Development and Applica on of a Framework for the ...

1 downloads 0 Views 1MB Size Report
using semi-‐quan%ta%ve approaches (e.g. Hazard Banding or Threshold of ... control banding or hazard banding, or other risk management approaches.
Development  and  ApplicaCon  of  a  Framework  for  the  SelecCon  of  an  Appropriate  OccupaConal  Exposure  Limit   1,2 1 3   Michelle  Deveau ;  Dan  Krewski ;  Andrew  Maier

1McLaughlin  Centre  for  PopulaAon  Health  Risk  Assessment,  University  of  Olawa,  Canada;  2Faculty  of  Graduate  and  Postdoctoral  Studies,  University  of  Olawa;  3Department  of  Environmental  Health,  College  of  Medicine,  University  of  CincinnaA  

•  These  divergent  OELs  can  lead  to  difficulAes  in  selecAng  the  most  appropriate  value  for   health  protecAon  purposes.   The  objecAves  of  this  work  were  to:   •  develop  a  tool  to  guide  IHs  in  the  selecAon  of  the  most  appropriate  OEL  for  an   occupaAonal  risk  scenario;  and     •  apply  the  tool  to  demonstrate  its  versaAlity  for  both  OEL-­‐rich  and  OEL-­‐poor  scenarios.    

NO RELIABLE VALUE AVAILABLE - Derive new value; - Make adjustments to existing OELs; - Use other OEL surrogates from the hierarchy of OELs; and/or - Use other risk management considerations, including communication or other administrative controls & hazard or control banding

Apply the regulatory standard

Reject OEL ?

Select OEL that most closely matches organizational policies from any remaining values

Figure  1.  Framework  for  the  selecAon  of  OELs.  See  the  text  box  to  the  right  for  a  more  detailed   descripAon  of  the  applicaAon.  

Acknowledgements   We  would  like  to  thank  our  co-­‐authors  on  an  arAcle  enAtled  “The  Global  Landscape  of   OccupaAonal  Exposure  Limits—ImplementaAon  of  HarmonizaAon  Principles  to  Guide  Limit   SelecAon,”  which  will  be  published  in  a  forthcoming  issue  of  JOEH.  The  co-­‐authors  are:     C.-­‐P.  Chen,  G.  Johanson,  K.J.  Niven,  S.  Ripple,  P.A.  Schulte,  J.  Silk,  J.H.    Urbanus,  D.M.  Zalk,   and  R.  Niemeier.  Thanks  also  to  G.  Fazio  for  his  graphic  design  experAse  for  Figure  1.  

Assess  availability  and  relevance  of  OELs   Define  use  or  scenario  by  idenAfying  to  whom  and  how  the  exposure  of  the  compound  will   occur.     Gather  OELs,  including  documentaAon  of  the  derivaAon  of  values,  when  available.  Although  the   emphasis  is  on  tradiAonal  OELs  (i.e.  8-­‐hour  TWAs),  alternaAve  exposure  benchmarks  that  can   be  gathered  in  the  absence  of—or  as  a  supplement  to—tradiAonal  OELs  include:   •  Lower  Aers  of  the  hierarchy  of  OELs  (Laszcz-­‐Davis  et  al.,  2014),  such  as  values  derived:     -  for  internal  use  within  a  company,  or  by  trade  associaAons  or  vendors;     -  using  a  prescribed  regulatory  approach  (e.g.  DNELs  under  REACH);  or     -  using  semi-­‐quanAtaAve  approaches  (e.g.  Hazard  Banding  or  Threshold  of  Toxicological   Concern).     •  Exposure  limits  with  different  exposure  scenarios  from  tradiAonal  OELs,  such  as:     -  exposure  limits  intended  for  shorter  duraAon  (e.g.  IDLH  and  AEGLs);  or   -  environmental  health  exposure  guidelines.   Assess  relevance  by  comparing  the  defined  exposure  scenario  to  OELs.  Eliminate  OELs  that  are   not  applicable  to  the  defined  scenario,  or  that  cannot  be  adjusted  to  beler  match  the  defined   scenario.   Compare  mandatory  standards  to  non-­‐mandatory  OELs  to  ensure  regulatory  compliance.   Assess  the  reliability  of  OELs   Risk  science  –  Based  on  a  recent  literature  review  of  the  chemical’s  health  effects,  evaluate  the:     •  SelecAon  of  the  Point  of  Departure  (POD),  the  basis  of  the  OEL  calculaAon  (e.g.  no  or  lowest   observed  adverse  effect  levels  or  benchmark  dose—NOAEL  or  LOAEL).  Reject  OELs  based  on   studies  or  adverse  effects  that  are  no  longer  sufficiently  protecAve,  are  not  relevant  to   humans,  or  not  based  on  current  scienAfic  principles.     •  ApplicaAon  of  uncertainty  factors  (UFs),  which  account  for  variability  and  uncertainAes  in   data  used  as  the  basis  for  the  OEL.  Reject  OELs  without  sufficient  margin  of  safety  between   the  POD  and  OEL  to  account  for  variability  in  toxic  responses  among  humans,  and  between   animals  and  humans.   •  IntegraAon  of  weight  of  evidence;  reject  OELs  that  do  not  sufficiently  consider  all  relevant   human  health  aspects  discussed  in  the  literature.   Risk  policy  –  Based  on  the  IH’s  organizaAonal  policies  and  pracAces,  evaluate  the:   •  Risk  acceptance  to  verify  whether  the  acceptable  level  of  risk  (typically  in  the  range  of   1/1,000  to  1/10,000  or  10-­‐4  to  10-­‐3  for  occupaAonal  scenarios)  are  in  line  with  organizaAonal   policies.   •  Feasibility  to  ensure  that  the  organizaAon  is  capable  of  achieving  the  OEL  with  reasonable   engineering  and  other  controls,  analyAcal  approaches,  and  economic  consideraAons.     If  more  than  one  OEL  is  retained,  select  the  most  appropriate  OEL.  This  selecAon  can  be  based   on  the  most  conservaAve  value,  the  most  scienAfically  robust  value,  or  other  factors—the   primary  recommendaAon  is  that  the  process  is  documented  to  ensure  consistency.   If  no  OELs  are  retained,  consider  developing  a  provisional  OEL  (de  novo  or  by  adjustment  of   rejected  values),  control  banding  or  hazard  banding,  or  other  risk  management  approaches.  

Contact   Michelle  Deveau   University  of  Olawa   Olawa,  Ontario,  Canada   email:  [email protected]  

Define  exposure  scenario  

Auto  mechanics  in  the  U.S.  exposed  for  several  hours  daily  to  n-­‐hexane  in   aerosol  degreasers  

Gather  OELs  

GESTIS  InternaAonal  Limit  Values  database  (2014)  listed  >25  8-­‐hour  OELs   6  values  retained  —  see  Table  1  

Most  values  were   eliminated  from  further   review  due  to  absence  of   documentaAon  describing   derivaAon  

Assess  relevance  

All  OELs  were  relevant  to  the  populaAon,  duraAon  &  route  of  exposure  

Compare  Mandatory  vs.  Non-­‐mandatory  OELs  

OSHA  PEL  is  ≥10-­‐fold  higher  than  all  other  values  —  applying  other  values   will  ensure  regulatory  compliance  

Evaluate  risk  science  basis  

•  OELs  all  based  on  neurotoxicity  /  electrophysiology   •  Non-­‐OSHA  L/NOAELs  in  similar  range   •  Applied  UFs  for  non-­‐OSHA  OELs  appear  to  be  sufficient  

OSHA  PEL  ELIMINATED:   Date  of  assessment  would   prevent  the  inclusion  of   some  more  protecAve   LOAELs  &  NOAELs    

Evaluate  risk  policy  basis  

•  Threshold  (non-­‐cancer),  therefore  risk  acceptance  is  inherent  in  UF   selecAon,  which  was  considered  appropriate   •  Remaining  OELs  measurable  (NIOSH  Manual  of  AnalyAcal  Methods)     •  OELs  achievable  with  exisAng  engineering  &  administraAve  controls    

Select  most  appropriate  OEL  

Example  of  applicaCon  #2:  OEL-­‐poor  situaCon*                                    

Assess  availability  &  relevance  of  OELs  

•  As  a  result  of  the  proliferaAon  of  OEL-­‐se}ng  bodies,  industrial  hygienists  (IHs)  can  be   confronted  with  mulAple  relevant—but  oJen  conflicAng—OELs  for  a  chemical.    

Guidance  for  IHs  on  the  assessment  of  OELs  for  availability,  relevance,  and  reliability  was   translated  into  a  tool  (Figure  1)  that  builds  upon  concepts  presented  previously,  including  a   hierarchy  of  OELs  (Laszcz-­‐Davis  et  al.,  2014)  and  framework  for  OEL  evaluaAon  and   interpretaAon  (Maier  et  al.,  2012).  The  stages  of  the  assessment  are  briefly  outlined  below.  

Assess  availability  &  relevance  of  OELs  

•  OccupaAonal  exposure  limits  (OELs)  serve  as  benchmarks  for  the  interpretaAon  of   workplace  exposures  within  a  health  risk  context.    

Example  of  applicaCon  #1:  OEL-­‐rich  situaCon*  

Assess  reliability     of  OELs  

Framework  for  the  SelecCon  of  OELs  

Assess  reliability  of  OELs  

Background  and  ObjecCves  

(ppm)  

50  

Germany   MAK  

50  

Neurotoxic  effects  in  workers  (NOAEL  of  58  ppm)  and  electrophysiological  effects  in  animals   (NOAEL  of  100  ppm).  UF  not  specified,  but  1  for  humans  and  2  for  animal  studies.  

NIOSH  REL  

50  

OSHA  PEL  

500  

(ACGIH,  2001)  

(DFG,  2000)  

(NIOSH,  2011)   (OSHA,  2012)  

Poland  NDS   (Jakubowski,   2006)  

SCOEL   IOELV  

20  

20  

(EC,  1995)  

Peripheral  neuropathy  at  210  ppm  (LOAEL)  &  delay  in  onset  of  neurological  symptoms.  UF  was   not  stated,  but  ~4-­‐fold.   Based  on  CNS  depression,  nausea,  headache,  narcosis,  and  eye  and  throat  irritaAon.  Details  of   OEL  derivaAon  could  not  be  obtained  (based  on  1968  ACGIH  TLV  documentaAon).   Value  of  100  mg/m3  (28  ppm)  was  proposed  based  on  a  NOAEL  of  204  mg/m3  (58  ppm)  for   neurotoxic  effect  in  workers  and  UF  of  2  for  individual  sensiAvity;  therefore,  the  SCOEL  of  20   ppm  was  deemed  appropriate.     Electromyographic  abnormaliAes  in  workers  at  70  ppm  (LOAEL),  supported  by  various   workplace  observaAons  of  these  changes  at  50–100  ppm.  UF  of  2,  which  was  sufficient  for   mild  effects.  

Table  1.  OELs  examined  for  risk  science  and  risk  policy  evaluaAon  for  n-­‐hexane  

No  tradiAonal  OELs  for  meth;  only  guideline  is   California  EPA  Reference  Dose  of  0.3  μg/kg-­‐d    

Assess  relevance  

Target  populaAon  (toddlers),  duraAon  of  exposure   (24  h/d,  7  d/wk)  &  route  of  exposure  (ingesAon  /   total  exposure)  of  RfD  not  relevant  to  scenario  

Compare  Mandatory  vs.  Non-­‐mandatory  OELs   Evaluate  risk  science  basis   Evaluate  risk  policy  basis  

*Please  note  that  the  scenarios  described  in  this  poster  are  purely  hypotheAcal  and  are  intended  to  demonstrate  the  types  of  decisions  that   could  be  made  during  the  process  of  selecAon  of  an  OEL.  All  exposure  guidelines  described  in  the  examples,  however,  are  factual.  The  OELs   selected  and  proposed  are  considered  to  be  relevant  to  the  scenarios  presented  herein,  and  might  not  be  applicable  to  all  exposure  scenarios.   Industrial  hygienists  should  apply  the  framework  for  each  specific  scenario  of  interest  to  idenAfy  the  appropriate  OELs  for  their  situaAon.  

10 LOAEL  ÷  UF  

8h 5d 8 m 3 DuraAon   Route   Interim  value  

                of  a  djustment         provided    below)   (Further     details      

Select  most  appropriate  OEL  

2)  Exposure  duraAon  adjustment  –  to  extrapolate  from  a  conAnuous  exposure  value  to  5   weekly  8-­‐hour  shiJs,  the  LOAEL  was  mulAplied  by  24h/8h  and  7d/5d.   3)  Exposure  route  adjustment  –  default  assumpAons  of  8  m3  inhalaAon/shiJ  and  55  kg   bodyweight  were  used  to  adjust  the  value  from  mg/kg-­‐d  to  mg/m3.   The  resulAng  interim  OEL  for  meth  was  0.23  mg/m3  (230  μg/m3).    

Discussion  &  Conclusions   •  The  need  to  idenAfy  the  most  appropriate  OEL  for  a  compound  when  a  range  of  values   exists  presents  a  challenge  for  the  IH  pracAAoner;  however,  applicaAon  of  a  systemaAc   framework  is  helpful  in  guiding  the  selecAon  process.   •  The  proposed  framework  is  sufficiently  flexible  to  support  risk  management  decisions  by  an   IH  in  both  OEL-­‐rich  and  -­‐poor  situaAons.     •  Most  OEL-­‐deriving  organizaAons  did  not  publish  details  on  the  risk  science  and  risk  policy   decisions  behind  the  calculaAon  of  values,  complicaAng  the  selecAon  process.   •  To  help  IHs  in  their  applicaAon  of  OELs,  increased  transparency  by  most  OEL-­‐deriving   organizaAons  is  highly  recommended.     •  Future  work  related  to  this  project  will  involve  the  development  and  publicaAon  of:   •  more  detailed  guidance  for  IHs  on  adjusAng  exisAng  OELs;  and   •  guides  on  available  OELs  and  alternaAve  exposure  benchmarks.  

 

References   1.  2.  3.  4.  5.  6.  7.  8.  9.  10. 

NO  RELEVANT  VALUE  AVAILABLE   However,  because  no  other   exposure  guidelines  were  available   for  meth,  the  CalEPA  RfD  was   adjusted  to  derive  an  interim  OEL   that  beler  fits  the  exposure   palern  and  populaAon  of  the   defined  scenario     0.08 mg/kg-d 24h 7d   55 kg = 0.23 mg/m 3 × × ×

•  UF  of  3  for  absence  of  data  in  toddlers  was  removed  because  this  populaAon  was  not  relevant.   •  UF  of  10  for  interindividual  variability  was  reduced  to  √10  (i.e.  3)  to  reflect  less  variability   among  healthy  workers   •  UF  of  10  for  use  of  a  LOAEL  was  reduced  to  √10  (i.e.  3)  due  to  dose–response  palerns  

Basis   Neurotoxic  effects  and  narcosis,  as  well  eye  &  mucous  membrane  irritaAon.  LOAELs  of  500   ppm  in  humans  and  250  ppm  in  animals.  UFs  were  not  explicitly  stated,  but  value  of  50  if   based  on  human  data.  

ACGIH  TLV    

Gather  OELs  

CalEPA  RfD:  0.3  μg/kg-­‐d,  based  on  a  LOAEL  of  0.08  mg/kg-­‐d  for  decrease  in  bodyweight  gain  (as   a  proxy  for  neurological  effects)  in  a  controlled  dosing  study  of  pregnant  women,  and  divided  by   a  UF  of  300.  In  the  absence  of  more  appropriate  OELs,  this  RfD  was  adjusted  for  the  scenario  by:   1)  Uncertainty  factor  adjustment  –  CalEPA  UF  of  300  was  reduced  to  10  because:  

Figure  2.  ApplicaAon  of  the  OEL  selecAon  framework  for  hypotheAcal  n-­‐hexane  exposures.   TWA  

Workers  regularly  remediaAng  recently   condemned  methamphetamine  (meth)  labs    

Figure  3.  ApplicaAon  of  the  OEL  selecAon  framework  for  hypotheAcal  methamphetamine  exposures.  

Of  the  retained  values,  the  SCOEL  IOELV  (20  ppm)  was  selected  because:   •  The  auto  mechanic  shop  wanted  to  rely  on  most  protecAve  approach   •  The  IOELV  documentaAon  idenAfied  electrophysiological  changes  as  low  as  50  ppm;  therefore,  to   allow  for  sufficient  applicaAon  of  UFs,  the  value  of  20  ppm  was  selected.  

OEL  

Define  exposure  scenario  

ACGIH.  (2001)  DocumentaAon  of  the  Threshold  Limit  Values  and  Biological  Exposure  Indices,  7th  EdiAon:  Hexane  (n-­‐Hexane).  American  Conference  of  Governmental  Industrial  Hygienists,  CincinnaA.   California  Environmental  ProtecAon  Agency  Office  of  Environmental  Health  Hazard  Assessment.  (2009)  Development  of  a  Reference  Dose  (RfD)  for  Methamphetamine.  hlp://www.oehha.ca.gov/public_info/public/kids/pdf/MethRfDFinal022609.pdf   DFG.  (2000)  MAK  Value  DocumentaAon  for  Hexane  (n-­‐Hexane)..  In:  The  MAK  CollecAon  for  OccupaAonal  Health  and  Safety.  hlp://onlinelibrary.wiley.com/book/10.1002/3527600418/topics?filter=MAKSmbe11054#MAKSmbe11054     EC.  (1995)  RecommendaAon  from  the  ScienAfic  Expert  Group  on  OccupaAonal  Exposure  Limits  for  n-­‐Hexane.  hlp://ec.europa.eu/social/BlobServlet?docId=6795&langId=en   GESTIS.  (2014)  InternaAonal  Limit  Values  for  Chemical  Agents:  OccupaAonal  Exposure  Limits:  OccupaAonal  Exposure  Limits.  hlp://www.dguv.de/ifa/Gefahrstoffdatenbanken/GESTIS-­‐InternaAonale-­‐Grenzwerte-­‐f%C3%BCr-­‐chemische-­‐Substanzen-­‐limit-­‐values-­‐for-­‐chemical-­‐agents/index-­‐2.jsp     Jakubowski  M.  (2006)  Heksan:  Dokumentacja  dopuszczalnych  wielkości  narażenia  zawodowego  [Polish].  Podstawy  i  Metody  Oceny  Środowiska  Pracy  21(1(47):  109–129.  hlp://archiwum.ciop.pl/zasoby/Heksan.pdf  Translated  by  Google  Translate.   Laszcz-­‐Davis  C.,  Maier  A.,  and  Perkins  J.  (2014)  The  Hierarchy  of  OELs:  A  New  Organizing  Principle  for  OccupaAonal  Risk  Assessment.  The  Synergist,  March  2014,  p.  26–30.  hlp://www.aihasynergist-­‐digital.org/aihasynergist/201403#pg31   Maier  A.,  Sussman  R.,  Naumann  B.,  and  Roy  R.  (2012)  Characterizing  the  Impacts  of  Uncertainty  and  ScienAfic  Judgment  in  Exposure  Limit  Development.  Poster  presented  at  AIHce  2012.  hlp://www.tera.org/OARS/posters/OEL%20Uncertainty%20Poster%20-­‐%2011%20x17%20Final.pdf   NIOSH.  (2011)  CDC–NIOSH  1988  OSHA  PEL  Project  DocumentaAon:  List  by  Chemical  Name:  n-­‐HEXANE.  hlp://www.cdc.gov/niosh/pel88/110-­‐54.html     OSHA.  (2012)  Chemical  Sampling  InformaAon:  Hexane  (n-­‐Hexane).  hlps://www.osha.gov/dts/chemicalsampling/data/CH_245400.html