Digital Modulation 2 - CiteSeerX

8 downloads 0 Views 4MB Size Report
4.5 Trellis Coded Modulation . ...... defines the state in the new description (modern description). ... The phase pulse qMSK(t) has the following shape:.
Digital Modulation 2 – Lecture Notes –

Ingmar Land and Bernard H. Fleury

Department of Electronic Systems Aalborg University Version: November 15, 2006

i

Contents 1 Continuous-Phase Modulation

1

1.1 General Description . . . . . . . . . . . . . . . . .

1

1.2 Minimum-Shift Keying . . . . . . . . . . . . . . . .

6

1.3 Gaussian Minimum-Shift Keying . . . . . . . . . . 11 1.4 State and Trellis of CPM . . . . . . . . . . . . . . 19 1.5 Coherent Demodulation of CPM . . . . . . . . . . 26 2 Modern Representation of CPM

30

2.1 Initialization . . . . . . . . . . . . . . . . . . . . . 31 2.2 The Reference Phase Trajectory . . . . . . . . . . . 33 2.3 The Reference Frequency . . . . . . . . . . . . . . 37 2.4 The Tilted Phase and the New Symbols . . . . . . 38 2.5 Block Diagram of the CPM Transmitter . . . . . . 42 3 Laurent Representation of CPM

44

3.1 Minimum Shift Keying . . . . . . . . . . . . . . . . 44 3.2 Precoded MSK . . . . . . . . . . . . . . . . . . . . 51 3.3 Precoded Gaussian MSK . . . . . . . . . . . . . . 57 3.4 Modulation in EDGE . . . . . . . . . . . . . . . . 66 4 Trellis-Coded Modulation

72

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Convolutional Codes . . . . . . . . . . . . . . . . . 81 4.3 Goodness of a TCM Scheme . . . . . . . . . . . . . 83 4.4 Set Partitioning . . . . . . . . . . . . . . . . . . . 87 4.5 Trellis Coded Modulation . . . . . . . . . . . . . . 88 4.6 Examples for TCM . . . . . . . . . . . . . . . . . . 92 Land, Fleury: Digital Modulation 2

SIPCom

ii A ECB Representation of a Band-Pass Signal

102

A.1 The Block diagram . . . . . . . . . . . . . . . . . . 104 A.2 The Signal . . . . . . . . . . . . . . . . . . . . . . 106 A.3 Effect of QA Mod/Demod on Signal . . . . . . . . 107 A.4 Effect of QA Demodulation on Noise . . . . . . . . 110 A.5 Noise After LP Filtering and Sampling . . . . . . . 113

Land, Fleury: Digital Modulation 2

SIPCom

iii

References [1] J. G. Proakis and M. Salehi, Communication Systems Engineering, 2nd ed. Prentice-Hall, 2002. [2] J. G. Proakis, Digital Communications. McGraw-Hill, 1995. [3] P. Laurent, “Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (AMP),” IEEE Trans. Commun., vol. 34, no. 2, pp. 150–160, Feb. 1986. [4] B. Rimoldi, “A decomposition approach to CPM,” IEEE Trans. Inform. Theory, vol. 34, no. 2, pp. 260–270, Mar. 1988. [5] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423, 623– 656, July and Oct. 1948.

Land, Fleury: Digital Modulation 2

SIPCom

1

1

Continuous-Phase Modulation

The Classical Representation Continuous-phase modulation allows for a bandwith-efficient transmission. In this section, it is represented in the classical way. The modern representation is discussed in the following section.

1.1

General Description

The general description of a CPM signal reads √  X(t; α) = 2P cos 2πf0t + ϕ(t; α)

(1)

with the following notation:

The (semi-infinite) sequence of information-bearing symbols is α = (α0, α1, . . .) with the symbols αn ∈ A = {±1, ±3, . . . , ±M − 1} αn ∈ A = {0, ±2, . . . , ±M − 1}

if M is even if M is odd

The mostly used case is that where M is even. (Or even a power of 2. Why?) Example: Binary CPM M = 2: αn ∈ {−1, +1}.

Land, Fleury: Digital Modulation 2

3

SIPCom

2 The time-variant information-bearing phase ϕ(t; α) = ϕ0 + 2πh

∞ X n=0

αnq(t − nT )

Remark: In some cases (see later), L − 1 known symbols are transmitted at the beginning. Then the summation starts with −(L−1).

The modulation index is h = that are relatively prime.

p1 p2 ,

where p1, p2 are natural numbers

The function q(t) is the phase reponse. It satisfies for t ≤ 0,

q(t) = 0 1 q(t) = 2

for t > LT .

q(t) 1 2

T

.....

LT

t

The value L is the memory of the CPM system: L=1 L>1

: full response CPM : partial response CPM

The phase ϕ0 is arbitrary. Without loss of generality, we can assume that ϕ0 is set such that ϕ(0; α) = 0. The carrier frequency is f0. The power of the transmitted signal is P . The symbol rate is T1 . Land, Fleury: Digital Modulation 2

SIPCom

3 Instantaneous Frequency of a CPM signal i 1 d h 2πf0t + ϕ(t; α) f (t; α) = 2π dt i 1 d h = f0 + ϕ(t; α) 2π dt ∞ i d hX αnq(t − nT ) = f0 + h dt n=0 f (t; α) = f0 +

h |

∞ X n=0

∆f (t;α)

The derivative

q 0(t) =

αnq 0(t − nT ) {z

}

(frequency deviation)

d q(t) dt

of q(t) is called the frequency response of the CPM signal. We can rewrite the CPM signal from (1) as a function of the instantaneous frequency according to x(t; α) =

=

√ √



2P cos 2π

Zt

f (t˜; α) dt˜

0



2P cos 2πf0t + 2πh

Land, Fleury: Digital Modulation 2



∞ hZ t X 0

n=0

0

αnq (t˜ − nT ) dt˜

i

SIPCom

4 Properties of the Frequency Response

q(t) = 0, t < 0 1 q(t) = , t > LT 2 q(LT ) =

1 2



q 0(t) = 0, t < 0



q 0(t) = 0, t > LT



ZLT

1 q 0(t˜)dt˜ = 2

0

Example: Sketch a valid frequency response for L = 4.

Land, Fleury: Digital Modulation 2

3

SIPCom

5 Block diagram of a CPM transmitter (a) Using a phase modulator α(t) =

∞ X

q(t)

ψ(t; α)

1 2

αmδ(t − nT )

Phase

x(t; α)

n=0

Modulator .....

LT

t

(L = 2)

2πk

α(t)

f0

ψ(t; α) +πk +2πhq(t − T ) +1

+1

+1

0

T

t

T −1

−1

t

−1 −πk −2πhq(t − T )

(b) Using a frequency modulator α(t) =

∞ X

q 0(t)

∆f (t; α)

αmδ(t − nT ) 1 2

LT

t

(L = 2)

h

α(t)

∆f (t; α)

+1

+1

f0

+1

0 T −1

x(t; α)

VCD

n=0

t −1

T

t

−1

Land, Fleury: Digital Modulation 2

SIPCom

6

1.2

Minimum-Shift Keying

MSK has the following parameters: • Binary modulation symbols, i.e., M = 2 • Modulation index h =

1 2

• Phase response qM SK (t) =

   0 1 2   1 2

t 2

Hence, ISI occurs in each branch. For optimum decoding, the Viterbi algorithm (VA) may be applied.

Land, Fleury: Digital Modulation 2

SIPCom

64 (Close-to-optimum) Vector Decoder 0≤n≤N +2

n even nT

Vn,1 Xn,1

Two-state VA

rn αn

αn−1

α ˆ

Vn,2

T

(−1)

−1 {α ˆ n }N n=0,n even

b n2 c

Xn,2

√ Eb

Two-state VA −1 {α ˆ n }N n=1,n odd

rn

nT

nT n odd

nT −2 ≤ n ≤ N + 2

0≤n≤N +2

Metrics to be used in the upper-branch VA (even n): λ(αe) =

N −1 X

n

(−1)b 2 c

n=0 n even

h

p Eb αn−1 ·

· yn − r1(−1)b

n −1 2

i p c E α b n−3

Metrics to be used in the lower-branch VA (odd n): λ(αo) =

N −1 X

n (−1)b 2 c

n=1 n odd

h

p Eb αn−1 ·

n −1 b · yn − r1(−1) 2 c

Land, Fleury: Digital Modulation 2

i p Eb αn−3

SIPCom

65 GSM Burst Structure Time slot 1 control bit 1 control bit Training sequence (26)

Information bits (57)

8,25 guard bits

Information bits (57)

Normal burst 3 Tail bits

Information bits (39)

3 Tail bits

Training sequence (64)

Information bits (39)

8,25 guard bits

Synchronization burst

Land, Fleury: Digital Modulation 2

SIPCom

66

3.4

Modulation in EDGE

Objective Modify the GSM format in order to increase the bit rate while keeping the spectrum requirement of this modulation scheme. Selected Solution • Extend the signal space in the Laurent representation of GMSK −→ 8PSK, i.e., 3 bits / symbol • Include an additional rotation of the symbols

−→ rotation of 3π/8 in each signaling interval

Signal Constellation and Mapping (U1, U2, U3)

Im (0, 1, 0)

(0, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1)

Re

(1, 0, 1)

Land, Fleury: Digital Modulation 2

(1, 1, 0) (1, 0, 0)

SIPCom

67 Phase Rotation Rotation by

3π 8

in each signaling interval Im

Im 1

1

0

0 3π 8

3π 8

2

2

7

7

Re

Re 3

3

6

6

5

4

5

4

By comparison, for 8 PSK without such phase rotation: Im

Im

2

2 3

3

1

0

4

0

4

1

Re

Re 7

5 6

Land, Fleury: Digital Modulation 2

7

5 6

SIPCom

68 Pulse Shaping

p(t) = pGM SK (t) pGM SK (t) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

T

2T

3T

4T

t

EDGE Transmitter

[Un,1, Un,2, Un,3]

X(t; u)

Xn

exp(jn 3π 8)

pGM SK (t)

√ Eb

N −1 X n=0

Land, Fleury: Digital Modulation 2

δ(t − nT )

Re{·}



2 exp(j2πf0t)

SIPCom

69 EDGE Receiver Y (t)

Yn pGM SK (t)

Vector

[Uˆn,1, Uˆn,2, Uˆn,3]

decoder

nT

√ 2 exp(−j2πf0t)

Discrete-time Representation of the EDGE System Vn [Un,1, Un,2, Un,3]

Xn

rn

Vector decoder

[Uˆn,1, Uˆn,2, Uˆn,3]

exp(jn 3π 8)

The effective impulse response is rn = Rpp(nT ) Rpp(τ ) =

ZLT

pGM SK (t) pGM SK (t + τ ) dt

0

The noise has the covariance h i E VnVn+l = N0rl .

Land, Fleury: Digital Modulation 2

SIPCom

70 Rpp(τ ) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −5 −4 −3 −2 −1 0

1

2

3

4

5

τ /T

Optimum Vector Decoder for EDGE For optimum vector decoding of EDGE in the AWGN channel, the Viterbi algorithm may be applied. The corresponding trellis has • J = 82 = 64 states and • 8 transitions per state. The branch metric is λ(u) =

N −1 X i=0


2) and QPAM : dim X = 2.

2-AM

4-PSK

8-PSK

4-AM

8-AM

8-AMPM

16-QASK

32-AMPM

64-QASK

16-AM

Land, Fleury: Digital Modulation 2

3 SIPCom

73 For these two cases, the vector channel is either of the form. • dimX = 1 Xj

Yj

Wj ∼ N (0, N20 ),

W0, ..., WN −1 independent

• dimX = 2 Yj1

Xj1

Wj1

Xj

Wj2

Xj2

    0 N0/2 0 Wj ∼ N , Yj 0 0 N0/2

Yj2

In both cases, the noise samples are independent.

Land, Fleury: Digital Modulation 2

SIPCom

74 Rate of the encoder The Encoder maps bit-blocks onto modulation symbols  x ∈ X = s0, . . . , sM −1 . Its rate is

R=

K N

bits/symbol

Two equivalent necessary conditions for the encoder to be one-toone are 2K ≤ M N



R=

K ≤ log2(M ) N

In the case of uncoded modulation, we have N = 1, K = log2(M ) ⇒ R = log2(M )

Bit Error Probability The BER is defined as K−1  1 X  b Pb = P Uj 6= Uj K j=0

Land, Fleury: Digital Modulation 2

SIPCom

75 Capacity of the AWGN Channel With the constraint that the transmitted vectors belong to a finite signal constellation X = {s1 . . . , sM }: CX =

max

p(s1 ),...,p(sM )

·

M X

m=1

Z

p(sm) · 





 p y|sm p(sm) dy p y|sm log2 PM  m0 =1 p y|sm0 p(sm0 )

!

Remark The capacity CX depends on the signal constellation X.

Dropping the restriction h thatiX is finite while assuming a given average power E s = E |Xj |2 , C := log2 1 + SNR



,

SNR =

Es N0

The dimension of C is bit / transmitted symbol.

Land, Fleury: Digital Modulation 2

SIPCom

76 Tight lower bounds for the capacities of the signal constellations given on page 72:

Channel Coding Theorem Provided R < C, Pb can be made arbitrarily small by selecting appropriate encoders. In other words, reliable communication is possible at rates R < C. Converse of the Channel Coding Theorem If R > C, reliable communication is impossible.

Land, Fleury: Digital Modulation 2

SIPCom

77 Example: Some comparisons • Uncoded 4−PSK: ◦ R = 2 bits/T

◦ Pb = 10−5 at SN R = 12.9 dB • Coded 8−PSK:

Remark: C ∗ = 2 bits/symbols at 5.9 dB Land, Fleury: Digital Modulation 2

SIPCom

78 Thus, with coded 8PSK it is theoretically possible to transmit reliably 2 bits/symbol at SN R = 5.9 dB. • Coding gain of coded 8PSK transmitting 2 bits/symbol versus uncoded 4PSK at BER = 10−5. 12.9 − 5.9 = 7 dB • Coding gain of coded digital transmission across the AWGN channel ◦ with no restriction on the signal constellation except the average transmitted power, ◦ transmitting (on average) 2 bits/symbol versus coded 4PSK at BER = 10−5 : 12.9 − 4.7 = 8.2 dB • Similar figures for the above coding gains hold when other signal constellations are considered.

3 Remark By doubling the number of vectors in a signal constellation X, containing 2K vectors, almost all is achieved in terms of coding gain for reliable transmission of K bits/T versus uncoded transmission using the signal constellation X. (The transmission rates are the same!)

Land, Fleury: Digital Modulation 2

SIPCom

79 A way to realize the above coding gains by doubling the number of vectors in the signal constellation is as follows: Vj,1 Uj,1

. . . Uj,K

Encoder with rate

r=

K K+1

{0, 1}K

. . .

Vj,K

Vector mapping

{0, 1}K+1 → X

Xj

Vj,K+1 |X| = 2K+1 {0, 1}K+1

X

Open issues: 1. how to select the encoder, and 2. how to design the vector mapping, to obtain a scheme for which Pb is small. For the encoder, block coding or convolutional coding may be used. In many schemes, convolutional codes are applied due to their low decoding complexity. (The Viterbi algorithm is applicable.) A schemes that consists of the combination of a convolutional encoder with a vector mapping device is called Trellis-Coded Modulation (TCM).

Land, Fleury: Digital Modulation 2

SIPCom

80 Block Diagram of a TCM Scheme Vj,1 Uj,1 .

Convolutional Encoder

.

r=

.

Uj,K

K K+1

Vector mapping

{0, 1}K+1 → X

Vj,K

memory length ν

Xj

Vj,K+1 |X| = 2K+1

{0, 1}K

X

{0, 1}K+1

The overall rate is given by R = r · log2(K + 1) = K Objective Find TCM schemes that achieve a good bit-error-rate performance.

Example: Coded 8PSK Vj,1

011 100

Uj,1

T

010

T 101

001

Xj

Vj,2 Uj,2

Vj,3

000

110 (V3, V2, V1)

111

The parameters are r = 2/3, ν = 2, R = 2/3 · log 2 8 = 2. Land, Fleury: Digital Modulation 2

3 SIPCom

81

4.2

Convolutional Codes

Two examples of convolutional encoders. (See e.g. Proakis or Morelos-Zaragoza for a general description.) Example: 1

Vj,1

Uj,1

T

T

Vj,2 Vj,3

Uj,2

Code rate: r =

number of input bits 2 = number of output bits 3

Memory length: ν = number of shift registers = 2 Trellis: 000 100

00

00

010 110 01

10

labels: (v3, v2, v1)

States

001 101

01 011 11

01 011

001 101

Land, Fleury: Digital Modulation 2

111

11

3 SIPCom

82 Example: 2

Uj,1

T

Uj−1,1

Uj,2

T

Uj−2,2

Vj,1

Vj,2

Vj,3

Code rate: r=

2 3

Memory length: ν=2 Trellis: 00

00

10

10

01

01

11

11

3 Land, Fleury: Digital Modulation 2

SIPCom

83

4.3

Goodness of a TCM Scheme

Admissible sequences Let A∞ denote the set of sequences (x0, x1, . . .) generated by a given TCM scheme. These sequences are called admissible for the considered TCM scheme. Example: 1 continued    {xj } A∞ ∈ {x0j }   {x00 } j n A∞ ∈ / {x000 j }

0 4

= s0 , s 0 , s 0 , s 0 , s 0 , . . . = s0 , s 4 , s 0 , s 0 , s 0 , . . . = s2 , s 1 , s 2 , s 0 , s 0 , . . . = s0 , s 5 , s 3 , s 2 , s 0 , . . .

0

0

4

4

2

q √ (2 − 2)Es

6









3 q

4

(2 +

0 √

Es

√ 2Es

1

2

2

2)Es

1



6

2

5

1

5

4

7 3 1

7

3

6

0 7

5

3

Land, Fleury: Digital Modulation 2

SIPCom

84 Euclidean Distance Let {xj } and



x0j



denote two sequences in A∞.

The Euclidean distance between {xj } and {x0j } is 



d {xj }, {x0j } =

∞ X xj − x0j 2 j=0

!1/2

Example: 1 continued 



p p = 4Es = 2 Es d   q p √  00 2 + (2 − 2) + 2 Es = 2.1414 Es d {xj }, {xj } = {xj }, {x0j }

3

Free Euclidean Distance The minimum Euclidean distance between pairs of admissible sequences of a TCM scheme is called the free Euclidean distance of the TCM scheme:   0 df = min d {xj }, {xj } 0 {xj },{xj } ∈ A∞ xj 6=x0j

Example: 1 continued It can be shown that df = d



{xj }, {x0j }

Land, Fleury: Digital Modulation 2



p = 2 Es

3 SIPCom

85 Probability of a Sequence Error Probability that the Viterbi decoder makes a wrong decision on the path in the trellis:  d  f Pe ≥ N (df ) · Q √ 2N0 where (i) Q(z) is the Gaussian error function Q(z) =

Z∞ z

  1 1 2 √ exp − u du 2 2π

(ii) N (df ) is the average number of sequence pairs in A∞ that have the Euclidean distance df .

Remark The above lower bound for Pb is tight for high SNR. The reason is that in this case an erroneously detected path has a sequence likely to have an Euclidean distance to the true transmitted sequence equal to df , when ML decoding is applied. Remember that given a finite observed sequence, {y j } = y 0, y 1, . . . , y L−1 , the Viterbi algorithm (which realizes the ML decoder) searches for the finite sequence generated by the trellis (with initial state 0) which minimizes L−1 X y j − xj 2 j−0

Land, Fleury: Digital Modulation 2

SIPCom

86 Optimality Criterion Optimality criterion for finding a vector mapping for a given convolutional code: “Maximize the free Euclidean distance !” TCM schemes maximizing the free Euclidean Distance among all TCM with a specified memory length are called optimal. The method proposed by Ungerboeck to identify ”good” vector mapping given a certain convolutional encoder (or equivalently, given a certain trellis) relies on the technique of set partitioning.

Land, Fleury: Digital Modulation 2

SIPCom

87

4.4

Set Partitioning

Example: 8PSK



Es

d0 =

v1

B1

1

0

B0

q √ (2 − 2)Es

sqrtEs

d1 = 0

C0

1

C1

C2

0

√ 2Es v2

C3

1

√ d2 = 2 E s v3 0

D0

000

1

D4

100

D2

0

010

1

D6

0

D1

110

001

1

D5

101

D3

011

0

1

D7

111

3 Goals of set partitioning: 1. The subsets should be similar . 2. The points inside each subset should be maximally separated. Land, Fleury: Digital Modulation 2

SIPCom

88

4.5

Trellis Coded Modulation

General form of the encoding process:

Convolutional Encoder

r0 =

K1 N1

Uj,K1

. . . .

. . . .

Uj,1

Vector Mapping

Vj,1

Select subset

Vj,N1−1 Vj,N1

{1, 2, . . . , 2N1 } Xj

Uj,K

Vj,N1+1 . . . .

. . . .

Uj,K1+1

Select vector from subset

Vj,N {1, 2, . . . , 2K−K1 }

Remarks 1. Number of states in the trellis : 2ν 2. Number of branches leaving each state : 2K1 3. Number of parallel branches in each transition : 2K−K1

Land, Fleury: Digital Modulation 2

SIPCom

89 Example: 1 continued Parameters: K = 2, K1 = 1, N1 = 2, N = 3 Vj,1

Uj,1

T

01010101

T

Vj,2

00110011

Vj,3

Uj,2

00001111 01234567

C0 (0, 4)

0 4

C2 (2, 6)

C3

(1, 5)

(3, 7)

0

6

1

C0 (0, 4)

4

2

7 1

C1 (1, 5)

4

5

4 3

C3 (3, 7)

0

1

2

C2 (2, 6)

0

2

6

C1

xj

7

3

5

3

Land, Fleury: Digital Modulation 2

SIPCom

90 Rules for the Assignments Experimentally inferred rules for assigning the signal vectors to the transitions: 1. All vectors in X are used with the same frequency. 2. The vectors assigned to branches originating from or merging to the same state belong to the same subset at level 1. 3. Vectors with maximum Euclidean distances are assigned to parallel branches.

Remarks • Rule 1 guarantees that the trellis code has a regular structure. • Rule 2 and Rule 3 guarantee that the minimum distance between paths in the trellis which diverge from any state and re-emerge later exceeds the free Euclidean distance of the uncoded modulation scheme.

Example: 1 continued (df )2coded = 4Es 8PSK



2Es = (df )2uncoded 4PSK

3

Land, Fleury: Digital Modulation 2

SIPCom

91 Example: 2 continued Consider the following trellis code:

Uj,1

T

Uj−1,1

Uj,2

T

Uj−2,2

Vj,1

Vj,2

01010101

00110011

Vj,3 00001111

Xj 01234567

Despite the fact that this trellis code has no parallel branches, its free Euclidean distance is smaller than that of the trellis code of Example 1. (See Exercise 4.1). 3

Land, Fleury: Digital Modulation 2

SIPCom

92

4.6

Examples for TCM

In the following, some examples of specific TCM schemes are given and their error probabililites are discussed.

Land, Fleury: Digital Modulation 2

SIPCom

93 TCM with 8PSK and 2 bits/T

Land, Fleury: Digital Modulation 2

SIPCom

94 Implementation

Land, Fleury: Digital Modulation 2

SIPCom

95 Probability of error-event and of bit-error

Land, Fleury: Digital Modulation 2

SIPCom

96

Land, Fleury: Digital Modulation 2

SIPCom

97 TCM with 16QAM and 3 bits/T Set Partitioning

Land, Fleury: Digital Modulation 2

SIPCom

98

Land, Fleury: Digital Modulation 2

SIPCom

99 Error event probability

Land, Fleury: Digital Modulation 2

SIPCom

100 CCITT V.32 standard CCITT V.32 standard for 9.6 Kbit/s and 14.4 bit/s modems. Convolutional Coder

The code is designed to guarantee invariance to phase rotations of ±π/2 and π. These values are the phase ambiguities which result when a phase-locked loop (PLL) is employed for carrierphase estimation.

Land, Fleury: Digital Modulation 2

SIPCom

101 Mapping

Land, Fleury: Digital Modulation 2

SIPCom

102

A

ECB Representation of a BandPass Signal

Band-pass signals can equivalently be represented as complexvalued base-band signals. This is often called the equivalent complex base-band (ECB) representation. This concept is discussed in more detail in the following.

Land, Fleury: Digital Modulation 2

SIPCom

103

Land, Fleury: Digital Modulation 2

SIPCom

A.1

1 t T si T

p(t) N X n=0

X1(t) W (t) X(t)

√ 2 cos(2πf0t) √ − 2 sin(2πf0t)

δ(t − nT )

Xn,2

1 t T si T

Y (t)



2 cos(2πf0t) √ − 2 sin(2πf0t)

1 t T si T

p(t)

Yn,1 p(−t)

1 t T si T

Yn,2 p(−t)

X2(t) nT Vn,1 Assumption: p(f )

f0 ≥

1 2T

Xn,1

Xn,2 B≤

1 T

Yn,1 = rn ∗ Xn,1 + Vn,1

Vn,2

1 2T

− 2T1

Yn,1

rn

The Block diagram

Land, Fleury: Digital Modulation 2

Xn,1

Yn,2 rn

Yn,2 = rn ∗ Xn,2 + Vn,2

1/T

104

SIPCom

105 Complex discrete-time representation:

Vn

Xn = Xn,1 + jXn,2 Yn = Yn,1 + jYn,2

Xn rn

Yn

Yn = r n ∗ Xn + Vn

Vn = Vn,1 + jVn,2

Land, Fleury: Digital Modulation 2

SIPCom

106

A.2

The Signal

Consider a real-valued BP signal: √ √ x(t) = x1(t) 2 cos(2πf0 t) − x2(t) 2 sin(2πf0 t) n √ √ o 2 cos(2πf0t) + j 2 sin(2πf0 t) = < x1(t) + jx2(t) {z } | {z } | √ =x e(t) 2 exp(j2πf0t) n o √ =< x e(t) 2 exp(j2πf0t) The signal x e(t) is a complex-valued LP signal, and it is called the ECB representation of x(t). The spectra

n

X(f ) = F x(t) are related by

o

n o e X(f ) = F x e(t)

√ h i 2 e e S(f − f0) + S(−f − f0 ) X(f ) = 2

The energies of the signals are

Es = Ese

Land, Fleury: Digital Modulation 2

SIPCom

107

A.3

Effect of QA Mod/Demod on Signal √



x(t) = x1(t) 2 cos(2πf0t) − x2(t) 2 sin(2πf0 t) X x1(t) = xi,1 δ(t − iT ) ∗ p(t)

x2(t) =

i X i

xi,2 δ(t − iT ) ∗ p(t)

Assumption: p(t) is a LP signal, i.e., its Fourier transform P (f ) = F{p(t)} has the property P (f ) = 0 for |f | > f0 Tricks: 2 cos2 x = 1 + cos 2x 2 sin2 x = 1 − cos 2x 2 sin x cos x = sin 2x In-phase component: √ z1(t) = x(t) 2 cos(2πf0 t) ∗ p(−t) h i 2 = x1(t) 2 cos (2πf0t) −x2(t) 2 sin(2πf0 t) cos(2πf0 t) ∗ p(−t) {z } {z } | | 1 + cos(4πf0 t) sin(4πf0 t) h i = x1(t) ∗ p(−t) + x1(t) cos(4πf0 t) − x2(t) sin(4πf0t) ∗ p(−t) | {z } | {z } LP BP | {z } =0

Land, Fleury: Digital Modulation 2

SIPCom

108 z1(t) = x1(t) ∗ p(−t) X = xi,1 δ(t − iT ) ∗ p(t) ∗ p(−t) {z } | i = Rp(t) X = xi,1 Rp(t − iT ) i

After sampling: z1,n = z1(nT ) X = xi,1 i

=

X i

R (nT − iT ) | p {z  } Rp (n − i)T = rn−i

xi,1 · rn−i = x1,n ∗ rn

rn = Rp(nT ) Quadrature component: (...similar calculations...) zn,2 = z2(nT ) = Xn,2 ∗ rn

Land, Fleury: Digital Modulation 2

SIPCom

Land, Fleury: Digital Modulation 2

√ x1(t) 2cos(2πf0t)

x1(t) A

...cos(2πf0t)

A

A A

A/2

pLP (t) A



2 2

A/2

√ √ x1(t) 2cos(2πf0t) + x2(t)(− 2)sin(2πf0t) A A/2 f0

−2f0 −f0

A

A A/2

2f0

A jA

A



2 2

A/2

...pLP (t)

x2(t)

√ ...(− 2)sin(2πf0t)

109

SIPCom

√ x2(t)(− 2)sin(2πf0t)

110

A.4

Effect of QA Demodulation on Noise

Block Diagram √

2cos(2πf0t) Z1(t)

p(−t)

Y1(t)

Y1(nT ) = Yn,1

W (t) Z2(t)



p(−t)

Y2(t)

Y2(nT ) = Yn,2

2sin(2πf0t)

w(t): WGN with Sw (f ) =

N0 2

Noise before LP filtering √

Z1(t) = W (t) 2 cos(2πf0t)   E Z1(t) Z1(t + τ ) =  √ 2   = E W (t)W (t + τ ) ( 2) cos 2πf0t cos 2πf0(t + τ ) {z } | N0 = δ(τ ) 2 N0 δ(τ ) 2 cos2(2πf0 t) = | {z } 2 1 + cos(4πf0t) N0 N0 = δ(τ ) + δ(τ ) cos(4πf0 t) = RZ1 (τ ; t) 2 2 | {z } time-variant past

→ Time-variant (periodic) auto-correlation function Land, Fleury: Digital Modulation 2

SIPCom

111 Noise after LP filtering Assumption: p(t) is a LP signal, i.e., its Fourier transform P (f ) = F{p(t)} has the property P (f ) = 0 for |f | > f0 Autocorrelation function of Y1(t): √ Y1(t) = W (t) 2 cos(2πf0 t) ∗ p(t) h

i

E Y1(t)Y1 (t + τ ) = hZ √  =E W (t − s) 2 cos 2πf0(t − s) p(s)ds · Z √  0 0i 0 0 · W (t + τ − s ) 2 cos 2πf0(t + τ − s ) p(s )ds Z Z h i 0 = E w(t − s) w(t + τ − s ) · | {z } N0 δ(τ − s0 + s) 2   · 2 · cos 2πf0(t − s) · cos 2πf0(t + τ − s0) · · p(s) p(s0) ds ds0 Integrate w.r.t. s0 ⇒ 6= 0 for τ − s0 = −s ⇔ s0 = τ + s Z  N0 = 2 cos2 2πf0 (t − s) p(s) p(τ + s) ds | {z } 2 1 + cos 4πf0(t − s)

Z  N0 N0 = Rp(τ ) + cos 4πf0(t − s) p(s) p(τ + s) ds 2 2 | {z  } = cos 4πf0(t − τ ) p(τ ) ∗ p(−τ )

Land, Fleury: Digital Modulation 2

SIPCom

112

h

i

E Y1(t) Y1(t + τ ) =

N0 Rp(τ ) 2 Z  N0 cos 4πf0 (t − s) p(s) p(τ + s) ds + 2 | {z } (1) Rp(τ ) = p(τ ) ∗ p(−τ )

h



i

(1) = cos 4πf0 (t − τ ) p(τ ) ∗ p(−τ )

(6)

The Fourier transform w.r.t. τ of    cos 4πf0(t − τ ) = cos 4πf0(τ − t) = cos 4πf0τ ∗ δ(τ − t) is

i 1h δ(f − 2f0) + δ(f + 2f0) exp(−j2πf t) = 2 h i 1 = δ(f − 2f0) exp(−j4πf0t) + δ(f + 2f0) exp(j4πf0t) = (3) 2 Consider the Fourier transform w.r.t. τ of (6): h i (2) = (3) ∗ P (f ) · P (−f ) 1h = P (f − 2f0) exp(−j4πf0t) 2 i + P (f + 2f0) exp(j4πf0t) · P (−f ) =0

because P (f ) = 0 for |f | > f0 according to the assumption.

Land, Fleury: Digital Modulation 2

SIPCom

113

h

i

N0 ⇒ E Y1(t) Y1(t + τ ) = Rp(τ ) 2 | {z } RY1 (τ ) ⇒ RY1 (τ ) =

A.5

N0 Rp(τ ) 2

Noise After LP Filtering and Sampling N0 Rp(kT ) 2 | {z } = rk N0 = rk 2

RY1 (kT ) =

Land, Fleury: Digital Modulation 2

SIPCom

Suggest Documents