ZrSi2 - 346 kJ/mol. HfSi2 - 394 kJ/mol. ~. D in t. (m. 2. /s). TiSi. 2. IVB. VB. VIB. Ti. V. Cr. Zr. Nb. Mo. Hf. Ta. W. â¢Melting point (Tm) normalized integrated diffusion ...
Diffusion pattern in disilicides in group IVB, VB and VIB metal-silicon systems Soumitra Roy, Soma Prasad, Sergiy V. Divinski, Aloke Paul
Department of Materials Engineering Indian Institute of Science Bangalore, India 1
Objectives Back ground: Metal-Silicides are important in many applications such as electronic materials, structural materials, coatings etc. Extensive studies are conducted till date, however, mostly in thin film condition.
It is a common notion that Si is the only diffusing species especially in disilicides Objective: Bulk diffusion studies in Group IVB, VB and VIB Metal-Silicon systems to examine, if it is indeed true! Outcome: We found a particular pattern in diffusion behavior of components.
Estimated diffusion parameters Integrated diffusion coefficient
~β Dint = − Vmβ
xβ 2
~ J ∫ B dx
xβ 1
~ JB
(N =−
+ B
− N B− 2t
) (1 − Y ) Y ∫V
x +∞
x*
* B
B
x −∞
m
* B
dx + Y
∫
x*
(1 − YB ) dx Vm
Ratio of the intrinsic/tracer diffusion coefficients x + xK Y ( 1 − YB ) − B dx − N B ∫ dx NB ∫ * V V DB J B VA DB m xK x −∞ m ≈ = = xK x +∞ DA* J A VB DA ( ) Y Y 1 − + − B B − N dx + N A ∫ dx A ∫ V Vm xK x −∞ m +∞
N B − N B− YB = + N B − N B−
Locating the Kirkendall marker plane
A. Paul et al. Thermodynamics, diffusion and the Kirkendall effect in solids, Springer, 2014
Locating the Kirkendall marker plane K K
1350 oC , 10 h 1300 oC , 16 h
S. Prasad and A. Paul, Intermetallics 19 (2011) 1191 P.C. Tortorici and M.A. Dayananda, Met. Mat. Traans 30A (1999) 545 M. Salamon, et al., Phil. Mage. 84 (2004) p. 737 Salamon and H. Mehrer, Z. Metallk. 96 (2005) p. 833
Systems considered IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
TiSi2 ZrSi2 , HfSi2
Around Ti atom 4 Ti and 10 Si Around Si atom 5 Ti and 9 Si
M is surrounded by 10 Si (4 Si-I and 6 Si-II) and 6 M Si-I is surrounded by 12 Si (8 Si-I and 4 Si-II) Si-II is surrounded by 10 Si (6 Si-I and 4 Si-II) and 6 M
Growth in the Ti-Si system 1200 oC for 16 hours Si
TiSi2
TiSi
Ti Ti5Si4
100
Ti5Si4
80
Ti at %
Ti 3Si 60
TiSi
40
Ti5Si3
Ti 5Si 3 Ti 5Si 4
Ti3Si
TiSi 2
20
0 -0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Distance (µm)
S. Roy, S. Divinski, A. Paul, Phil. Mag. 94 (2014) 683.
Growth in the Ti-Si system Si
TiSi2
TiSi
Ti
Ti5Si4
DSi* =∞ DTi*
K
-14
10
-15
QTiSi 2 = 190 + - 9 kJ/mol
2
Dint , m /s
10
6.5
6.6
6.7
6.8 -4
1/T X 10 , K
6.9
7.0
7.1
-1
S. Roy, S. Divinski, A. Paul, Phil. Mag. 94 (2014) 683.
Growth in the Zr-Si and Hf-Si systems HfSi2
Si
100
Hf
80
HfSi
HfSi2
Hf at %
60
K
HfSi
40
20
0 -0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Distance (µm)
1 ZrSi2
Si
100
Zr
80
60
Zr at %
ZrSi
ZrSi2
ZrSi
40
K 20
0 0.0
0.1
0.2
0.3
0.4
0.5
Distance (µm)
S. Roy and A. Paul, Materials Chemistry and Physics 143 (2014) 1309
Growth in the Zr-Si and Hf-Si systems
QZrSi = 346 +- 34 kJ/mol
2
Dint , m /s
2
10
-13
~
10
-12
10
-13
6.6
6.7 6.8 6.9 -4 -1 1/Tx 10 , K
7.0
7.1
QHfSi = 394 +- 37 kJ/mol 2
2
Dint , m /s
6.5
~
-
10
-14
6.4
6.5
6.6
6.7 6.8 -4 -1 1/T x 10 , K
6.9
7.0
S. Roy and A. Paul, Materials Chemistry and Physics 143 (2014) 1309
Comparison of data in Group IVB Metal-Silicon system
10
-12
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
TiSi2 - 190 kJ/mol
HfSi 2
ZrSi2 - 346 kJ/mol
10
HfSi 2
-12
HfSi2 HfSi 2
ZrSi 2 -13
10
-14
ZrSi 2 10
-13
10
-14
~
~
10
Dint (m2/s)
Dint (m2/s)
HfSi2 - 394 kJ/mol
6.4
TiSi 2
6.5
6.6
6.7
6.8 -4
1/Tx 10 , K
-1
6.9
7.0
7.1
TiSi 2
1.176
1.180
1.184
1.188
1.192
Tm/T
Melting point (Tm) normalized integrated diffusion coefficient increases with the increase in atomic number. Overall vacancy concentration must be increasing with the increase in atomic number
Data in Group IVB Metal-Silicon systems TiSi2, oF24, C54 structure Si
TiSi Ti
TiSi2
Ti5Si4
* Si * Ti
D =∞ D
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
K
ZrSi2
Si
Around Ti atom 4 Ti and 10 Si Around Si atom 5 Ti and 9 Si
Zr
ZrSi
DSi* =∞ * DZr
C49 (oC12)
K
Si
HfSi2
Hf HfSi
K
DSi* =∞ * DHf
M is surrounded by 10 Si (4 Si-I and 6 Si-II) and 6 M Si-I is surrounded by 12 Si (8 Si-I and 4 Si-II) Si-II is surrounded by 10 Si (6 Si-I and 4 Si-II) and 6 M
Vacancy concentration increases on Si sublattice Vacancy and antisites on sublattice for metal component must be negligible
Growth in the Group VB Metal-Silicon systems MSi2, hP9 (C40)
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
M – 5 Si Si – 5 Si and 5 M
Growth in the V-Si system VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
1200 OC;16hrs
10
DSi* =∞ DV*
K
-13
141± 7.8 kJ/mol
10
-14
10
-15
~
Dint (m2/s)
IVB
6.2
6.4
6.6
6.8 -4
7.0
7.2
7.4
-1
1/Tx10 (K ) S. Prasad and A. Paul, J. Phase Equilibria and Diffusion 32 (2011) 212
Growth in the Nb-Si system Nb
NbSi2
Si
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
Nb5Si3 K
DSi* = 4. 8 ± 1. 4 * DNb
30 µm Nb/Si diffusion couple, 1250 oC , 24hrs -13
193 ± 16 kJ/mol -14
10
~
Dint (m2/s)
10
-15
10
6.2
6.4
6.6
6.8
7.0
1/Tx10-4 (K -1)
S. Prasad and A. Paul, Acta Materialia 59 (2011) 1577
Growth in the Ta-Si system TaSi2
Ta
Si
Ta5Si3
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
K
~ , m2/s D int
10
10
10
-13
Q = 550 +- 70 kJ/mol
-14
Temperature ( oC)
DSi* * DTa
in the
1200
TaSi2 phase 1.3
1225
1.2
1250
1.1
1275
1.1
-15
6.4
6.5
6.6
6.7 -4
1/T x 10 , K
-1
6.8
6.9
S. Roy and A. Paul, Philos. Mag 92 (2012) 4215
Data in Group VB Metal-Silicon systems IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
-13
10
-13
10
TaSi2
TaSi2
NbSi2
Dint (m 2/s)
VSi2 -14
10
~
Dint (m2/s)
VSi2
~
NbSi2
-14
10
NbSi2 - 193 kJ/mol VSi2 - 141 kJ/mol TaSi2 - 550 kJ/mol
-15
-15
10
10
6.3
6.4
6.5
6.6
6.7
6.8 1/Tx10 (K ) -4
-1
6.9
7.0
7.1
1.2
1.3
1.4
1.5
1.6
1.7
Tm/T
Again melting point normalized integrated diffusion coefficient increases with the increase in atomic number. Overall concentration of defects assisting the diffusion must be increasing with the increasing atomic number S. Roy, S. Prasad, S.V. Divinski and A. Paul, Philos. Mag. 94 (2014) 1508
Data in Group IVB Metal-Silicon systems MSi2, hP9 (C40) DSi* =∞ DV*
K
NbSi 2
Nb Nb 5 Si 3
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
DSi* = 4.8 ± 1.4 * DNb
30 µm TaSi2
VB
Si
K
Ta
IVB
M – 5 Si Si – 5 Si and 5 M
Si
Ta5Si3
K
DSi* = 1.1 − 1.3 * DTa Concentration of metal antisites must be increasing with the increasing atomic number
Growth in the Group VB Metal-Silicon systems
CrSi2 MSi2, hP9 (C40)
M – 5 Si Si – 5 Si and 5 M
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
MoSi2 ,WSi2 tI6, C11b
M – 10 Si Si – 5 Si and 5 M
Growth in the Cr-Si system IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W Cr
Cr5Si3
CrSi2
CrSi
K
1250 oC 16 hrs DSi* =∞ * DCr
Si
Growth in the Mo-Si system IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
K
1300 oC , 16hrs DSi* =∞ * DMo -13
10
K
-14
10
~
Dint (m2/s)
153 kJ/mol
-15
10
6.3
1350 oC , 10 hrs
6.4
6.5
6.6
6.7 -4
6.8
6.9
7.0
7.1
-1
1/Tx10 (K )
S. Prasad and A. Paul, Intermetallics 19 (2011) 1191-1200 P.C. Tortorici and M.A. Dayananda, Met. Mat. Traans 30A (1999) 545
Growth in the W-Si system VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
W
WSi2
Si
DSi* = 13.7 DW*
K
10
-13
8x10
-14
6x10
-14
4x10
-14
2x10
-14
Q = 152 +- 7 kJ/mol
~ 2 Dint , m /s
VB
~
IVB
6.4
6.5
6.6
6.7
6.8 -4
1225 oC; 9 hrs
1/T x 10 ,K
6.9
7.0
7.1
-1
S. Roy and A. Paul, Intermetallics 37 (2013) 83
Data in Group IVB Metal-Silicon systems
-13
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
-13
10
10
WSi2
Dint (m2/s)
WSi2
MoSi2
-14
10
MoSi2
-14
10
~
~
Dint (m2/s)
IVB
MoSi2
MoSi2 - 153 kJ/mol
WSi2
WSi2 - 152 kJ/mol
-15
-15
10
6.3
10 6.4
6.5
6.6
6.7
6.8 1/Tx10-4 (K -1)
6.9
7.0
7.1
1.4
1.5
1.6
1.7
Tm/T
Again integrated diffusion coefficient increases with the increase in atomic number. Overall concentration of defects must be increasing with the increase in atomic number.
1.8
Data in Group IVB Metal-Silicon systems
Cr
CrSi2
Cr5Si3
CrSi
Si
DSi* =∞ * DCr
K
K
W
WSi2
DSi* =∞ * DMo
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
M – 5 Si Si – 5 Si and 5 M
CrSi2, hP9 (C40)
Si
M – 10 Si Si – 5 Si and 5 W
DSi* = 13.7 DW*
K MSi2, tI6, C11b
W antisites must be present
Conclusions VB M - Si
IVB M - Si -13
10
TaSi2
HfSi 2
-12
Dint (m2/s)
ZrSi 2 10
-13
TiSi 2
1.176
1.180
1.184
1.188
1.192 -15
10
Tm/T
1.2
1.3
1.4
Tm/T
VIB M - Si -13
10
WSi2
MoSi2
-14
10
~
Dint (m 2/s)
-14
-14
10
~
10
NbSi2
VSi2
~
Dint (m2/s)
10
MoSi2 WSi2 -15
10
1.4
1.5
1.6
Tm/T
1.7
1.8
1.5
1.6
1.7
IVB
VB
VIB
Ti
V
Cr
Zr
Nb
Mo
Hf
Ta
W
Conclusions VB M-Si
IVB M-Si Si
VIB M-Si
TiSi Ti
TiSi2
Cr
Cr5Si3
CrSi2
Ti5Si4
Si
K K
DSi* =∞ DTi*
ZrSi2
Si
Zr
CrSi
DSi* =∞ DV* NbSi 2
Nb Nb 5 Si 3
Si
K
DSi* =∞ * DCr
K
ZrSi K
* Si * Zr
D =∞ D
K
DSi* = 4.8 ± 1.4 * DNb TaSi2
Ta Si
HfSi2
Hf Ta5Si3
30 µm Si
DSi* =∞ * DMo W
WSi2
HfSi
K
K
DSi* =∞ * DHf
DSi* = 1.1 − 1.3 * DTa
DSi* = 13.7 DW*
K
Si
Conclusions We have shown a particular pattern of diffusing components in disilicides Similar pattern is found in 5:3 silicides also (not shown here) Not necessarily Si is the only diffusing component In all the disilicides, Si can easily diffuse via its own sublattice. Metals can diffuse only if anitsites are present. In Group VIB M/Si systems, vacancies on the Si sublattice must be increasing since diffusion rate increases with the increase in atomic number. However, metal antisites must be missing since it does not diffuse. In Group VB M/Si systems, metal antisites must be present (since metal components diffuse) along with the increase in vacancy concentration to have higher diffusion rate. Same is true even for VIB M/Si systems.
Further read/references 1. Aloke Paul, Tomi Laurila, Vesa Vuorinen, Sergiy Divinski, A text book on Thermodynamics, Diffusion and the Kirkendall effect in Solids, Springer, Heidelberg, Germany, 2014 2. Aloke Paul, The Kirkendall effect in solid state diffusion, PhD Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2004 3. A. Paul, M.J.H. van Dal, A.A. Kodentsov and F.J.J. van Loo, The Kirkendall Effect in Multiphase Diffusion, Acta Materialia 52 (2004) 623-630 4. S. Prasad and A. Paul, Growth mechanism of phases by interdiffusion and diffusion of species in the Nb-Si system, Acta Materialia 59 (2011) 1577-1585 5. S. Prasad and A. Paul, An overview of diffusion studies in the V-Si system, Defects and Diffusion Forum vol. 312-315, p. 731-736, year 2011. 6. S. Prasad and A. Paul, Reactive diffusion between Vanadium and Silicon, Journal of Phase Equilibria and Diffusion 32 (2011) 212-218 7. S. Prasad and A. Paul, Growth mechanism of phases by interdiffusion and atomic mechanism of diffusion in the molybdenum-silicon system, Intermetallics 19 (2011) 1191-1200 8. S. Prasad and A. Paul, Diffusion mechanism in XSi2 and X5Si3 (X = Nb, Mo, V) phases, Defects and Diffusion Forum vol. 323-325 p. 459-464, year 2012 (http://www.scientific.net/DDF.323-325.459) 9. S. Prasad and A. Paul, Growth mechanism of the Nb(X)Si2 and [Nb(X)]5Si3 phases by reactive diffusion in Nb (X = Ti, Mo, or Zr)-Si systems, Intermetallics 22 (2012) 210-217 10. S. Roy and A. Paul, Growth mechanism of tantalum silicides by interdiffusion, Philosophical Magazine, 92 (2012) 4215-4229 11. S. Roy and A. Paul, Diffusion in tungsten silicides, Intermetallics 37 (2013) 83-87 12. S. Roy, S. Divinski and A. Paul, Reactive diffusion in the Ti-Si system and the significance of the parabolic growth constant, Philosophical Magazine 94 (2014) 683-699 13. S. Roy and A. Paul, Growth of hafnium and zirconium silicides by reactive diffusion, Materials Chemistry and Physics, 143 (2014) 1309-1314 14. S. Roy, S. Prasad, S. Divinski and A. Paul, Philosophical Magazine, 94 (2014) 1508-1528 15. S. Roy, S. Prasad and A. Paul, An overview of the interdiffusion studies in Mo-Si and W-Si systems, Defects and Diffusion Forum, vol. 354, p. 79-84, year 2014