1. Experimental 1.1. General Methods Commercially

4 downloads 0 Views 358KB Size Report
Commercially obtained bromoalkenes (Sigma-Aldrich, Alfa Aesar and Fluorochem) were purified prior to use by short path distillation. Other reagents were used ...
1. Experimental 1.1. General Methods Commercially obtained bromoalkenes (Sigma-Aldrich, Alfa Aesar and Fluorochem) were purified prior to use by short path distillation. Other reagents were used without further purification. Anhydrous sulphur free toluene was prepared as described previously. [1] Miscellaneous solvents were purchased from Fisher Scientific dried by sequential percolation through columns of activated alumina and copper Q5 catalyst prior to use. Reactions were monitored by thin layer chromatography (TLC) using an appropriate solvent system. Silica coated aluminium TLC plates used were purchased from Merck (Kieselgel 60 F-254) and visualised using either UV light (254 nm and 365 nm), or by oxidation with either iodine or aqueous potassium permanganate solution. Column chromatography was performed using flash grade silica from Fluka (63 – 200 μm particle size) or Fluorochem (40 - 63μm particle size). Yields refer to chromatographically (HPLC) and spectroscopically (1H NMR, 13C{1H} NMR) homogenous material. NMR spectra were recorded on a JEOL ECS spectrometer operating at 400 MHz (1H) and 100.5 MHz (13C{1H}) as solutions in deuterated chloroform. Mass spectra were recorded on a Bruker micrOTOF MS-Agilent series 1200LC spectrometer. FTIR spectroscopy was performed using a Shimadzu IR Prestige-21 with Specac Golden Gate diamond ATR IR insert that was flushed with nitrogen prior to use. High-performance liquid chromatography was performed on a Shimadzu Prominence modular HPLC system comprising a LC-20A quaternary solvent pump, a DGU-20A5 degasser, a SIL-20A autosampler, a CBM-20A communication bus, a CTO-20A column oven, and a SPO-20A dual wavelength UV-vis detector operating at 220/250 nm. The column used was an Alltech C18 bonded reverse-phase silica column with a 5 μm pore size, an internal diameter of 10 mm and a length of 250 mm. In all cases the mobile phase used was neat acetonitrile, purchased from Fisher Scientific UK. Polarised optical microscopy was performed on a Zeiss Axioskop 40Pol microscope using a Mettler FP82HT hotstage controlled by a Mettler FP90 central processor. Photomicrographs were captured via an InfinityX-21 MP digital camera mounted atop the microscope. Differential scanning calorimetry was performed on a Mettler DSC822e fitted with an autosampler operating with Mettler Stare software and calibrated before use against an indium standard (onset = 156.55 ± 0.2 °C, ΔH = 28.45 ± 0.40 Jg-1) under an atmosphere of dry nitrogen. Small angle X-ray diffraction was performed using a Bruker D8 Discover equipped with a temperature controlled, bored graphite rod furnace, custom built at the University of York. The radiation used was copper Kα (λ = 0.154056 nm) from a 1 μS microfocus source. Diffraction patterns were recorded on a 2048x2048 pixel Bruker VANTEC 500 area detector set at a distance of 121 mm from the sample. Samples were filled into 1mm capillary tubes and aligned with a pair of 1T magnets, with the field strength at the sample position being approximately 0.6T Diffraction patterns were collected as a function of temperature and the data processed using Matlab. Quantum chemical calculations were performed using the Gaussian 09 revision e.01 suite of programmes. [2]

An INSTEC ALCT Property Tester was used to determine the parallel and perpendicular dielectric capacitance of the materials in their nematic phases via the "one-cell method" first reported by Clark. [3-5] The thickness of a cell coated with a buffed polyimide for homogenous alignment was determined by UV-Vis interferometry. Using this value, the capacitance of the empty cell was determined using the ALCT and the value of parasitic capacitance for the cell adjusted so that the value of d obtained by this method matched that obtained from interferometry. [6] The cell was then filled by capillary action with a target material heated into the isotropic phase. At applied voltages below the threshold (Vthreshold) the capacitance measured gave C⊥ which gave ε⊥ according to equation (1). For applied voltages above the threshold voltage (V > 5Vthreshold) a linear fit of capacitance as a function of 1/V extrapolated to 1/V = 0 gave C|| which in turn gave ε|| according to equation (2). 𝜀⊥ =

𝐶⊥ 𝐶0

(1)

𝐶

(2)

𝜀∥ = 𝐶∥

0

If we assume that the static permittivity (ε̅) is equal to the average of the anisotropic components of permittivity (3) then it is also possible to obtain a value of the order parameter (S) using formula (4). 𝜀̅ = 𝑆=

𝜀∥ +2𝜀⊥ 3

(3)

∆𝜀 𝜀∥ + 2𝜀⊥ −9

(4)

The Maier-Meier equations (6, 7 and 8) were used to calculate dielectric anisotropy using dipole moments and molecular polarisabilities calculated at the B3LYP/6-31G(d) level of theory. The effective dipole moment (μeff) is the molecular dipole moment mediated by the Kirkwood ‘g’ factor, as shown in equation (5) 𝜇𝑒𝑓𝑓 2 = 𝑔𝜇𝑚𝑜𝑙 2

(5)

Solving these equations so the calculated dielectric anisotropy matches that measured experimentally for a range of order parameters (S = 0.4 – 0.6) allows an empirical measurement of the Kirkwood factor (g), which reflects the degree of anti (g1) dipole correlations in a system. A more detailed description is given elsewhere. [6] 𝜀∥ = 1 +

𝑁𝐹ℎ {𝛼̅ 𝜀0

− 3 ∆𝛼𝑆 +

𝜀⊥ = 1 +

𝑁𝐹ℎ {𝛼̅ 𝜀0

− ∆𝛼𝑆 +

∆𝜀 = 𝜀∥ − 𝜀⊥ =

𝐹𝜇𝑒𝑓𝑓 2

2

1 3

𝑁𝐹ℎ {∆𝛼 𝜀0



3𝑘𝐵 𝑇 𝐹𝜇𝑒𝑓𝑓 2 3𝑘𝐵 𝑇

𝐹𝜇𝑒𝑓𝑓 2 2𝑘𝐵 𝑇

[1 − (1 − 3𝑐𝑜𝑠 2 𝛽)𝑆]} 1

[1 + 2 (1 − 3𝑐𝑜𝑠 2 𝛽)𝑆]}

(1 − (3𝑐𝑜𝑠 2 𝛽)} 𝑆

(6) (7) (8)

The reaction field vector (F) and cavitation factor (h) were calculated using equations 9 and 10. 1

(9)

𝐹 = 1−𝛼∙ ̅𝑓 where 𝑓 =

2𝜀̅ −1 𝑁 ∙ 2𝜀̅ +1 3𝜀0

3𝜀̅

(10)

ℎ = 2𝜀̅+1

As described by Kazynski et. al. the correctness of the calculations was checked by back calculating the order parameter (S) and Kirkwood factor (g) using equations (11) and (12) respectively. [7] 𝑆=

𝑔=

2∆𝜀𝜀0 ̅ (1−3𝑐𝑜𝑠2 𝛽)]−3(𝜀̅−1)𝜀0 (1−3𝑐𝑜𝑠2 𝛽) 𝑁𝐹ℎ[2∆𝛼+3𝛼 2 3

̅ 𝑁𝐻𝑓− ∆𝛼𝑁𝐹𝑆ℎ]3𝐾𝐵 𝑇 [(𝜀|| − 1)𝜀0 −𝛼 𝑁𝐹 2 ℎ𝜇2 [1−(1−3𝑐𝑜𝑠2 𝛽)𝑆]

1.2. General Williamson Etherification Procedure 4-Hydroxy-4′-cyanobiphenyl (1 mol eqv.), bromoalkene (1.1 mol eqv.), potassium carbonate (2 mol eqv.) and sodium iodide (2 mol eqv.) in acetone were refluxed with vigorous stirring for 24-72 hours. The reaction was monitored by TLC (see right for compound (7) visualised with λUV ≈ 254 nm), with the complete consumption of 4Hydroxy-4′-cyanobiphenyl (RfDCM = 0.1) and the presence of a spot corresponding to the 4-alkenyloxy-4′-cyanobiphenyl (RfDCM = 0.5 – 0.7). Once complete, the suspension was cooled to ambient temperature, dichloromethane added (100 ml) and the suspension filtered to remove insoluble matter. The solvent was removed from the filtrate in vacuo and the crude material purified by column chromatography with 3:2 DCM/hexanes as the eluent, followed by recrystalisation from ethanol, affording the title compounds. In the case of compound 6 the title compound was recrystalised from 1:5 DCM/hexanes at -20 °C.

(11)

(12)

1.3. Chemical Characterisation

1:

4-Allyloxy-4′-cyanobiphenyl

Quantities used:

4-Hydroxy-4′-cyanobiphenyl (4 g, 20.5 mmol), allyl bromide (2.66 g, 22 mmol), potassium carbonate (5.5 g, 40 mmol), sodium iodide (6 g, 40 mmol), acetone (75 ml).

Yield:

4.2 g (87%)

1H

4.59 (2H, dt, JH-H = 1.5 Hz, JH-H = 5.2 Hz, ArOCH2), 5.32 (1H, dq, JH-H = 1.5 Hz,

NMR (400 MHz, CDCl3):

JH-H = 10.5 Hz, ArOCH=CHHcis), 5.44 (1H, dq, JH-H = 1.5 Hz, JH-H = 17.3 Hz, ArOCH=CHHtrans), 6.07 (1H, ddt, JH-H = 5.3 Hz, JH-H = 10.5 Hz, JH-H = 17.3 Hz, ArOCH2-CH=CH2), 7.01 (2H, ddd, JH-H = 2.1 Hz, JH-H = 3.1 Hz, JH-H = 8.9 Hz, ArH), 7.52 (2H, ddd, JH-H = 2.1 Hz, JH-H = 3.1 Hz, JH-H = 8.9 Hz, ArH), 7.62 (2H, ddd, JH-H = 1.2 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH), 7.67 (2H, ddd, JH-H = 1.2 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH) 13C{1H}

NMR (100.5 MHz, CDCl3): 68.97, 110.18, 115.43, 118.05, 119.21, 127.18, 128.44, 131.66, 132.66, 133.04, 145.23, 159.31

MS M/Z (ESI+):

258.0898 (calcd. for C16H13NNaO: 258.0899, M + Na)

FT-IR (ν max, cm-1):

677, 715, 736, 821, 852, 939, 993, 1020, 1116, 1178, 1246, 1267, 1290, 1309, 1454, 1492, 1519, 1577, 1602, 1647, 2222, 2912

Assay (RP-HPLC, peak area):

>99.0%

2:

4-Butenyloxy-4′-cyanobiphenyl

Quantities used:

4-Hydroxy-4′-cyanobiphenyl (2.73 g, 14 mmol), 4-bromobutene (2 g, 14.8 mmol), potassium carbonate (4.1 g, 30 mmol), sodium iodide (4.5 g, 30 mmol), acetone (75 ml).

Yield:

2.9 g (90 %)

1H

2.56 (2H, quartet, JH-H = 6.6 Hz, ArO-CH2-CH2-CH=CH2), 4.04 (2H, t, JH-H =

NMR (400 MHz, CDCl3):

6.6 Hz, ArO-CH2-CH2-CH=CH2), 5.07 (1H, dq, JH-H = 1.9 Hz, JH-H = 10.4 Hz, CH2-CH=CHHcis), 5.12 (1H, ddd, JH-H = 1.9 Hz, JH-H = 3.4 Hz, JH-H = 17.5 Hz, CH2-CH=CHHtrans), 5.91 (1H, ddt, JH-H = 6.6 Hz, JH-H = 10.4 Hz, JH-H = 17.5 Hz, -CH2-CH=CH2), 6.98 (2H, ddd, JH-H = 2.1 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH), 7.49 (2H, ddd, JH-H = 2.1 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH), 7.55 – 7.61 (2H, m, ArH), 7.62 – 7.67 (2H, m, ArH) 13C{1H}

NMR (100.5 MHz, CDCl3): 33.43, 67.17, 109.87, 114.98, 117.09, 118.97, 126.90, 128.18, 131.23, 132.40, 134.10, 145.00, 159.40

MS M/Z (ESI+):

272.1049 (calcd. for C17H15NNaO: 272.1046, M + Na)

FT-IR (ν max, cm-1):

659, 713, 734, 800, 823, 844, 854, 916, 962, 991, 1016, 1031, 1112, 1176, 1246, 1267, 1290, 1400, 1444, 1473, 1494, 1521, 1579, 1602, 1643, 2223, 2870

Assay (RP-HPLC, peak area):

>99.5%

3:

4-Pentenyloxy-4′-cyanobiphenyl

Quantities used:

4-Hydroxy-4′-cyanobiphenyl (19.5 g, 100 mmol), 5-bromopentene (16.4 g, 110 mmol), potassium carbonate (27.6 g, 200 mmol), sodium iodide (30 g, 200 mmol), acetone (350 ml).

Yield:

24.2 g (92 %)

1H

1.90 (2H, quintet, JH-H = 6.9 Hz, ArO-CH2-CH2-CH2-CH=CH2), 2.25 (2H, dt, JH-

NMR (400 MHz, CDCl3):

H

= 6.9 Hz, 3JH-H = 7.3 Hz, ArO-CH2-CH2-CH2-CH=CH2), 4.00 (2H, t, JH-H = 6.9

Hz, ArO-CH2-CH2-CH2-CH=CH2), 5.01 (1H, dq, JH-H = 1.9 Hz, JH-H = 10.0 Hz, CH2-CH=CHHcis), 5.07 (1H, ddd, JH-H = 1.9 Hz, JH-H = 3.4 Hz, JH-H = 17.2 Hz, CH2-CH=CHHtrans), 5.85 (1H, ddt, JH-H = 6.7 Hz, JH-H = 10.0 Hz, JH-H = 17.2 Hz, -CH2-CH=CH2), 6.98 (2H, ddd, JH-H = 2.1 Hz, JH-H = 2.9 Hz, JH-H = 8.9 Hz, ArH), 7.51 (2H, ddd, JH-H = 2.1 Hz, JH-H = 2.9 Hz, JH-H = 8.9 Hz, ArH), 7.59 – 7.64 (2H, m, ArH), 7.64 – 7.69 (2H, m, ArH) 13C{1H}

NMR (100.5 MHz, CDCl3): 28.25, 29.99, 67.20, 109.92, 114.99, 115.26, 119.04, 126.97, 128.23, 131.21, 132.47, 137.59, 145.14, 159.61

MS M/Z (ESI+):

286.1195 (calcd. for C18H17NNaO: 286.1202, M + Na)

FT-IR (ν max, cm-1):

661, 709, 810, 821, 840, 910, 935,954, 1002, 1053, 1186, 1217, 1253, 1269, 1288, 1327, 1438, 1469, 1494, 1529, 2225, 2927, 2949

Assay (RP-HPLC, peak area):

>99.5%

4:

4-Hexenyloxy-4′-cyanobiphenyl

Quantities used:

4-Hydroxy-4′-cyanobiphenyl (2.34 g, 12 mmol), 6-bromohexene (2 g, 12.27 mmol), potassium carbonate (3.45 g, 25 mmol), sodium iodide (3.75 g, 25 mmol), acetone (50).

Yield:

2.6 g (78%)

1H

1.53 – 1.62 (2H, m, ArO-CH2CH2-CH2-CH2-CH=CH2), 1.73 – 1.85 (2H, m, ArO-

NMR (400 MHz, CDCl3):

CH2CH2-CH2-CH2-CH=CH2), 2.09 – 2.15 (2H, m, ArO-CH2CH2-CH2-CH2CH=CH2), 3.96 (2H, t, JH-H = 6.5 Hz, ArO-CH2-CH2-CH2-CH2-CH=CH2), 4.98 (1H, ddt, JH-H = 1.2 Hz, JH-H = 2.1 Hz, JH-H = 10.1 Hz, -CH2-CH-CHHcis), 5.04 (1H, ddd, JH-H = 1.2 Hz, JH-H = 3.3 Hz, JH-H = 17.0 Hz, -CH2-CH-CHHtrans), 5.82 (1H, ddt, JH-H = 6.7 Hz, JH-H = 10.2 Hz, JH-H = 17.0 Hz, -CH2-CH-CH2), 6.95 (2H, ddd, JH-H = 2.0 Hz, JH-H = 3.0 Hz, JH-H = 8.8 Hz, ArH), 7.48 (2H, ddd, JH-H = 2.0 Hz, JH-H = 3.0 Hz, JH-H = 8.8 Hz, ArH), 7.56 (2H, ddd, JH-H = 1.6 Hz, JH-H = 1.8 Hz, JH-H = 8.5 Hz, ArH), 7.61 (2H, ddd, JH-H = 1.6 Hz, JH-H = 1.8 Hz, JH-H = 8.5 Hz, ArH) 13C{1H}

NMR (100.5 MHz, CDCl3): 24.99, 28.37, 33.13, 67.57, 109.63, 114.56, 118.78, 114.74, 126.64, 127.96, 130.76, 132.19, 138.13, 144.76, 159.46

MS M/Z (ESI+):

300.1369 (calcd. for C19H19NNaO: 300.1359, M + Na)

FT-IR (ν max, cm-1):

657, 717, 738, 754, 779, 825, 856, 906, 999, 1037, 1114, 1178, 1244, 1292, 1313, 1396, 1436, 1473, 1492, 1521, 1575, 1602, 1639, 2222, 2941

Assay (RP-HPLC, peak area):

>99.5%

5:

4-Heptenyloxy-4′-cyanobiphenyl

Quantities used:

4-Hydroxy-4′-cyanobiphenyl (975 mg, 5 mmol), 7-bromoheptene (1 g, 5.65 mmol), potassium carbonate (1.38 g, 10 mmol), sodium iodide (1.5 g, 10 mmol), acetone (50 ml).

Yield:

1.2 g (82 %)

1H

1.39 – 1.55 (4H, m, -CH2-CH2-CH2-CH2), 1.74 – 1.88 (2H, m, -CH2-CH2-CH2-

NMR (400 MHz, CDCl3):

), 2.08 (2H, m, -CH2-CH2-CH=CH2), 3.99 (2H, t, JH-H = 6.5 Hz, ArO-CH2-CH2), 4.94 (1H, ddt, JH-H = 1.9 Hz, JH-H = 2.1 Hz, JH-H = 10.2 Hz, -CH2-CH-CHHcis), 5.00 (1H, ddd, JH-H = 1.9 Hz, JH-H = 3.3 Hz, JH-H = 17.2 Hz, -CH2-CH-CHHtrans), 5.81 (1H, ddt, JH-H = 6.5 Hz, JH-H = 10.2 Hz, JH-H = 17.2 Hz, -CH2-CH-CH2), 6.97 (2H, ddd, JH-H = 2.0 Hz, JH-H = 3.0 Hz, JH-H = 9.0 Hz, ArH), 7.51 (2H, ddd, JH-H = 2.0 Hz, JH-H = 3.0 Hz, JH-H = 9.0 Hz, ArH), 7.62 (2H, ddd, JH-H = 1.8 Hz, JH-H = 2.1 Hz, JH-H = 8.9 Hz, ArH), 7.67 (2H, ddd, JH-H = 1.8 Hz, JH-H = 2.1 Hz, JH-H = 8.9 Hz, ArH) 13C{1H}

NMR (100.5 MHz, CDCl3): 25.70, 28.79, 29.23, 33.85, 68.21, 110.18, 114.68, 115.23, 119.30, 127.24, 128.49, 131.43, 132.73, 138.94, 145.44, 159.92

MS M/Z (ESI+):

292.1688 (calcd. for C20H22NO: 22.1696, M + H) 314.1509 (calcd. for C20H21NNaO: 314.1515, M + Na)

FT-IR (ν max, cm-1):

665, 725, 748, 808, 827, 842, 856, 922, 999, 1031, 1056, 1112, 1172, 1217, 1228, 1265, 1365, 1473, 1519, 1575, 1602, 1639, 1737, 2223, 2854, 2962

Assay (RP-HPLC, peak area):

>99.0%

6:

4-Octenyloxy-4′-cyanobiphenyl

Quantities used:

4′-hydroxy-4-cyanobiphenyl (500 mg, 2.56 mmol), 1-bromooct-8-ene (489 mg, 2.56 mmol), potassium carbonate (828 mg, 6 mmol), sodium iodide (900 mg, 6 mmol) acetone (10 ml)

Yield:

625 mg (80%)

1H

1.41 (6H, m, -CH2-(CH2)3-CH2-), 1.80 (2H, m, -CH2-CH2-CH2-), 2.05 (2H,

NMR (400 MHz, CDCl3):

Quart., JH-H = 6.8 Hz, H2C=CH-CH2-CH2-), 3.99 (2H, t, JH-H = 6.8 Hz, ArO-CH2CH2-), 4.93 (1H, dq, JH-H = 1.7 Hz, JH-H = 10.3 Hz, CH2-CH=CHHcis), 4.99 1H, ddd, JH-H = 1.7 Hz, JH-H = 3.4 Hz, JH-H = 17.2 Hz, CH2-CH=CHHtrans), 5.80 (1H, ddt, JH-H = 6.7 Hz, JH-H = 10.3 Hz, JH-H = 17.2 Hz, H2C=CH-CH2-), 6.99 (2H, ddd, JH-H = 1.7 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH), 7.51 (2H, ddd, JH-H = 1.7 Hz, JH-H = 2.4Hz, JH-H = 8.9 Hz, ArH), 7.61 (2H, ddd, JH-H = 1.2 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH), 7.66 (2H, ddd, JH-H = 1.2 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH) 13C{1H}

NMR (100.5 MHz, CDCl3): 25.84, 28.76, 28.749, 29.11, 33.66, 68.03, 109.94, 114.29, 115.00, 119.09, 127.01, 128.26, 131.17, 132.51, 138.94, 145.21, 159.72

MS M/Z (ESI+):

328.1659 (calcd. for C21H23NNaO: 328.1672, M + Na)

FT-IR (ν max, cm-1):

661, 725, 748, 808, 827, 842, 856, 921, 999, 1031, 1056, 1112, 1172, 1217, 1228, 1265, 1296, 1365, 1473, 1492, 1519, 1575, 1602, 1639, 1737, 2222, 2854, 2970

Assay (RP-HPLC, peak area):

>99.5%

7:

4-Nonenyloxy-4′-cyanobiphenyl

Quantities used:

4′-hydroxy-4-cyanobiphenyl (4.76 g, 24.4 mmol), 1-bromonon-9-ene (5 g, 24.4 mmol), potassium carbonate (6.9 g, 50 mmol), sodium iodide (7.5 g, 50 mmol) acetone (125 ml).

Yield:

6.7 g (86 %)

1H

1.27 – 1.54 (8H, m, -CH2-(CH2)4-CH2-), 1.73 - 1.91 (4H, m, -CH2-(CH2)2-CH2-

NMR (400 MHz, CDCl3):

), 2.04 (2H, Quart., JH-H = 6.7 Hz, H2C=CH-CH2-CH2-), 3.98 (2H, t, JH-H = 6.7 Hz, ArO-CH2-CH2-), 4.92 (1H, dq, JH-H = 2.0 Hz, JH-H = 9.5 Hz, CH2CH=CHHcis), 4.99 1H, ddd, JH-H = 2.0 Hz, JH-H = 3.3 Hz, JH-H = 17.5 Hz, CH2CH=CHHtrans), 5.80 (1H, ddt, JH-H = 6.7 Hz, JH-H = 9.5 Hz, JH-H = 17.5 Hz, H2C=CH-CH2-), 6.97 (2H, ddd, JH-H = 1.9 Hz, JH-H = 3.0 Hz, JH-H = 8.9 Hz, ArH), 7.49 (2H, ddd, JH-H = 1.9 Hz, JH-H = 3.0Hz, JH-H = 8.9 Hz, ArH), 7.60 (2H, ddd, JH-H = 1.9 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH), 7.66 (2H, ddd, JH-H = 1.9 Hz, JH-H = 2.4 Hz, JH-H = 8.9 Hz, ArH). 13C{1H}

NMR (100.5 MHz, CDCl3): 25.92, 28.78, 28.97, 29.13, 29.16, 33.71, 68.06, 109.93, 114.19, 115.00, 119.07, 126.99, 128.25, 131.15, 132.49, 139.03, 145.19, 159.73

MS M/Z (ESI+):

342.1814 (calcd. for C22H25NNaO: 342.1828, M + Na)

FT-IR (ν max, cm-1):

661, 725, 775, 810, 825, 842, 856, 925, 995, 1020, 1031, 1045, 1062, 1116, 1176, 1217, 1228, 1290, 1307, 1365, 1471, 1492, 1517, 1579, 1604, 2223, 2970

Assay (RP-HPLC, peak area):

>99.5%

8:

4-Decenyloxy-4′-cyanobiphenyl

Quantities used:

4′-hydroxy-4-cyanobiphenyl (4.46 g, 22.8 mmol), 1-bromodec-10-ene (5 g, 22.8 mmol), potassium carbonate (6.9 g, 50 mmol), sodium iodide (7.5 g, 50 mmol) acetone (125 ml).

Yield:

7.1 g (89%)

1H

1.25 – 1.51 (10 H, m, -CH2-(CH2)5-CH2-), 1.73 – 1.85 (2H, m, -CH2-(CH2)5-

NMR (400 MHz, CDCl3):

CH2-CH2-), 1.99 – 2.09 (2H, m, -CH2-(CH2)5-CH2-CH2-), 3.98 (2H, t, JH-H = 6.5 Hz, ArOCH2-CH2-), 4.92 (1H, ddt, JH-H = 1.2 Hz, JH-H = 2.1 Hz, JH-H = 10.9 Hz, -CH2-CH=CHHcis), 4.98 (1H, dtt, JH-H= 1.2 Hz, JH-H = 2.1 Hz, JH-H = 17.0 Hz, CH2-CH=CHHtrans), 5.80 (1H, ddt, JH-H= 6.7 Hz, JH-H = 10.2 Hz, JH-H = 17.0 Hz, -CH2-CH=CH2),6.97 (2H, ddd, JH-H = 2.0 Hz, JH-H= 2.9 Hz, JH-H = 8.8 Hz, ArH), 7.50 (2H, ddd, JH-H = 2.0 Hz, JH-H = 2.9 Hz, JH-H = 8.8 Hz, ArH), 7.61 (2H, ddd, JH-H= 1.7 Hz, JH-H = 2.1 Hz, JH-H = 8.5 Hz, ArH), 7.66 (2H, ddd, JH-H = 1.7 Hz, JH-H = 2.1 Hz, JH-H = 8.5 Hz, ArH). 13C{1H}

NMR (100.5 MHz, CDCl3): 25.94, 28.82, 28.98, 29.13, 29.26, 29.33, 33.72, 68.06, 109.91, 114.12, 114.99, 119.05, 126.97, 128.23, 131.12, 132.47, 139.08, 145.18, 159.72

MS M/Z (ESI+):

356.1972 (calcd. for C23H27NNaO: 356.1985, M + Na)

FT-IR (ν max, cm-1):

661, 721, 756, 808, 829, 842, 854, 921, 962, 999, 1018, 1031, 1047, 1114, 1174, 1217, 1228, 1265, 1294, 1315, 1365, 1463, 1473, 1492, 1519, 1577, 1602, 1639, 2222, 2850, 2924, 2970

Assay (RP-HPLC, peak area):

>99.5%

9:

4-Undecenyloxy-4′-cyanobiphenyl

Quantities used:

4′-hydroxy-4-cyanobiphenyl (10 g, 51 mmol), 1-bromoundec-11-ene (11.9 g, 21 mmol), potassium carbonate (14 g, 102 mmol), acetone (150 ml)

Yield:

16.4 g (95%)

1H

1.26 – 1.53 (12 H, m, -CH2-(CH2)6-CH2-), 1.84 (2H, quintet, JH-H = 6.4 Hz, -

NMR (400 MHz, CDCl3):

CH2-(CH2)6-CH2-CH2-), 2.01 – 2.08 (2H, m, -CH2-(CH2)6-CH2-CH2-), 4.01 (2H, t, JH-H = 6.4 Hz, ArOCH2-CH2-), 4.94 (1H, dtt, JH-H = 1.2 Hz, JH-H = 2.1 Hz, JH-H = 10.1 Hz, -CH2-CH=CHHcis), 5.00 (1H, dtt, JH-H= 1.2 Hz, JH-H = 2.1 Hz, JH-H = 17.1 Hz, -CH2-CH=CHHtrans), 7.00 (2H, ddd, JH-H = 2.1 Hz, JH-H= 3.1 Hz, JH-H = 8.9 Hz, ArH), 7.52 (2H, ddd, JH-H = 2.1 Hz, JH-H = 3.1 Hz, JH-H = 8.9 Hz, ArH), 7.63 (2H, ddd, JH-H= 1.5 Hz, JH-H = 2.1 Hz, JH-H = 8.5 Hz, ArH), 7.68 (2H, ddd, JH-H = 1.5 Hz, JH-H = 2.1 Hz, JH-H = 8.5 Hz, ArH). 13C{1H}

NMR (100.5 MHz, CDCl3): 25.95, 28.84, 29.04, 29.14, 29.29, 29.34, 29.44, 33.72, 68.07, 109.92, 114.08, 114.99, 119.03, 126.96, 128.22, 131.11, 132.46, 139.10, 145,17, 159.73

MS M/Z (ESI+):

370.2147 (calcd. for C24H29NNaO: 370.2141, M + Na)

FT-IR (ν max, cm-1):

661, 721, 746, 777, 804, 817, 835, 852, 902, 999, 1037, 1116, 1180, 1217, 1228, 1271, 1290, 1365, 1463, 1475, 1494, 1558, 1602, 1637, 1739, 2223, 2850, 2924, 2970

Assay (RP-HPLC, peak area):

>99.5%

1.4. Gaussian G09 (B3LYP/6-31G(d) Dipole and Polarisability Output Compound 4 Dipole moment (field-independent basis, Debye): X=

-6.7038 Y=

-0.0390 Z=

-0.2517 Tot=

6.7086

Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-179.7131 YY= -10.6222 XZ=

-116.0981 ZZ= 1.4611 YZ=

-123.8542 0.9282

Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-39.8246 YY= -10.6222 XZ=

23.7903 ZZ= 1.4611 YZ=

16.0343 0.9282

Octapole moment (field-independent basis, Debye-Ang**2): XXX= XXY= YYZ=

-709.5765 YYY= -66.6618 XXZ= 2.1471 XYZ=

-7.1474 ZZZ= 2.5979 XZZ= 16.8035

0.8571 XYY= -25.0674 YZZ=

15.4713 -0.2840

Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= XXXZ= ZZZY= XXYZ=

-26787.6494 YYYY= -32.0364 YYYX= -6.7418 XXYY= 39.9665 YYXZ=

-795.7154 ZZZZ= -17.5829 YYYZ= -3403.1085 XXZZ= 16.3744 ZZXY=

-240.5295 XXXY= -4.2572 ZZZX= -3300.2290 YYZZ= -14.0114

N-N= 1.367679084682D+03 E-N=-4.740948793374D+03 KE= 8.570548799823D+02 Exact polarizability: 393.245 6.153 175.522 -10.435 4.235 111.772 Approx polarizability: 499.706 13.282 305.879 -19.327 9.706 178.640

-975.6850 -12.3226 -177.9235

Compound 6 Dipole moment (field-independent basis, Debye): X=

-6.7419 Y=

-0.1322 Z=

0.2935 Tot=

6.7496

Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-208.7768 YY= -11.6850 XZ=

-129.2758 ZZ= 2.4752 YZ=

-137.8392 3.2286

Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-50.1462 YY= -11.6850 XZ=

29.3548 ZZ= 2.4752 YZ=

20.7914 3.2286

Octapole moment (field-independent basis, Debye-Ang**2): XXX= XXY= YYZ=

-879.3263 YYY= -108.3725 XXZ= 6.5910 XYZ=

-7.4980 ZZZ= 31.8049 XZZ= 8.5929

6.6638 XYY= -23.2810 YZZ=

14.8465 -3.7328

Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= XXXZ= ZZZY= XXYZ=

-40031.8229 YYYY= 577.9320 YYYX= 30.8780 XXYY= 242.0119 YYXZ=

-862.7298 ZZZZ= -56.4837 YYYZ= -4909.7411 XXZZ= 31.3770 ZZXY=

-307.1228 XXXY= 35.5415 ZZZX= -4934.7946 YYZZ= -13.4869

N-N= 1.557551746904D+03 E-N=-5.302183770839D+03 KE= 9.348795107586D+02 Exact polarizability: 425.281 14.650 194.988 -0.990 6.282 128.943 Approx polarizability: 526.359 25.541 335.652 -2.630 13.248 206.921

-1418.4858 81.2094 -200.7872

6OCB Dipole moment (field-independent basis, Debye): X=

-6.7419 Y=

-0.1322 Z=

0.2935 Tot=

6.7496

Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-208.7767 YY= -11.6850 XZ=

-129.2758 ZZ= 2.4752 YZ=

-137.8392 3.2286

Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-50.1462 YY= -11.6850 XZ=

29.3548 ZZ= 2.4752 YZ=

20.7914 3.2286

Octapole moment (field-independent basis, Debye-Ang**2): XXX= XXY= YYZ=

-879.3263 YYY= -108.3725 XXZ= 6.5910 XYZ=

-7.4980 ZZZ= 31.8049 XZZ= 8.5929

6.6638 XYY= -23.2810 YZZ=

14.8465 -3.7328

Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= XXXZ= ZZZY= XXYZ=

-40031.8229 YYYY= 577.9320 YYYX= 30.8780 XXYY= 242.0119 YYXZ=

-862.7298 ZZZZ= -56.4837 YYYZ= -4909.7411 XXZZ= 31.3770 ZZXY=

-307.1228 XXXY= 35.5415 ZZZX= -4934.7946 YYZZ= -13.4869

N-N= 1.557551746901D+03 E-N=-5.302183770834D+03 KE= 9.348795107587D+02 Exact polarizability: 425.281 14.650 194.988 -0.990 6.282 128.943 Approx polarizability: 526.359 25.541 335.652 -2.630 13.248 206.921

-1418.4859 81.2094 -200.7872

8OCB Dipole moment (field-independent basis, Debye): X=

-7.1204 Y=

-0.0199 Z=

-0.0496 Tot=

7.1206

Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-205.7163 YY= -11.6966 XZ=

-131.2299 ZZ= 1.3957 YZ=

-139.1876 2.1050

Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= XY=

-47.0051 YY= -11.6966 XZ=

27.4814 ZZ= 1.3957 YZ=

19.5236 2.1050

Octapole moment (field-independent basis, Debye-Ang**2): XXX= XXY= YYZ=

-898.6758 YYY= -109.2773 XXZ= 4.1719 XYZ=

-8.1463 ZZZ= 9.2259 XZZ= 14.8595

2.3600 XYY= -4.8193 YZZ=

37.0344 -1.7302

Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= XXXZ= ZZZY= XXYZ= N-N=

-40991.5684 YYYY= 109.5457 YYYX= 2.8848 XXYY= 134.5090 YYXZ=

-859.3741 ZZZZ= -23.9125 YYYZ= -5200.4453 XXZZ= 9.7572 ZZXY=

-260.7446 XXXY= 9.2128 ZZZX= -5159.5935 YYZZ= -7.5542

1.582012258870D+03 E-N=-5.353625825603D+03 KE= 9.360801966260D+02

Exact polarizability: Approx polarizability:

424.059 18.190 199.221 -5.386 5.546 128.969 520.132 28.784 342.485 -10.136 11.906 204.399

-1267.5519 -16.5021 -190.5167

References 1) R. J. Mandle, E. J. Davis, C.-C. A. Voll, D. J. Lewis, S. J. Cowling and J. W. Goodby, J. Mater. Chem. C, 2015, 3, 2380 - 2388 2) Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. 3) Clark M. G., Raynes E. P., Smith R. A. and Tough R. J. A., “Measurement of the Permittivity of Nematic Liquid Crystals in Magnetic and Electric Fields Using Extrapolation Procedures”, J. Phys. D: Appl., Phys., 1980, 13, 2151-2156 4) Wu S.T., Coates D. and Bartmann E., “Physical Properties of Chlorinated Liquid Crystals”, Liq. Cryst., 1991, 10, 635-646 5) Murakami S. and Naito H., “Electrode and Interfacial Polarisation in Nematic Liquid Crystal Cells”, Jpn. J. Appl. Phys., 1997, 36, 2222-2225 6) Mandle R.J., Cowling S.J., Sage I., Colclough E.M. and Goodby J.W., “Relationship between Molecular Association and Re-entrant Phenomena in Polar Calamitic Liquid Crystals”, J. Phys. Chem. B, 2014, 119, 3273 – 3280. 7) Kaszynski P., Januszko A. and Glab K.L., “Comparative Analysis of Fluorine-containing Mesogenic Derivatives of Carborane, Bicyclo[2.2.2]octane, Cyclohexane, and Benzene using the Maier-Meier Theory”, J. Phys. Chem., 2014, 118, 2238 – 2248.