Development of a cannabinoid-based Cell-in-a-Box ...

4 downloads 27 Views 805KB Size Report
John Smith, MD1; Jane Doe, PhD2; Frederick Jones, MD, PhD1,2. 1University of Affiliation, 2Medical Center of Affiliation. We appreciate the financial support ...
® Development  of  a  cannabinoid-­based  Cell-­in-­a-­Box  

therapeutic  system   targeted  toward  malignant  tumors

R.M.  Hyslop1,  C.E.  Brown1,  A.  Magiotta1,  B.  Morgan1,  M.  Brown,  T.  Sherman2,  D.  Petty,  S.  Desa3,  J.  O’Neil1,  S.  Flora,  K.  Kellogg,  C.  Hansen1,  S.  Bydalek1,  T.  Cale,  C.  Laster1,  J.  Folsom,  A.  Hawkinson2 1Department  of  Chemistry  and  Biochemistry,  UNC;;  2School  of  Biological  Sciences,  UNC,  3Department  of  Biology,  Universiti  Pendidikan  Sultan  Idris

Abstract

Methods  and  Materials

Cannabis  sativa  represents  a  sustainable,  “green  chemistry”  source  of  potentially   therapeutically-­‐active  compounds.  Several  Cannabis-­‐derived  phytocannabinoids  have   been  reported  to  have  a  variety  of  medicinal  benefits  including  anticancer  activity.  We   are  currently  investigating  the  feasibility  of  a  patented  cell-­‐encapsulation  system  in  which   cells  producing  enzymes  capable  of  converting  an  inactive  phytocannabinoid prodrug   into  an  active  anti-­‐cancer  drug  are  encapsulated  in  a  cellulose-­‐based  porous  polymer,   which  can  be  injected  immediately  upstream  from  a  tumor.  An  administered   phytocannabinoid prodrug  can  be  activated  by  the  encapsulated  cells  at  the  site  of  the   tumor.  Using  both  specific  phytocannabinoids  and  model  compounds,  a  variety  of  cell   lines  were  screened  for  the  appropriate  enzymatic  activity  to  convert  an  inactive   cannabinoid  prodrug  into  an  active  drug.  Five  cell  lines  were  observed  that  were  actively   producing  the  desired  enzyme.  These  cell  lines  are  currently  being  assessed  with  a   specific  phytocannabinoid prodrug.  Initial  results  are  discussed.

Cell  culture.  Cells  were  c ultured   in  500-­‐700  mL  of  appropriate   growth  medium  and  incubated  at  room   1 2 1,2 temperature  or  37  °C  according  to  species.  Once  c ell  cultures  had  been  propagated,  the  cells  were   1 to  model  compounds  in  order  to  induce  2expression  of  the  target  gene,  and  thus  production  of   exposed   the  target  enzyme  (3).  Cells  were  induced  with  model  c ompounds  incubating  for  varying  periods  ranging   from  1-­‐24  hours.    Following  induction,  cells    w ere  centrifuged  at  4000g  for  10  minutes  to  collect  all  cells.   Wet  cell  mass  of  the  final  cell  pellet  was  obtained  in  mg/mL.  Cells  were  resuspended  in  50  mL  of  c ulture   medium  and  split  between  two  50  mL  conical  tubes.  After  a  period  of  induction,  c ells  are  processed  in   two  groups;  one  sample  was  left  intact  while  the  other  was  sonified  to  lyse  the  cells.  

Introduction A  2009  mini-­‐review  of  51  published  scientific  articles  concluded  that  cannabinoids  could   be  useful  in  the  treatment  of  cancer  due  to  their  ability  to  regulate  cellular  signaling   pathways  critical  for  cell  growth  and  survival  (1).    The  primary  aim  of  this  research  is  to   develop  a  human  clinical  trial-­‐ready  phytocannabinoid-­‐based  therapy  for  the  targeted   treatment  of  pancreatic,  brain,  and  other  cancers  utilizing  a  novel  human  cell  line  that   has  been  encapsulated  via  the  Cell-­‐in-­‐a-­‐Box® live  cell  encapsulation  technology  and   engineered  to  activate  a  marijuana-­‐derived  prodrug  in  situ.    The  Cell-­‐in-­‐a-­‐Box® treatment   platform  is  a  cellulose-­‐based  live  cell  encapsulation  technology  that  encloses  living  cells   into  bio-­‐inert  protective  porous  capsules  about  the  size  of  the  head  of  a  pin.  Capsules   contain  pores  providing  for  the  exchange  of  essential  nutrients/waste  products  and   allowing  cells  inside  the  capsules  to  live  and  function  for  long  periods  of  time  (2+  years).   Encapsulated  cells  may  be  stored  at  -­‐80  °C  or  lower  and  successfully  thawed  for  use.   Various  cell  types,  both  prokaryote  and  eukaryote,  have  been  reported  to  possess   enzymes  capable  of  catalyzing  a  specific  chemical  reaction  equivalent  to  the  reaction   necessary  for  conversion  of  several  individual  cannabinoid  prodrugs  into  their   corresponding  active  antineoplastic  forms.  Thus,  our  goal  is  to  identify  an  organism  with   the  appropriate  enzyme,  isolate  the  gene  for  the  enzyme,  incorporate  the  gene  into  a   human  embryonic  kidney  (HEK)  cell,  and  encapsulate  the  HEK  cell.    Preliminary  studies   have  focused  on  screening  these  cell  types  using  non-­‐cannabinoid  model  compounds.     Conditions  for  separation  of  model  compound  prodrugs  and  their  corresponding  active   drug  were  optimized  and  a  standard  curve  for  each  compound  was  constructed.  A   method  to  extract  the  model  compounds  and  their  corresponding  products  from  the  cell   incubation  medium  was  developed  (2).    The  cells  were  then  screened  using  the   cannabinoid  prodrug.  

Inactive  Prodrug

Capsules  Containing Prodrug Activating  Cells

John  Smith,  MD ;  Jane  Doe,  PhD ;  Frederick  Jones,  MD,  PhD University  of  Affiliation,   Medical  Center  of  Affiliation

Analytical  methods.  To  separate  the  pro-­‐  and  active  drugs,  high  pressure  liquid  chromatography  (HPLC)   was  performed  using  a  Shimadzu  L C-­‐10AT  HPLC  equipped  with  a  Luna  Omega  5µm  Polar  C18  (150  mm  x   4.6  mm)  reverse-­‐phase  column,  SPD-­‐10A  UV  detector,  and  10  µL  injector  loop.  Conditions:A  linear   gradient  consisting  of  20  mM  ammonium  formate:acetonitrile  atarting  at  40:60  was  increased  to  95:5   over  a  period  of  9  min  with  a  flow  rate  of  at  1.2  mL/min;  detector  wavelength  220  nm;  run  time  10  min.   Enzymatic  activity.  Assessment  of  enzymatic  activity  with  model  compounds  has  been  reported.   Enzymatic  activity  for  cannabinoids  was  assessed  as  follows:    Incubation  media  contained  13  mL  of  cell   suspension  and  0.1  mL  of  purified  cannabinoid  pro-­‐drug  (20  mg/mL  in  ethanol).  The  medium  w as   incubated  at  37    ̊C  with  constant  shaking.  Two-­‐mL  aliquots  were  taken  at  0,  0.5,  1,  2,  3,  and  4  hr   intervals.  The  aliquots  were  immediately  added  to  a  solution  containing  5  mL  n-­‐pentane  and  0.5  mL   ethanol,  vortexed  for  5  sec,  and  centrifuged.  The  organic  layer  was  transferred,  evaporated  to  dryness,   and  reconstituted  in  0.1  mL  ethanol  followed  by  analysis  using  HPLC.

Results

Enzymatic  activity  was  observed  in  five  cell  lines  for  two  model  compounds  (Table  1).    These  three  cell   lines  w ere  assessed  using  a  specific  cannabinoid  pro-­‐drug.  Three  c ell  lines  were  observed  to  have   detectable    activity  converting    the  pro-­‐drug  into  the  active  drug  following  3  hr  incubation  (Table  1). Table  1. Cell  lines  screened  for  activity.

Tumor  Cells  are  Destroyed      

Figure  1:  Using  Cell-­‐in-­‐a-­‐Box® to  Treat  Cancer

1200000 1000000 800000 600000 400000

Intact

Lysed

Induced

Substrate

Lactobacillus casei

No

No

No

Aerobacter aerogenes

Yes

Yes

Yes  

Model  compound  only

Klebsiella pneumoniae

Yes

Yes

Yes

Model  compound  only  

Escherichia coli

No

No

No

Pseudomonas  putida

No

Yes

Lactobaccilus plantarum

No

No

No

Trichosporon monilliforme

No

No

No

Aspergillus niger

No

No

No

Lactobaccilus brevis

No

No

NA

Conclusions

Pseudomonas  chrysogenum

No

No

No

Penicillium chrysogenium

No

Yes

Yes

Current  work  involves  the  identification  of  the  gene  coding  from  the  enzyme  responsible   for  activating  the  prodrug.    We  have  attempted  to  transfect  HEK  cells  with  a  specific  gene   potentially  capable  of  encoding  for  the  desired  enzymatic  activity.  Future  work  will  involve   identification  of  the  respective  genes  from  the  other  lines  and  attempts  to  transfect  HEK.    

Asperigillus clavatus

No

Yes

0 0

Yes

Cannabinoid

0.1

0.2

0.3

0.4

0.5

0.6

Figure  2:  Standard  curve  for  cannabinoid  active  drug  (220nm)  

Discussion Currently,  three  cell  lines  have  shown  marginal  activity  for  the  conversion  of  the   cannabinoid  pro-­‐drug  into  an  active  antineoplastic  drug. The  activity  requires  induction  using  a  model  compound.  Lysis  of  the  cells  prior  to   incubation  was  required,  which  suggests  that  the  pro-­‐drug  cannot  be  absorbed  through   the  cell  surface  of  the  intact  cell.  Screening  of  additional  cell  lines  will  be  continued.  In   addition,  an  attempt  will  be  made  to  isolate  the  gene  for  the  enzyme  from  the  cell  line   that  demonstrated  activity.

Cannabinoid Cannabinoid

Yes

References

Acknowledgments We  appreciate  the    financial  support  provided  by  PharmaCyte Biotech  (to  RMH),  and   the  support  from  UNC  School  of  Biological  Sciences,  and  Department  of  Chemistry   and  Biochemistry.

R²  =  0.9771

200000

Activated  Drug

Cancer  Prodrug  is  “Activated”   by  the  Encapsulated  Cells

1600000 1400000

The  HPLC  method    for  separating  the  specific  cannabinoid  pro-­‐drug  from  the  active  drug  gave  base-­‐line   separation  (Figure  1).    The  extraction  method  gave  reproducible  quantitative  recovery  (greater  than   90%)  for  both  pro-­‐  and  active  drug.  The  analysis  was  linear  over  the  range  from  60  µg/mL    to  500  µg/mL   (Figure    2)  with  a  limits  detection  of  30  µg/mL.    

Cell  Type

Figure  1. Separation  of  the  cannabinoid  active  drug  (7.2  min)  and  prodrug  drug  (7.9  min)

1.    Alexander  A,  Smith  PF,  Rosengren RJ.  Cannabinoids  in  the  treatment  of  cancer.  Cancer  Letters.  2009;  285(1):6-­‐12 2. Brown  CE,  Rabe ML,  Crabtree  G,  Hyslop RM.  Sustainable,  green  chemistry  and  medicine:  Targeted  cannabinoid-­‐based  chemotherapy   utilizing  Cell-­‐in-­‐a-­‐Box® cellular  encapsulation  technology”  2014;  248th ACS  National  Meeting,  San  Francisco,  CA. 3. Jimenez  N,  Curiel JA,  Reveron I,  De  las  Rivas  B,  Munoz  R.  Uncovering  the  Lactobacillus  plantarum WCFS1  Gallate Decarboxylase  Involved  in   Tannin  Degradation.  Applied  and  Environmental  Microbiology.  2013;  79(14):4253-­‐63. .