the National Academy of Engineering. He also received the 1996 Sigmod Contribution Award and the 1998 Karl V. Karstrom Outstanding Educator Award.
Jennifer Widom is an Associate Professor in the Computer Science and Electrical Engineering Departments at Stanford University. She has served on numerous editorial boards and program committees, she has published widely in computer science conferences and journals, and is co-author of A First Course in Database Systems (Prentice Hall 1997). Her research interests include database systems for semistructured data and XML, data warehousing, and active database systems.
LOOKING FOR COMPREHENSIVE INTRODUCTORY DATABASE SYSTEMS COVERAGE? TAKE ADVANTAGE OF OUR TWO-BOOK DISCOUNT PACKAGE. Contact your local Prentice Hall sales representative for details on discounted pricing when you order...
A First Course in Database Systems (Ullman/Widom) and
Database System Implementation (Garcia-Molina/Ullman/Widom) ...for use together in one or two-term courses.
LOOK AT THE THOROUGH COVERAGE OFFERED BY BOTH TITLES! A First Course in Database Systems (ISBN 0-13-861337-0) Table of Contents 1. The Worlds of Database Systems 2. Database Modeling , 3. The Relational Data Model 4. Operations in the Relational Model 5. The Database Language SQL 6. Constraints and Triggers in SQL 7. System Aspects of SQL 8. Object-Oriented Query Languages ***
Database System Implementation (ISBN 0-13-040264-8) Table of Contents 1. Intro to DBMS Implementation 2. Data Storage 3. Representing Data Elements 4. Index Structures 5. Multidimensional Indexes 6. Query Execution 7. The Query Compiler 8. Coping with System Failures 9. Concurrency Control 10. More About Transaction Mgmt 11. Information Integration
*** You can find a detailed Table of Contents for A First Course in Database Systems at our website: www.prenhall.com/ullman
CALL TODAY TO RESERVE YOUR COPIES!