1 Theory Testing Using Complex Systems Modeling in Public ...

5 downloads 495 Views 2MB Size Report
that public administration and policy has come to complexity science in much ..... breakthrough in social network analysis, demonstrating the “six degrees of .... Figure 1: Structural features of the MS Framework (adapted from Kingdon, 1984).
Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

      Theory  Testing  Using  Complex  Systems  Modeling     in  Public  Administration  and  Policy  Studies:     Challenges  and  Opportunities  for  a  Meta-­‐Theoretical  Research  Program     Christopher  Koliba   University  of  Vermont   103  Morrill  Hall   Burlington,  VT    05405   [email protected]   802-­‐656-­‐3772    

Asim  Zia  

University  of  Vermont   205  Morrill  Hall   Burlington,  VT    05405   [email protected]   802-­‐656-­‐4695  

      In  this  manuscript  the  authors  discuss  why  it  is  important  to  employ  complexity   science  to  study  policy  and  governance  systems.  Citing  the  need  to  develop  better   understanding  of  how  these  systems  are  resilient,  adaptive  and  self-­‐organizing,  they   describe  complex  policy  and  governance  systems  within  the  context  of  innovation,  change   and  collapse.    The  authors  then  discuss  how  complex  social  systems  are  being  analyzed  in   terms  of  systems  dynamics  and  network  architectures.    Five  theoretical  frameworks  of   policy  and  governance  systems  including  the  multiple  policy  streams,  punctuated   equilibrium,  institutional  analysis  and  development,  advocacy  coalition  and  governance   network  frameworks  are  presented  as  some  of  the  “complexity  friendly”  frameworks  that   have  been  devised  to  incorporate  whole  systems  properties.    We  assess  whether  and  how   these  frameworks  are  accommodating  to  complex  adaptive  systems  modeling  and  how   they  may  be  used  to  generate  hypothesis  that  may  be  tested,  within  limits,  using  complex   adaptive  systems  modeling.    Further,  we  assess  the  potential  utilization  of  some  innovative   complex  systems  modeling  tools,  such  as  agent  based  models,  discrete  event  models,  and   complex  systems  dynamic  modeling  to  inform  a  meta-­‐theoretical  research  program  for   comparing  and  refining  alternate  theoretical  frameworks  with  respect  to  their  adequacy  in   accounting  for  non-­‐linearity,  lags,  inertia,  cross-­‐scale  interactions  and  complex  feedback   loops.       This  paper  is  presented  at  the  2011  Public  Management  Research  Conference  (PMRC)  convened  at  the   Maxwell  School  of  Citizenship  and  Public  Affairs  at  Syracuse  University,  June  2-­‐4,  2011.    This  paper  is   not  to  be  reproduced  without  permission  of  the  authors.    

 

1  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

   

Theory  Testing  Using  Complex  Systems  Modeling     in  Public  Administration  and  Policy  Studies:     Challenges  and  Opportunities  for  a  Meta-­‐Theoretical  Research  Program    

      Over  the  past  fifteen  years  a  discussion  concerning  the  potential  role  that   complexity  theory  and  science  can  play  in  addressing  some  of  public  administration  and   policy’s  most  persistent  areas  of  interest  and  concern  has  taken  place  (Kiel,  1994;  Comfort,   1994;  Haynes,  2003;  Farazmand,  2003;    Dennard,  Richardson  and  Morcol,  2008;  Teisman,   van  Buuren,  and  Gerrits,  2009).      Those  contributing  to  this  growing  body  of  literature  have   drawn  on  the  now  widespread  recognition  that  “wicked  problems”  operating  on  many   different  levels  of  scale  (Rittel  and  Webber,  1973)  confront  public  administrators  and   policy  analysts,  and  suggest  that  complexity  theory  and  science  has  the  potential  to   approach  wicked  problems  with  fresh  eyes.   Wicked  problems  may  surface  as  a  region’s  capacity  to  respond  to  catastrophic   events  or  a  stubborn  bureaucracy’s  failure  to  adapt  and  innovate  to  meet  changing  needs.     Wicked  problems  may  be  seen  on  a  societal  level  as  persistent  and  entrenched  public  policy   problems  or  at  the  interpersonal  levels  within  the  blurring  of  lines  between  politics  and   administration;  individual  belief  systems  and  institutional  rules  and  norms.    In  this   manuscript,  we  argue  that  wicked  problems  persist  because  our  failure  to  understand  their   complexity.    We  argue  that  we  have,  thus  far,  failed  to  integrate  the  role  of  non-­‐linear   feedback  loops  operating  within  complex  policy  and  governance  processes  into  our   theories  and  empirical  research.  As  a  result  we  have  failed  to  capture  how  self-­‐organizing   and  emergent  behaviors  contribute  to  innovation  and  change,  as  well  catastrophic  or  near   catastrophic  failure.    We  argue  that  the  emergence  (or  conversely,  the  seeming  lack  of   emergence)  of  new  behaviors,  actions  and  events  from  seemingly  stable  and  predictable   structures  and  functions  may  be  viewed  as  one  of  the  primary  forces  driving  the   wickedness  of  public  policy  and  public  administration  problems.       Klijn  and  Snellen  have  observed  how,  “The  history  of  the  field  of  public   administration  could  be  viewed  as  an  ongoing  attempt  to  search  for  concepts  to  grasp  the   complexity  of  day-­‐to-­‐day  practices  in  policy-­‐making  and  decision-­‐making”  (Klijn  and   Snellen,  2009,  p.17).    To  a  certain  extent,  complexity  has  always  been  a  part  of  every  day   public  management  and  policy  practices.  Just  as  field  of  physics  “has  discovered  complexity   by  complicating  its  own  language  of  description,”  (Tsoukas,  2005,  p.236),  we  argue  here   that  public  administration  and  policy  has  come  to  complexity  science  in  much  the  same   way.    The  meta-­‐theoretical  underpinnings  of  complexity  theory,  coupled  with  the   computational  tools  and  modeling  capacity  being  utilized  in  complexity  science,  provides   the  field  of  public  administration  and  policy  with  tools  to  employ  this  language  to  study   observable  phenomena.    In  this  manuscript  we  discuss  how  the  language  and  science  of   complexity  may  be  combined  with  some  of  our  existing  policy  and  governance  “complexity   friendly”  frameworks  to  provide  the  basis  for  a  next  generation  meta-­‐theoretical  program.            

2  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

    Policy  and  Governance  Processes  as  Complex  Adaptive  Systems     In  this  section  we  explore  the  relationship  between  rationality,  bounded  rationality,   and  non-­‐rational  processes,  and  emergent,  self-­‐organizing  and  adaptive  properties  of   policy  and  governance  systems.      We  suggest  that  the  tensions  that  are  inherent  within  the   social  sciences  more  widely  between  the  deterministic  sciences  found  in  positivism  and  the   relativistic  sciences  found  in  intepretivism  are  present  in  most  models  of  complex  adaptive   systems  as  well  and  argue  that  this  tension  may  be  harnessed  under  a  regime  of  theory-­‐ testing.    We  conclude  by  laying  out  a  rationale  for  why  public  administration  should  be   interested  in  the  kinds  of  analysis  that  are  possible  using  complexity  theory  and  science.     Rationality,  bounded  rationality,  and  non-­‐rationality.   Klijn  and  Snellen  argue  that  our  theories  of  public  management  and  policy  are  often   predicated  on  a  continued  reliance  on  theories  of  rational  action  found  in  most  market-­‐ oriented  and  performance-­‐based  reforms  of  the  past  thirty  years  (2009).    Arguably,  no   discussion  of  policy  and  decision  making  in  the  field  today  can  be  had  without  ascertaining   the  extent  to  which  purely  rational  behavior  and  action  is  possible  given  the  bounded   rationality  or  near  irrationality  of  social  actors.     Rationality  has  been  contested  at  a  fundamental  level  as  a  Newtonian  enterprise   that  is  typically  based  upon  a  host  of  ultimately  unprovable  assumptions,  e.g.  decision   makers  know  all  possible  permutations  and  combinations  of  alternatives,  anticipate  the   complex  sequence  of  events  that  could  follow  those  alternatives  and  predict  with  certainty   the  consequences  of  those  alternatives  after  these  events  have  taken  place.    It  has  been   widely  noted,  beginning  with  Herbert  Simon  (1957)  and  Charles  Lindblom  (1959),  but   extending  well  into  contemporary  times,  that  human  behaviors  and  the  range  of  societal   interactions  that  shape  them  are  not  easily  explained  through  collective  or  rational  choice   theories.1    Bounded  rationalists  accept  the  “premise”  of  rationality;  while  others  reject  any   notion  of  rationality  itself,  adhering  to  the  notion  that  people  just  act  spontaneously,   emotionally  and  instinctually.      Bounded  rationalists  and  those  that  reject  the  premise  of   rationality  all  understand  that  social  agents  see  the  world  through  the  veils  of  their  own   subjectivity.    They  affect  one  another,  forming  shared  mental  models  (Senge,  1990),   collective  theories-­‐in-­‐use,  and  norms  that  guide  virtually  every  facet  of  social  interaction   (Argyris  and  Schon,  1996).      This  is  a  view  adhered  to  by  social  psychologists  who  approach   social  agency  as  a  matter  of  collectively  constructed  belief  networks,  and  a  range  of  mental   and  cultural  models  that  could  not  be  tested  against  any  norm  of  rationality.      In  public   administration  and  policy,  we  see  widespread  recognition  that  the  social  construction  of   numbers,  symbols,  metaphors,  and  narratives  shapes  power  and  political  dynamics   operating  between  social  agents  (Stone,  2002).      Applying  complexity  science  to  the  study   of  socially  constructed  phenomena  will  not  reconcile  the  tensions  that  persist  between  the                                                                                                                   1  This  widespread  recognition  of  the  bounded  rationality  of  social  actors  has  not  stopped  us  from   It  is  also  noteworthy  that  the  application  of  game  theory,  now  common  in  behavioral  economics,   social  psychology,  and  political  science  is  based  on  idealization  of  social  behaviors.      These  predictions  are   based  on  simplifications  of  what  often  amount  to  be  highly  complex,  non-­‐rational  drivers  of  social  interaction.    

 

3  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  base  assumptions  guiding  most  theories  of  rationality,  bounded  rationality  and  rationality-­‐ defying  mental  and  cultural  models.       We  argue  ,  however,  that  those  looking  to  apply  complexity  science  and  theory  to   the  study  of  policy  and  governance  phenomena  will  be  pressed  to  avoid  the  kinds  of   positivist  and  postpositivist  legacies  found  in  most  computer  simulation  models  of  complex   systems  (Buijs  et  al.,  2009).    These  legacies  become  real  modeling  challenges  as  attempts   are  made  to  “make  sense”  of  socially  constructed  belief  systems.    Agents  in  simulation   models  are  given  “decision  rules”  devised  to  simulate  naturally  occurring  phenomena   (North  and  Macal,  2007).    Rule  making  behaviors  are  assigned  values  or  probabilities   through  the  ascription  of  algorithms.    Ascertaining  the  reliability  of  these  algorithms   necessarily  draws  upon  positivistic  assumptions  found  in  quantitative  analysis.       The  ontological  tensions  that  arise  between  the  “naïve  realist”  or  “empiricist   epistemologies”  found  in  the  positivist  traditions  of  science  and  the  social  constructionism   common  to  more  qualitative,  interpretive  sciences  may  be  found  in  virtually  any  attempt  to   apply  complexity  science  to  the  study  of  social  phenomena  (Buijs  et  al.,  2009).    We  argue   that  although  efforts  to  develop  computer  simulation  models  of  complex  policy  and   governance  systems  are  essential  for  describing  how  parts  of  complex  systems  operate,  we   cannot  rely  on  positivist,  Newtonian  approaches  to  science  alone  to  describe  the  emergent,   self-­‐organizing  and  adaptive  characteristics  of  nonlinear  feedback  loops  and  policy  centric   networks.    These  properties  become,  “The  choices  of  agents  in  human  systems  are  based  on   perceptions  which  lead  to  nonproportional  over-­‐  and  under-­‐reaction;  there  are  almost   always  many  outcomes  possible  for  any  action;  group  behavior  is  more  than  simply  the   sum  of  individual  behaviors…”  (Stacey,  2006,  p.80).       Although  discrete  events  and  processes  may  unfold  in  linear,  somewhat  predicable   fashion  and  represent  important  facets  of  a  policy  or  governance  system’s  functioning,   rarely  may  a  whole  system  be  described  in  terms  of  such  linearity.    In  the  worst  case,  an   ecological  fallacy  may  result  from  confounding  the  analysis  of  isolated  processes  of,  or   events  within,  a  system  to  the  more  broadly  construed  system  as  a  whole.    The   simplifications  that  we  are  prepared  to  make  to  describe  the  linear  relationships  between   two  or  more  variables  within  discrete  events  or  processes  are  often  not  enough  to  account   for  the  complexity  of  the  whole    (Marion,  1999,  p.  27-­‐28).      Indeed,  our  capacity  and  drive   to  describe  how  discrete  events  and  processes  are  linked  together  into  a  wider  whole   system  presses  us  to  distinguish  between  merely  complicated  systems  and  complex  systems   that  exhibit  qualities  of  self-­‐organization,  adaptation  and  emergence.           Self-­‐organization,  adaptation  and  emergence   Complexity  science  can  help  us  account  for  emergent  behaviors  through  the   discovery  of  simple  rules  that  set  in  motion  the  chain  of  events  leading  to  path  dependent   outcomes  that  are  particularly  difficult  to  rationally  anticipate.    Drawing  from  observations   of  the  complex,  coordinated  behaviors  of  flocks  of  birds,  fish  and  colonies  of  social  insects,   social  scientists  have  discovered  the  simple  rules  that  predict  the  flow  of  traffic  on   roadways  and  sidewalks,  the  behaviors  of  large  crowds  of  humans,  and  the  development  of   land  use  patterns  (Batty,  2005).    While  the  eloquence  of  these  models  and  the  shear   fascination  evoked  from  seeing  patterns  persist  across  species  are  stunning,  they  account   for  what  may  best  be  metaphorically  deemed,  the  low  hanging  fruit  of  social  complexity.     Although  we  may  arrive  at  a  certain  level  of  predictive  authority  to,  say,  anticipate  how    

4  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  changes  to  zoning  laws  will  effect  land  use  patterns,  or  the  expansion  of  roadway  capacity   impacts  traffic  congestion,  we  will  have  a  much  harder  time  composing  models  that  can   account  for  more  finer  grained  analysis  of  complex  social  systems  in  which  outputs  are  not   readily  observable.   Studies  of  policy  implementation  have  consistently  reinforced  the  notion  that   predicting  the  coordinated  actions  of  various  combinations  of  policy  actors  is  an   undertaking  wrought  with  uncertainties  (Pressman  and  Wildavsky,  1973;  Hill  and  Hupe,   2002).    The  successful  implementation  of  a  new  program  or  regulation  may  hinge  on  the   role  of  an  individual  champion,  the  unfolding  of  certain  events,  or  the  development  of   certain  plans,  laws  or  protocols  that  serve  as  particularly  useful  in  guiding  action.    The   combining,  comingling  and/or  competition  of  dueling  and  complementary  interests  lead  to   the  unpredictability  of  outcomes.    When  viewed  through  the  lens  of  complexity  science,   such  outcomes  are  “path  dependent,  “  meaning  that  they  are  the  result  of  certain   combinations  of  activities  that  take  place  over  the  course  of  time  (Pierson,  2004).2  3     Path  dependency  fuels  the  capacity  of  complex  systems  to  self  organize,  engraining   them  with  the  ability  to  make  their  own  structures  more  complex  (Meadows,  2008,  p.79).     Self-­‐organization  leads  to  the  emergence  of  new  structures  and  functions.  Miller  and  Page,   suggest  that,  “[E]mergence  is  a  phenomenon  whereby  well-­‐formulated  aggregate  behavior   arises  from  localized,  individual  behavior.    Moreover,  such  aggregate  patterns  should  be   immune  to  reasonable  variations  in  the  individual  behavior”  (2008,  P.46).    Thus,  the   emergence  of  new  patterns  of  organization  and  behavior  are  formed  “from  the  bottom  up.”     However,  bottom  up  emergence  arises  from  stable  subsystems  that  may  be  driven  by  top   down  or  reified  rules  and  norms  that  provide  for  a  system’s  stability.    “Complex  systems   can  evolve  from  simple  systems  only  if  there  are  stable  intermediate  forms”  (Meadow,   2008,  P.83).    These  stable  intermediate  forms  most  likely  exist  at  the  meso  levels  of   established  organizations  and  institutions,  and  long  standing,  institutionalized   communities  of  practice.  These  stable  meso  levels  form  the  basis  of  subsystems  that,    “can   largely  take  care  of  themselves,  regulate  themselves,  maintain  themselves,  and  yet  serve   the  needs  of  the  larger  system,  while  the  larger  system  coordinates  and  enhances  the   functioning  of  the  subsystems,  a  stable,  resilient,  and  efficient  structure  results”  (Meadows,   2008,  P.82).    Instability  in  subsystems  comes  about  through  self-­‐organization,  resulting  in   the  emergence  of  new  behaviors,  functions  and  structures.       In  the  agent-­‐based  models  arising  from  the  kind  of  matrix  algebra  found  in  Boolean   statistics  (Richardson,  2008a;  2008b)  network  agents  construed  as  nodes  in  the  network                                                                                                                  

2 Theories of policy systems and networks can play an important role in determining which combinations of events and actions are important. Koopenjan and Klijn discussion of how decision making unfolds within complex governance networks is particularly useful here. Applying the Cohen, March and Olsen’s garbage can approach to decision making (1972), they lay out one way to articulate how network complexity can be modeled. 3  Paul  Pierson  notes  that,  “We  largely  lack  a  clear  outline  of  why  the  intensive  investigation  of  issues  of  temporality  is   critical  to  an  understanding  of  social  processes.    The  declaration  that  ‘history  matters’  is  often  invoked,  but  rarely   unpacked.    Many  of  the  key  concepts  needed  to  underpin  analyses  of  temporal  processes,  such  as  path  dependence,   critical  junctures,  sequencing,  events,  duration,  timing,  and  unintended  consequences,  have  received  only  very   fragmented  and  limited  discussion”    (Pierson,  2004,  P.6).    We  have  been  effective  at  using  time  as  a  variable  in  studies   relating  to  how  the  relationships  between  two  or  more  variables  change  over  time.    Descriptions  of  how  complex  adaptive   policy  systems  change  over  time  have  mostly  been  completed  through  case  studies  that  have  included  timelines.     Computer  simulation  models  are  also  now  being  produced  that  try  to  capture  the  role  that  path  dependency  and   nonlinear  feedback  plays  in  complex  adaptive  systems.    

 

5  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  are  guided  by  decision  rules  and  scripted  relationships  (Stacey,  2006).      These  rules  and   scripts  are  oftentimes  described  in  terms  of  the  decision  heuristics  of  agents  (North  and   Macal,  2007).    These  heuristics  may  be  guided  by  formalized  institutional  rules,  laws  and   contracts,  as  well  as  through  commonly  held  social  norms  and  shared  beliefs.    Emergence   results  when  agents  change  these  rules  and  scripts,  or  change  their  reactions  to  these  rules   and  scripts.      The  complex  interaction  between  stable  institutional  rule  structures  and   active  and  semi-­‐autonomous  social  agents  helps  to  determine  the  relative  stability  or   instability  of  the  system.    In  more  relatively  stable  social  systems,  instances  of  instability   have  been  recognized  as  moments  of  “punctuated  equilibrium”  (Baumgartener  and  Jones,   1993),  during  which  social  systems  can  experience  sudden  and  profound  changes.     Stability  and  instability  of  complex  policy  and  governance  systems   The  extent  to  which  a  policy  and  governance  system  is  stable  or  experiences   instability  should  matter  to  those  interested  in  public  administration  and  policy.    Unstable   systems,  or  at  least  unstable  subsystems  of  a  larger  system,  are  needed  to  foster  innovation   or  change.    We  find  the  PA  field  interested  in  these  phase  transitions  in  the  literature  on   adaptive  environmental  management  (Norton,  2005)  and  the  transition  management  of   sustainable  systems  (Kemp  and  Loorback,  2003).    However,  when  instability  strikes  a   system  on  such  a  scale  as  to  trigger  a  cascading  effect  of  increasingly  strong,  positively   reinforcing  feedback  loops,  a  collapse  of  the  entire  system  is  one  of  the  possibilities  in   which  a  system  can  stabilize.        When  such  large  scale  instability  ripples  through  a  society,   revolutions  are  spawned.    Such  large  scale  instabilities  can  also  be  triggered  by  natural   disasters  like  tsunamis,  hurricanes,  tornados  and  other  acts  of  nature;  human  error  in   critical  systems  such  as  the  recent  financial  crisis,  nuclear  power  plant  meltdowns,  oil  rig   blowouts,  or  widespread  power  blackouts;  or  intentionally  triggered  chaos,  such  as  those   found  in  acts  of  terrorism.    Complexity  science  is  deepening  our  capacity  to  ascertain  the   alternative  stable  states  of  complex  systems  or  in  the  very  least  the  stability  of  subsystems   within  larger  systems.      We  may  use  this  capacity  to  simulate  system  instability  when   innovation  and  change  is  called  for,  or  maintain  system  stability  during  instances  of  shocks   to  the  system.   Ascertaining  the  resilience  of  policy  and  governance  systems  becomes  a  critical   feature  in  managing  uncertainty  and  anticipating  risk  (Koopenjan  and  Klijn,  2004).      “Large   organizations  of  all  kinds,  from  corporations  to  governments,  lose  their  resilience  simply   because  the  feedback  mechanisms  by  which  they  sense  and  respond  to  their  environment   have  to  travel  through  too  many  layers  of  delay  and  distortion”    (Meadows,  2008,  p.78),   and  the  same  may  be  said  for  systems  on  the  whole.    The  resilience  of  complex  policy  and   governance  systems  becomes  important  because  systems  can  experience  catastrophic   failure  (as  in  the  recent  cases  of  failed  emergency  management  networks  and  financial   regulation  networks)  or  be  so  stable  that  they  fail  to  adapt  to  changing  conditions  (as   highlighted  in  the  many  instances  of  bureaucratic  inertia).         According  to  Stacey,  the  application  of  complexity  science  to  the  study  of  social   systems,  “will  have  to  focus  on  the  meanings  of  the  irregular  patterns  of  behavior  observed   and  on  reasoning  about  the  kind  of  system  those  patterns  are  being  generated  by.    Instead   of  looking  for  causes  and  effects  it  [will  be]  necessary  to  look  for  patterns  and  their   systemic  implications”    (Stacey,  2006,  p.96).    We  argue  that  the  PA  and  policy  field  has   made  extensive  inroads  into  understanding  how  patterns  persist  in  complex  policy  and    

6  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  governance  systems.    The  challenge  lies  in  taking  these  theoretical  and  decidedly   qualitative  observations  to  test  the  efficacy  of  these  models  to  provide  some  basis  for   explaining  the  emergence,  adaptation  and  self-­‐organization  of  system  or  sub-­‐systems.           Theory-­‐testing  policy  and  governance  frameworks   Theory  testing  allows  scientists  to  prove  the  significance  of  certain  casual  patterns   and  draw  inferences  regarding  the  generalizability  of  claims  derived  from  these  evidence-­‐   based  patterns.  The  emergent,  self-­‐organizing  and  non-­‐linear  qualities  of  complex  adaptive   systems  places  significant  constraints  around  the  capacity  of  social  scientists  to  draw   inferences  from  the  kind  of  computer  simulation  modeling  that  is  required  of  most  studies   of  complex  adaptive  systems  (Bankes,  2002).           Within  PA  and  policy  the  application  of  computer  simulation  modeling  to  address   the  kinds  of  questions  of  most  important  concern  to  the  field  have  begun  to  emerge.    Agent   based  models  have  been  constructed  of  collaborative  governance  groups,  the  combination   of  computer  simulation  models  with  game  theory  have  yielded  studies  that  examine  some   of  the  fundamental  tenants  guiding  the  establishment  of  voluntary  ties  (Axelrod  and  Cohen,   1999),  with  specific  inferences  drawn  to  administrative  practice  (  Knott,  Miller  and   Verkuilen,  2003;  Jonston  et  al.,  2008;  Nan  et  al.,  2008;  Johnston  et  al.,  2010).    A  body  of   complementary,  yet  incommensurate,  theoretical  frameworks  have  evolved  to  describe  the   relationship  of  coalition  formation  and  policy  development,  the  persistence  of  network  ties   established  to  achieve  particular  policy  goals;  the  role  of  feedback  and  equilibrium  in  the   formation  and  implementation  of  public  policies;  and  the  coupling  of  policy  streams.    We   assess  whether  and  how  these  theories  are  accommodating  to  complex  adaptive  systems   modeling  and  how  they  may  be  used  to  generate  hypothesis  that  may  be  tested,  within   limits,  using  complex  adaptive  systems  modeling.    Further,  we  assess  the  potential  of  some   innovative  complex  systems  modeling  tools,  such  as  agent  based  models,  discrete  event   models,  and  complex  systems  dynamic  modeling,  to  inform  a  meta-­‐theoretical  research   program  for  comparing  and  refining  alternate  theoretical  frameworks  with  respect  to  their   adequacy  in  accounting  for  non-­‐linearity,  lags,  inertia,  cross-­‐scale  interactions  and  complex   feedback  loops.   In  the  next  section  we  argue  that  public  administration  and  policy  researchers  have   drawn  on  an  extensive  body  of  case  study  data  to  devise  and  refine  a  wide  array  of   systems-­‐based  and  network  based  theoretical  frameworks.  These  theories  and  frameworks   are  “complexity  friendly”  because  they  can:     • Avoid  simple  reductionism,  addressing  the  holistic  properties  of  complex  systems;     • Accommodate  the  emergence  of  new  structures  and  functions;     • Accommodate  the  existence  of  feedback,  stocks  &  flows,  inputs  and  outputs;     • Allow  for  the  self  organization  of  the  system  as  a  whole  or  parts  of  the  subsystem;     • Allow  for  dynamic  interactions  that  lack  clear  cause  and  effect  relationships;  and     • Accommodate  time  and  path  dependencies.       We  discuss  a  range  of  theories  and  frameworks  found  within  the  public  administration  and   policy  studies  literatures  that  have  been  devised  to  explain  whole  policy  and  governance   systems.    We  are  quick  to  note,  however,  that  the  five  frameworks  selected  here  do  not   represent  all  of  the  possible  complexity  friendly  public  administration  and  policy  theories   that  exist.    In  the  concluding  section  we  argue  that  the  epistemological  foundations  of    

7  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  complexity  science  need  not  be  viewed  as  mutually  exclusive  of  the  wide  ranging,  domain   specific  theories  of  public  administration  and  policy  studies.         Complexity  friendly  public  administration  and  policy  theories     In  this  section  we  describe  how  system  dynamics  and  network  architectures   provide  a  meta-­‐theoretical  link  between  five  PA  and  policy  theories  presented  here.  We   describe  systems  dynamics  and  network  architectures  as  the  base  of  a  meta-­‐theoretical   framework  that  may  be  employed  to  study  policy  and  governance  systems  within   simulated  environments.    We  discuss  how  some  of  the  selected  frameworks  devised  to   study  policy  and  governance  systems  use  many  of  the  basic  tenants  of    system  and  network   theory  as  epistemological  foundations.       We  argue  that  these  “whole  system”  frameworks  serve  as  the  bridge  between  the   highly  particular  contexts  and  applications  found  within  specifically  observed  phenomena,   and  the  systems  and  networks  foundations  that  persist  across  all  natural  and  social   systems.    Although  useful  thought  experiments  and  “toy  models”  may  be  constructed  to  aid   in  our  understanding  of  complex  policy  and  governance  systems,  developing  models  of   these  systems  that  are  calibrated  to  patterns  at  multiple  scales  of  observation  is  critical  if   complexity  science  is  to  have  utility  for  the  public  administration  and  policy  field.   Calibration  of  complex  systems  models  with  observed  patterns  has  been  used  for  theory   testing  in  ecology  (Grimm  et  al.,  2005),  sociology    and  anthropology  (Epstein,  2006),   business  management  (North  and  Macal,  2007),  and  land-­‐use  policy  (Manson  and  Evans,   2007)  among  many  other  arenas.       System  dynamics  and  network  architecture   The  evolution  of  general  systems  theory  has  been  told  many  times,  with  its  origins   dating  back  to  the  1920s  (von  Bertlanffy,  1968).    Early  on  system  dynamics  frameworks   were  used  to  describe  biological  and  a  little  later  mechanical  systems.    These  theories   became  more  readily  applied  to  social  systems  beginning  in  the  1960s  (Boulding,  1956;     Simon,  1966).    The  public  administration  field  adopted  system  dynamics  constructs  in   various  iterations  of  public  budgeting  reforms  (Schick,  1966)  and  policy  analysis  (Dror,   1967).    A  little  later,  system  dynamic  frameworks  began  to  be  applied  to  explain   organizational  dynamics.    Organizational  theorists  like  Simon  (1966),  Perrow  (1967),  Katz   and  Kahn  (1978),  Ackoff  (1980),  Minzberg  (1983),  Scott  (1987),  and  Wieck  (1976)  began   to  explain  organizational  behavior  in  terms  of  stocks  and  flows,  the  transmission  of   authority  and  power,  and  the  relationship  between  an  organization  and  its  external   environment.      “Systems  thinking”  became  popularized  in  the  late  1980s  with  Peter  Senge’s   work  (1990).    To  this  day  the  organizational  sciences  apply  system  dynamics  frameworks   to  describe  how  organizations  work  and  use  these  descriptions  to  undertake  strategic   planning  (Richardson,  1991).    The  popularity  of  the  “logic  model,”  predicated  on  charting   the  relationship  between  inputs,  processes,  outputs  and  outcomes  is  now  widely  used  in   program  and  performance  evaluation  contexts  (Poister,  2003).    This  application  of  systems   theory  may  be  tracked  back  to  the  “soft  systems”  applications  first  envisioned  by  Checkland   (1978)  and  others  in  the  1970s  (Lockett  and  Spear,  1980).    Although  the  kind  of  conceptual  

 

8  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  models  that  are  derived  through  the  application  of  the  logic  model  and  other  system   thinking  tools  and  techniques  can  be  used  to  capture  some  of  the  emergent,  self  organizing   properties  of  complex  systems,  these  models  are  ultimately  only  capable  of  capturing  the   temporal  dimensions  of  social  adaptation  and  change  when  applied  within  computer   simulation  modeling.     The  building  blocks  of  a  dynamic  system  are  the  ebb  and  flow  of  resources,  and   more  specifically,  the  translation  of  one  form  of  resource  into  another.    The  most  typical   example  of  this  can  be  found  in  the  utilization  of  financial  resources  to  undertake  an  action,   which,  in  turn  leads  to  results.    In  this  sense,  money  is  inputted  into  the  system,  and  usually   nonmonetary  results  (for  example  children  educated,  clients  served,  waterways  cleaned,   material  goods  provided)  are  outputted.    The  drivers  that  support  these  dynamics  can  be   described  in  terms  of  feedback  loops.    These  feedback  loops  are,  themselves,  driven  by  the   structural  and  functional  relationship  that  exists  between  two  or  more  social  actors  in  a   network  (Baumgartner  and  Jones,  1993).   Network  analysis  has  been  a  staple  of  social  science  research  for  many  decades.     Anthropologist  Alfred  Radcliffe-­‐Brown  was  the  first  to  make  the  case  that  any  observation   of  social  phenomena  needs  to  be  anchored  in,  “the  patterns  of  behavior  to  which   individuals  and  groups  conform  in  their  dealings  with  one  another”  (1940,  p.228).     Network  concepts  have  a  long  and  rich  history  of  being  used  to  study  organizational  form   and  the  diffusion  of  information  across  social  structures.  Social  network  analysis  may  be   traced  to  the  early  Hawthorn  experiments  of  1924  to  1932,  marking  the  first  use  of   “network  configurations  to  analyze  social  behavior…”  (Berry  et  al.,  2004,  p.540).      Social   network  analysis  has  been  used  to  study  the  diffusion  of  knowledge,  beginning  with   Coleman,  Katz  and  Mentzel’s  ground-­‐breaking  study  of  information  diffusion  in  physician   networks  (1977).    Stanley  Milgram’s  “small  world”  research  is  often  cited  as  an  important   breakthrough  in  social  network  analysis,  demonstrating  the  “six  degrees  of  separation”  that   exist  between  any  two  people.    Over  the  last  few  decades,  the  progress  of  social  network   analysis  has  benefited  from  advances  in  statistical  methods  and  computer  programs  in   much  the  same  way  as  system  dynamics  modeling  has  (Wasserman  &  Faust,  1994).     We  argue  here  that  capturing  the  behavior  of  complex  adaptive  social  systems   ultimately  requires  the  integration  of  both  system  dynamics  and  network  architecture.     Whole  systems  are  comprised  of  networks  of  social  agents  that  are  bound  together  and   influenced  by  agent  characteristics,  ties  between  agents,  feedback  loops  unfolding  between   individual  social  agents  and  institutional  rules,  and  a  variety  of  exogenous  factors  that   drive  agent  behavior.    Classic  social  network  analysis  captures  network  structures  at  one   point  in  time,  but  cannot  easily  account  for  the  drivers  that  shape  this  structure,  nor  can  it   predict  how  the  structure  may  change  over  time.4    Likewise,  system  dynamic  models  may   provide  some  explanation  for  how  components  of  a  system  relate  and  influence  one   another,  but  they  generally  do  not  capture  the  material  practices  that  lead  to  collective   action.  The  processes  and  activities  found  in  system  dynamics  logic  models  require  social   agents  to  perform  them.       Just  how  this  performance  is  undertaken  as  a  function  of  collective  action  may  best   be  described  in  terms  of  network  nodes  and  ties.    Particular  agents  may  be  associated  with                                                                                                                   4

There are, of course very important exceptions to this. Social networks may exhibit certain scale free qualities that are readily predictable [add footnote on scale free].

 

9  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  undertaking  particular  tasks  or  carrying  out  certain  events.    As  tasks  are  collaboratively   undertaken  and  events  unfold  through  the  agency  of  individuals  and  institutions,  networks   form.    The  deep  integration  of  human  and  social  capital,  as  Bourdieu  clearly  lays  out,   speaks  to  this  point  (1986).    As  tasks  become  collective  practices,  and  events  are  shaped  by   the  spaces  within  which  common  practices  unfold  “action  arenas”  form  (Ostrom  ,2005).     Communities  are  built  around  common  practices,  often  referred  to  as  “communities  of   practice”  in  the  organizational  learning  and  knowledge  management  literature  (Wenger,   1998;  Koliba  and  Gajda,  2009).    In  this  way,  the  characteristics  of  individual  agents,   including  their  mental  models,  decision  heuristics,  and  their  stock  of  existing  resources,  can   have  a  significant  influence  on  the  structuring  and  functioning  of  the  whole  system.    The   nature  of  the  ties  between  agents,  the  other  major  building  block  of  networks,  also  can  have   a  significant  bearing  on  the  whole  system  (Burt,  1997).    However,  the  behavior  and   properties  of  whole  systems  must  be  considered  as  both  the  sum  of  all  of  the  system’s  parts   (in  this  case,  network  nodes  and  ties),  but  also  something  significantly  more  that  this  sum.       Within  the  gap  between  the  “sum  of  all  parts”  and  “whole  network  behaviors  and   actions”  lies  a  complex  adaptive  system’s  capacity  to  undertake  self-­‐organization.    The   conclusion  to  be  drawn  from  the  differentiation  of  network  structures  and  system   dynamics  is  that  our  models  of  complex  adaptive  social  systems  ultimately  need  to   incorporate  both  system  dynamics  and  networks  structures  into  them.       Theoretical  frameworks  of  policy  and  governance  systems   System  dynamics  and  social  network  analysis  are  agnostic  regarding  ascribing   deeper  meaning  or  explanations  for  the  kinds  of  linear  causalities  and  nonlinear  feedback   loops  found  within  complex  adaptive  social  systems  of  particular  structures  and  functions.     To  address  these  needs,  we  must  turn  to  the  broad  array  of  social  sciences  mobilized  to   study  human  behavior  (psychology  and  social  psychology),  social  groups  (sociology),   organizational  and  institutional  forms  (organizational  and  management  sciences),  and  the   rise  and  fall  of  complex  societies  (anthropology  and  history).       Policy  and  governance  systems  organized  around  the  framing  of  public  problems,   the  deliberation  of  policy  alternatives,  and/or  the  implementation  of  public  policies  are   complex  social  systems  of  a  particular  type.      They  are  guided  by  dynamics  that  are   governed  by  certain  political  and  administrative  practices  undertaken  by  social  agents   representing  a  variety  of  public,  private  and  nonprofit  sector  institutions  and  interests.       There  have  been  a  number  of  conceptual  frameworks  that  have  been  devised  as   comprehensive  theories  of  complex  governance  and  policy  arrangements.    The  most  widely   known  and  respected  framework  is  the  institutional  analysis  and  development  (IAD)   framework  first  developed  by  Nobel  Laureate,  Elinor  Ostrom.    The  IAD  framework  draws   on  institutionalism  and  neo-­‐institutionalism  theories,  game  theory,  transaction  cost  theory,   and  common  resource  pool  theory  to  craft  a  description  of  multi-­‐institutional  systems  that   explain  the  crafting  of  public  policy  as  ultimately  an  institutional  design  problem  in   complex  “action  arenas.”    Ostrom  (2005)  emphasizes  the  roles  that  rules  play  in  structuring   governance  arrangements.    Drawing  on  her  empirical  analysis  of  natural  resource   management  networks  she  makes  a  compelling  argument  in  favor  of  more  decentralized   concentrations  of  power  and  authority  to  enhance  performance  in  some  institutional   contexts  and  conditions.    Other  comprehensive  frameworks  may  be  found  in  John   Kingdon’s  multiple  streams  framework  (1984),  Baumgartner  and  Jones’  policy  subsystem    

10  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  and  punctuated  equilibrium  framework  (1993),  and  Paul  Sabatier  and  associates’   advancement  of  the  advocacy  coalition  framework  (Sabatier  and  Jenkins-­‐Smith,  1993).         Some  of  these  frameworks  impose  homogenous  assumptions  about  human  decision   making  behaviors,  such  as  expected  utility  maximizing  behaviors  in  IAD,  while  others   assume  more  unpredictable,  chaotic  decision  making  behavior,  such  as  those  found  in  the   multiple  streams  framework.    Another  difference  that  arises  across  these  frameworks   concerns  the  balance  between  individual  behavior  and  institutional  norms  and  rules.    ACF   focuses  attention  on  the  role  that  common  belief  networks  play  in  powerful  advocacy   coalitions.  While  IAD  focuses  more  attention  on  the  role  that  operational,  collective  choice   and  constitutional  rules  play  in  shaping  multi-­‐institutional  arrangements.       A  second  grouping  of  theoretical  frameworks  common  to  PA  and  political  science   are  built  on  the  foundation  of  basic  network  architecture  of  nodes  and  ties.    These  theories   and  frameworks  include  policy  network  theory  (Heclo  1978;  Rhodes,  1997;  Kickert  et  al.,   1997),  social  network  analysis  (Waserman  and  Fuast,  199-­‐;  Comfort,  2007;  Kapucu,  2006),   public  management  networks  (Milward  and  Provan,  1998;  Agranoff  and  McGuire,  2003)   and  governance  network  frameworks  (Sorensen  and  Torfing,  2005;  2008;  Koliba  et  al.,   2010).    These  frameworks  account  for  the  nature  of  the  ties  that  are  established  between   policy  actors.    Several  of  these  frameworks  account  for  the  multi-­‐scalar  dimensions  of   social  networks—meaning,  they  account  for  the  fact  that  these  networks  are  populated  by   individual  people,  groups,  organizations  and  networks  of  organizations.    The  nature  of  the   ties  between  these  agents  are  premised  on  the  types  of  resources  that  flow  between  them   (Rhodes,  1997),  the  kinds  of  managerial  strategies  employed  (Agranoff  and  McGuire,  2003)   and  the  mixed  structures  of  administrative  authority  (Koliba  and  Meek,  2009;  Koliba  et  al.,   2010)  that  persist  within  and  across  them.                                                                                                                                                                 In  this  manuscript  we  discuss  how  the  system  dynamics  and  network  theories  and   frameworks  that  have  evolved  out  of  the  public  administration  and  policy  fields  can  be   drawn  on  to  provide  the  theoretical  foundations  on  which  to  model  the  complex  adaptive   systems  that  have  emerged  to  create,  coordinate  and  implement  public  policies.    We  argue   that  all  of  these  theoretical  frameworks  are,  to  one  degree  or  another,  amendable  to  system   dynamics  and  network  modeling  and  therefore  are  “complexity  friendly.”    All  of  these   theoretical  frameworks  are  grounded  in  a  system  dynamics  architecture.    These   frameworks  operate  through  feedback  loops,  stocks  and  flows,  and  certain  assumptions   about  input  and  output  flows.    All  of  these  frameworks  account  for  the  roles  that  individual   social  agents,  groups  of  agents  and  organizations  play  in  the  whole  system.    Some  of  these   frameworks  place  a  greater  emphasis  on  either  systems  dynamics  or  network  architecture.     We  will  explore  each  of  these  below.          

 

11  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  Table  1.  Policy  and  governance  frameworks  relative  to  system  and  network  theory  

  POLICY  AND   GOVERNANCE   FRAMEWORK   Multiple  policy   streams  

SYSTEM  DYNAMICS  

NETWORK   ARCHITECTURE  

LEAD  AUTHORS  

Relationship  between   streams  are   characterized  in  terms   of  feedback  loops  

Kingdon,  2004  

Policy  subsystem/   Punctuated   equilibrium   Institutional  Analysis   and  Development  

System  and   subsystems  undergo   phase  transitions…     Institutional  rules   inform  the  feedback   loop  and  stocks  and   flows  of  resources     Advocacy  coalitions   influence  one  another   through  feedback  

Streams  are  coupled   through  the  joint  actions   of  individual  agents   (organizations  and/or   policy  entrepreneurs)   Individual  agents  coalesce   around  certain  policy   domains   Role  of  individual  agents   in  forming  action  arenas  is   important   Belief  systems  of   individual  agents  form   into  advocacy  coalitions  

Sabatier  and   Jenkins-­‐Smith,   1993;  Sabatier  and   Wieble,  2007   Rhodes,  1997;   Kickert  et  al.,  1997;   Sorensen  and   Torfing  2005;   Adam  and  Kriesi,   2007;  Koliba  et  al.,   2010  

Advocacy  Coalition   Framework   Governance  and  Policy   Networks  

Resource  flows   between  agents  in  the   network;  policy  tools   and  administrative   actions  provide   feedback  within  the   network  

Relies  on  a  basic  node  and   tie  configuration  to   explain  agent  interactions  

Baumgartner  and   Jones,  1993;  2003   Ostrom,  1990;   2005  

   

Multiple  policy  streams   John  Kingdon’s  policy  stream  model,  Figure  1,  does  not  assume  linearity,  nor   rational  behavior  on  the  part  of  policy  actors.    Problems,  policies  and  politics  streams  may   couple,  and  in  fact,  need  to  couple  for  agendas  to  be  set  and  policy  windows  to  open.       Kingdon  recognizes  that  policy  streams  are  created  and  directed  through  social  networks   and  indirectly  asserted  that  social  networks  form  within  individual  streams,  and  provide  a   basis  for  coupling  of  streams  (1984).    Kingdon  recognizes  that  a  number  of  policy  actors,   including  interest  groups,  academia,  media,  and  political  parties  coordinate  actions  within   and  across  the  policy  stream.  He  grounds  the  policy  stream  model  in  the  coordinated   actions  that  arise  during  the  pre-­‐enactment  phases  of  policy  selection  and  design,  although   we  may  recognize  the  coupling  of  streams  across  all  facets  of  the  policy  process.                    

 

12  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  Figure  1:  Structural  features  of  the  MS  Framework  (adapted  from  Kingdon,  1984)  

             

  Zahariadis  observes  that,    “Much  like  systems  theory,  [policy  streams]  views  choice   as  the  collective  output  formulated  by  the  push  and  pull  of  several  factors…  It  shares   common  ground  with  chaos  theories  in  being  attentive  to  complexity,  in  assuming  a   considerable  amount  of  residual  randomness,  and  in  viewing  systems  as  constantly   evolving  and  not  necessarily  settling  into  equilibrium  (Kingdon  1984,  p.219)”  (2005,  p.66).     The  extent  to  which  problem,  policy  and  politics  streams  are  coupled  is  something  that   complexity  science  can  shed  light  on,  as  coupling  comes  about  through  a  generative  process   of  interlocking  feedback  loops  occurring  across  each  stream.  A  wide  range  of  actors  are   mobilized  within  each  stream.    Some  of  these  actors  span  more  than  one  stream—for   example,  a  legislator  may  become  convinced  of  the  importance  of  a  particular  problem  or   policy  solution  and  work  to  align  the  politics  stream  with  a  particular  problem  definition  or   policy  tool.    These  dynamics  can  be  modeled  using  systems  dynamics  tools.     Punctuated  equilibrium     Baumgartner  and  Jones’  punctuated  equilibrium  framework  is  predicated  on  the   assumption  that,  “…  policymaking  both  makes  leaps  and  undergoes  periods  of  near  stasis   as  issues  emerge  on  and  recede  from  public  agenda”    (True,  Jones  and  Baumgartner,  2007,   P.157).    Their  view  of  policy  subsystems  draws  extensively  from  the  description  of   nonlinear  systems  dynamics  discussed  earlier  in  this  manuscript.    Their  theory  relies  most   directly  on  system  dynamics  models  because  of  its  reliance  on  feedback  loops  as  a  critical   feature  of  subsystem  dynamics.     The  key  factors  of  interest  in  punctuated  equilibrium  theory  concerns  the   relationship  between  policy  subsystems.      This  theory  assumes  that,  “Political  systems,  like    

13  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  humans,  cannot  simultaneously  consider  all  the  issues  that  face  them,  so  policy  subsystems   can  be  viewed  as  mechanisms  that  allow  the  political  system  to  engage  in  parallel   processing  (Jones,  1994).    Thousands  of  issues  may  be  considered  simultaneously  in   parallel  within  their  respective  communities  of  experts.    This  equilibrium  of  interests  does   not  completely  lock  out  change.    Issue  processing  within  subsystems  allows  for  a  politics  of   adjustment,  with  incremental  change  resulting  from  bargaining  among  interests  and   marginal  moves  in  response  to  changing  circumstances”    (True,  Jones  and  Baumgartner,   2005,  P.158-­‐159).         Much  like  ACF,  punctuated  equilibrium  theory  recognizes  the  role  that  certain   actors  or  combinations  of  actors  play  in  establishing  system  wide  equilibrium.    These   entanglements  of  subsystems  are  more  than  likely  comprised  of  stable  sets  of  institutional   actors  and  rules.    However,  these  same  actors  will  likely  produce  “a  plethora  of  small   accommodations  and  a  significant  number  of  radical  departures  from  the  past”  (True,  Jones   and  Baumgartner,  2005,  p.156).    The  ranges  of  small,  short  term  accommodations  and  long   term  radical  departures  from  the  stable  state  must  be  placed  within  the  context  of  the   system  as  a  whole.    Those  using  punctuated  equilibrium  theory  often  rely  on  changes   within  the  outputs  or  inputs  of  the  whole  systems  over  time  to  demonstrate  phase   transitions.    Substantial  deviations  from  the  kind  of  variations  attributable  to  small   accommodations  are  noted.    When  radical  changes  to  relatively  stable  patterns  are  noted,   explanations  are  sought  using  system  dynamics  logic.       Institutional  Analysis  and  Development  (IAD)     Although  there  are  many  facets  to  Ostrom’s  IAD  framework,  as  shown  in  Figure  2,   we  highlight  two  of  the  major  contributions  it  makes  to  the  study  of  complex  adaptive   social  systems  here.    These  two  facets  concern  the  role  that  “rules-­‐in-­‐use”  and  rule  making   play  in  the  structuring  and  functioning  of  these  systems;  and  the  “action  arenas”  through   which  these  rules  combine  to  structure  action.    Ostrom  distinguishes  between  three  types   of  rules:  (a)  operational  rules  that  govern  day-­‐to-­‐day  activities  of  appropriators;    (b)   collective  choice  rules  concerning  overall  policies  for  governing  common  pool  resources  and   how  those  policies  are  made,  and  (c)  constitutional  choice  rules  that  establish  who  is   eligible  to  determine  collective  choice  rules.    The  operational  functions  of  any  social  system   are  governed  by  a  complex  array  of  operational  rules,  norms,  habits  and  customs.     Collective  choice  theory  has  long  been  viewed  as  a  central  feature  of  resource  exchange   frameworks.    Collective  choice  is  shaped  by  individual  and  collective  interests  all  needing   to  be  balanced  in  order  to  create  an  optimal  level  of  autonomy  and  dependence.                            

14  

IAD Framework

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

 

Figure  2:  An  overview  of  IAD  framework  (Ostrom,  2007)  

Physical/Material Conditions Action Arena Attributes of Community

Action Situations

Patterns of Interactions

Actors

Evaluative Criteria

Rules in Use

Outcomes

 

 

Ostrom  has  focused  much  of  her  attention  on  how  these  rules  shape  social   interaction  and  cautions  that,    “The  capacity  of  humans  to  use  complex  cognitive  systems  to   order  their  own  behavior  at  a  relatively  subconscious  level  makes  it  difficult  at  times  for   empirical  researchers  to  ascertain  what  the  working  rules  for  an  ongoing  action  arena  may   actually  be  in  practice”  (Ostrom,  2005,  P.19).    The  combining,  comingling  and  competition   of  rules  operating  at  various  levels  can  be  modeled  using  system  dynamics  modeling.     These  dynamics  are  represented  as  “rule-­‐in-­‐use”  in  her  model  shown  in  Figure  2.     The  extent  to  which  these  rules  guide  the  behaviors  of  those  social  agents  in  the  IAD   framework  is  predicated  on  how  authoritative  they  are.    As  Etizioni  has  noted,  compliance   with  rules  can  take  coercive,  renumerative  and  normative  forms  (1961),  all  of  which   contribute  to  the  decision  heuristics  of  social  agents.    We  have  noted  how  the  self-­‐ organizing  capacity  of  autonomous  agents  are  shaped  by  decision  rules  and  relational   scripts.    According  to  Ostrom’s  approach,  self-­‐organized  governance  systems  “need  to   match  rules  that  impose  costs  in  a  rough  proportion  to  the  likely  positive  payoffs  that   appropriators  are  likely  to  obtain  over  time…”    (2005,  p.234).    Ostrom’s  emphasis  on   rational  collective  action  is  subject  to  the  kind  of  critiques  that  have  been  raised  regarding   rational  action  more  generally.    Pierson  argues  that,  “…  we  should  generally  exercise   considerable  skepticism  about  assertions  that  institutional  arrangements  will  reflect  the   skilled  design  choices  of  rational  actors.    Instead,  we  should  anticipate  that  there  will  often   be  sizable  gaps  between  the  ex  ante  goals  of  powerful  political  actors  and  the  actual   functioning  of  prominent  institutions”    (Pierson,  2004,  P.15).     A  second  major  dimension  of  the  IAD  model  concerns  the  role  of  action  arenas  as   spaces  where  social  agents  comingle  with  institutional  rules of  many  forms  to  generate   certain  activities  or  events.    Complex  policy  and  governance  systems  will  likely  be   comprised  of  many  action  arenas,  each  of  which  plays  somewhere  between  a  minor  to   major  role  in  determining  the  outputs  of  a  whole  system.    Variation  in  the  structures  of   these  action  arenas  becomes  a  critical  consideration  in  the  IAD  framework.    Ostrom  (2005)   has  argued,  quite  effectively,  how  the  composition  of  these  action  arenas  has  a  considerable   impact  on  a  system’s  performance.  

 

15  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

   

Advocacy  coalition  framework   The  Advocacy  Coalition  Framework  (ACF),  assumes  ,  “(1)  that  belief  systems  are   more  important  than  institutional  affiliation,  (2)  that  actors  may  be  pursuing  a  wide  variety   of  objectives,  which  must  be  measured  empirically,  and  (3)  that  one  must  add  researchers   and  journalists  to  the  set  of  potentially  important  policy  actors  (Sabatier  and  Jenkins-­‐ Smith,  1993)”    (Sabatier,  2007,  p.5).    The  ACF,  shown  in  Figure  3,  relies  heavily  on  the   existence  of  advocacy  coalitions  that  are  organized  around  common  belief  networks.     Presumably  these  coalitions  share  common  mental  models  of  problem  definition  and  policy   solutions,  and  share  a  political  will  to  influence  the  creation  and  implementation  of  public   policies.    The  extent  to  which  an  advocacy  coalition  possesses  power  over  other  coalitions   is  shaped  by  parameters,  external  events,  and  constraints  and  resources  available  to  a   policy  subsystem.    The  framework  operates  on  the  basic  premise  of  system  dynamics:   inputs  shaping  outputs  with  potential  feedback  loops  shaping  the  nonlinear,  recursive   nature  of  the  system.    Those  who  have  worked  to  advance  the  ACF  have  tended  to   downplay  the  role  that  institutional  rules  play  in  shaping  the  actions  of  the  policy   subsystem.    Emphasis  is  placed  on  the  influence  that  the  advocacy  coalitions  operating   within  a  subsystem  play.    The  dominant  driver  of  coalition  behavior  are  the  “core  beliefs”  of   coalition  members.       The  ACF  exhibits  some  network  qualities  because  it  allows  for  the  possibility  to   understand  coalitions  as  collections  of  individual  agents—each  of  whom  contributions  to   the  stability  or  instability  of  the  coalition’s  core  beliefs.    These  agents  have  the  capacity  to   influence  one  another.    These  influences  are  nonlinear.    It  is  also  possible  to  view  individual   advocacy  coalitions  as  agents  unto  themselves.    Coalitions  are  characterized  by  the   emergence  of  bottom-­‐up  influences.    According  to  Sabatier  and  his  associates,  these  bottom   up  properties  take  precedence  over  top  down  and  externally  driven  institutional  rules  and   norms  (Sabatier  and  Weibe,  2007).     Figure  3:  Advocacy  coalition  framework  (Sabatier  and  Weibe,  2007)   1.  2.  3.  4. 

1.  2.  3.  4. 

RELATIVELY STABLE PARAMETERS Basic attributes of the problem areas (good) Basic distribution of natural resources Fundamental sociocultural values and social structure Basic constitutional structure (rules)

LONG TERM COALITION OPPORTUNITY STRUCUTRES 1.  Degree of consensus needed for major policy change 2.  Openness of political system

EXTERNAL (SYSTEM) EVENTS Changes in socioeconomic conditions Changes in public opinion Changes in systematic governing coalition Policy decisions and impacts from other subsystems

SHORT TERM CONSTRAINTS AND RESOURCES OF SUBSYSTEM ACTORS

POLICY SUBSYSTEM Coalition A

Policy Brokers

(a) Policy beliefs (b) Resources Strategy re. guidance instruments

Coalition B

(a) Policy beliefs (b) Resources Strategy re. guidance instruments

Decisions by Governmental Authorities

Institutional Rules, Resource Allocations, and Appointments Policy Outputs

Policy Impacts

   

16  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

    Governance  (and  policy)  networks     The  first  application  of  network  theory  to  policy  arenas  rested  on  institutional   arrangements  and  the  resources  exchanged  between  them  (Heclo,  1978;  Rhodes,  1997).     The  subsequent  “network  turn”  in  public  administration  and  policy  studies  has  been   marked  by  descriptions  of  policy  networks  (Rhodes,  1997;  Kickert  et  al.,  1997;  Koopenjan   and  Klijn,  2004),  policy  implementations  (Gage  and  Mandell,  1990;  O’Toole,  1990;  Hill  and   Hupe,  2006),  and  certain  forms  of  intergovernmental  relations  (O’Toole,  2000;  Wright,   2000).    Inter-­‐organizational  networks  have  also  been  described  as  third  party  government   (Salamon,  2002;  Frederickson  and  Frederickson,  2006),  public  sector  networks  (Agranoff,   2005),  governance  networks  (Sorensen  and  Torfing,  2005,  2008;  Bogason  and  Musson,   2006;  Koliba,  et  al.,  2010),  cross-­‐sector  collaborations  (Bryson,  Crosby  and  Stone,  2006),   and  public  management  networks  (Milward  and  Provan,  2006;  Frederickson  and   Frederickson,  2006;  Agranoff,  2007).  Figure  4  below  shows  an  overview  of  the  policy   network  approach  that  has  been  recently  studied  extensively  by  European  scholars  (Adam   and  Kriesi   2007).   The Network Approach   Figure  4:  Policy  network  approach  (Adam  and  Kriesi,  2007)  

 

Transnational Context

National Context

Distribution Structure of Power of Policy Network Type of Interaction

Potential for Policy Change Type of Policy Change

Policy-Domain Specific Context

    Inter-­‐organizational  networks  have  also  been  described  in  terms  of  the  functions   that  they  perform,  whether  it  be  service  contracts,  supply  chains,  ad  hoc,  channel   partnerships,  information  dissemination,  civic  switchboards  (Goldsmith  and  Eggers,  2004),   problem-­‐solving,  information  sharing,  capacity  building,  and  service  delivery  (Milward  and   Provan,  2006),  learning  and  knowledge  transfer  (McNabb,  2007),  or  civic  engagement   (Yang  and  Bergrud,  2008).  Within  this  body  of  network  literature  we  find  the  following   similarities:  networks  facilitating  the  coordination  of  actions  and/or  exchange  of  resources   between  actors  within  the  network;  network  membership  being  drawn  from  some   combination  of  public,  private  and  non-­‐profit  sector  actors5;  networks  carrying  out  one  or   more  policy  function;  Networks  exist  across  virtually  all  policy  domains;  networks  are   mostly  defined  at  the  inter-­‐organizational  level,  they  are  also  described  in  the  context  of   the  individuals,  groups  and  organizations  that  comprise  them;  networks  forming  as  the   result  of  the  selection  of  particular  policy  tools;  and  network  structures  allowing  for                                                                                                                   5

With the obvious exception of inter-governmental networks, which may be described as networks of governments of different geographical scope.

 

17  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  government  agencies  to  serve  in  roles  other  than  lead  organizations6    (Koliba,  Meek  and   Zia,  2010,  p.60).         Table  1:  Governance  network  framework  (Koliba  et  al.,  2010)  

Whole Network

Ties

Agents (Nodes)

TYPE OF VAR.

VARIABLE

DESCRIPTORS

Social scale

Individual; Group; Organizational/Institutional; Inter-organizational

Social sector (organizational level)

Public; Private; Nonprofit

Geographic scale

Local; Regional; State; National; International

Role centrality

Central – peripheral; Trajectory

Capital resources actor provides (as an input)

Financial; Physical; Natural; Human; Social; Cultural; Political; Knowledge

Providing accountabilities to….

Elected representatives; Citizens and interest groups; Courts; Owners/Shareholders; Consumers; Bureaucrats/Supervisors/Principals; Professional Associations; Collaborators/Partners/Peers

Receiving accountabilities from…

See above

Performance/Output and Outcomes Criteria

Tied to policy function and domain

Resources Exchanged/ Pooled

Financial; Physical; Natural; Human; Social; Cultural; Political; Knowledge

Strength of tie

Strong to weak

Formality of tie

Formal to informal

Administrative authority

Vertical (command and control); Diagonal (negotiation and bargaining); Horizontal (collaborative and cooperative); Competitive

Accountability relationship

See above

Policy tools

Regulations; Grants; Contracts; Vouchers; Taxes; Loans/loan guarantees, etc.

Operational functions

Resource exchange/pooling; Coordinated action; Information sharing; Capacity building; Learning and knowledge transfer

Policy functions

Define/frame problem; Design policy solution; Coordinate policy solution; Implement policy (regulation); Implement policy (service delivery); Evaluate & monitor policy; Political alignment

Policy domain functions

Health, environment, education

Macro-level governance structures

Lead organization; Shared governance; Network administrative organization

Network configuration

Inter-governmental relations; Interest group coalitions; Regulatory subsystems; Grant and contract agreements; Public-private partnerships

Properties of network boundaries

Open – closed; Permeability

Systems dynamics

Systems-level inputs; processes; outputs and outcomes

!

 

We  have  settled  on  using  the  term  “governance  network”  to  describe  what  has  thus   far  been  an  eclectic  array  of  network  labels.    A  governance  network  is  “a  relatively  stable   pattern  of  coordinated  action  and  resource  exchanges  involving  policy  actors  crossing   different  social  scales,  drawn  from  the  public,  private  or  nonprofit  sectors  and  across   geographic  levels;  who  interact  through  a  variety  of  competitive,  command  and  control,   cooperative,  and  negotiated  arrangements;  for  purposes  anchored  in  one  or  more  facets  of   the  policy  stream”  (Koliba  et  al.,  2010,  p.60)    Governance  network  analysis  is  informed  by   resource  exchange  theory  (Rhodes,  1997),  vertical  and  horizontal  conceptualization  of   administrative  authority  (Agranoff  &  McGuire,  2003),  complex  systems  dynamics  (Haynes,   2003),  and  social  network  theory  (Wasserman  &  Faust,  1994).    A.W.  Rhodes  (1997)  was   one  of  the  first  scholars  to  deeply  consider  the  relationship  between  governance  and  inter-­‐ organizational  networks,  arguing  that  governance  occurs  as  “self-­‐organizing  phenomena”   shaped  by  the  following  characteristics:    Interdependence  between  organizations.   Governance  is  broader  than  government,  covering  non-­‐state  actors;  Continuing                                                                                                                   6

 

With the obvious exception of inter-governmental networks, which are relegated to networks of public sector organizations.

18  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  interactions  between  network  members,  caused  by  the  need  to  exchange  resources  and   negotiate  shared  purposes;  and  Game-­‐like  interactions,  rooted  in  trust  and  regulated  by   rules  of  the  game  negotiated  and  agreed  upon  by  network  participants.      Governance  is,   therefore,  characterized  by  the  interdependency  of  network  actors,  the  resources  they   exchange,  and  the  joint  purposes,  norms,  and  agreements  that  are  negotiated  between   them.    Considerations  of  network  governance  leads  to  an  inevitable  consideration  of  the   bargaining  and  cooperative  systems  of  more  “horizontally  arranged”  ties,  in  addition  to  the   traditional  “vertically  oriented”  command  and  control  systems  of  mono-­‐centric   government  systems  (Kettl,  2006,  p.491).    Mixed-­‐form  governance  networks  may   incorporate  all  forms  of  administrative  authority  (Koliba  and  Meek,  2009)  and  rely  on  the   basic  architecture  of  networks:  nodes,  ties  and  whole  network  characteristics.    Provan  and   Kenis  distinguish  between  lead  organization,  shared  governance  and  network   administrative  organizations  structures  (2007).    These  structures  may  be  combined  with   the  specific  characteristics  of  network  actors  and  the  nature  of  their  ties  to  determine  how   network  structures  lead  to  certain  network  outputs  (Koliba  et  al.,  2010).     Toward  a  Meta-­‐Theoretical  Research  Program     Despite  paradigmatic  and  theoretical  incommensurability,  theoretical  advancement   in  policy  and  administrative  sciences  will  require  us  to  develop  meta-­‐theoretical   procedures  to  test  these  theories  in  field  settings.    Schlager  (2007)  undertook  a  descriptive   comparison  of  these  theories  on  five  criteria  and  frameworks  on  four  criteria.  For   comparing  theories,  Schlager  (2007)  proposed  to  compare  boundaries  and  scope  of   inquiry,  a  model  of  the  individual,  collective  action,  institutions  and  treatment  of  the  policy   change.  For  comparing  frameworks,  Schlager  (2007)  proposed  to  focus  on  type  of  actors,   variable  development,  unit  of  analysis  and  levels  of  analysis.  While  these  criteria  provide   important  mechanisms  to  ascertain  the  commensurability  of  policy  theoretical  frameworks   in  terms  of  their  boundaries  and  scope  or  models  of  individuals  and  institutions,  these   descriptive  criteria  do  not  provide  adequate  methodology  to  “test”  whether  one  theory   better  explains  public  policy  and  administrative  systems.     Sabatier  (2007)  recognizes  this  challenge  and  essentially  proposes  Karl  Popper’s   falsificationism  as  the  “way  forward.”    In  this  context,  Sabatier  (2007)  proposes  seven   heuristics  for  theoretical  development:  (1)  Be  clear  enough  to  be  proven  wrong;  (2)  Make   the  concepts  of  the  framework/theory  as  abstract  as  possible;  (3)  Think  causal  process;  (4)   Develop  a  coherent  model  of  the  individual;  (5)  Work  on  internal  inconsistencies  and   interconnections;  (6)  Develop  a  long-­‐term  research  program  involving  both  theoretical   elaboration  and  empirical  testing  among  a  network  of  scholars;  and  (7)  Use  multiple   theories,  if  possible.  Although  Sabatier’s  heuristics  might  be  useful  in  ascertaining  the  fit  of   public  policy  theories  in  specific  policy  domains,  the  positivistic,  Newtonian  and   falsificationist  philosophy  of  science  that  underlies  Sabatier’s  meta-­‐theoretical  heuristics   does  not  appear  to  do  justice  to  the  “complexity  friendliness”  of  policy  and  governance   systems.  We  argue  that  this  misplaced  emphasis  on  Newtonian  and  Popperian  positivism   as  a  method  to  refine  public  policy  theories  has  undermined  the  nuanced  complexity   friendly  theories  that  cannot  clearly  demonstrate  “causal  processes”  (heuristic  3),  or  that  

 

19  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  cannot  develop  a  “coherent  model  of  the  individual”  (heuristic  4).  An  abstract  theory  that   simplifies  observed  phenomena  in  clearly  differentiable  causal  processes  will  inevitably   miss  the  inherent  complexity  of  policy  and  governance  systems.     We  have  argued  in  this  manuscript  that  the  challenges  with  the  linear  causality  are   accentuated  by  the  social  construction  of  belief  systems  and  the  active,  emergent,  adaptive   behaviors  of  individuals.    Some  have  argued  that  individuals  in  policy  systems  have  such   heterogeneous  behaviors  that  we  cannot,  ever,  develop  “calibrated”  and  “valid”  models  of   them.    We  may  view  this  challenge  from  a  meta-­‐theoretical  standpoint  by  juxtaposing  a   belief  based  model  of  individual  (ACF)  against  a  game  theoretical  model  of  the  individual   (IAD).      These  models  of  individual  behavior  may  be  coherent  within  the  context  of  their   specific  theories,  however,  this  “coherence”  does  not  tell  us  whether  belief  based  models   are  better  than  game  theoretical  models  in  describing  and  explaining  the  behaviors  of   actors  in  policy  systems.  We  thus  reject  Sabatier’s  meta-­‐theoretical  heuristic  approach  in   its  totality,    and  rather  propose  a  long  term  meta-­‐theoretical  research  program  to  public   policy  and  governance  that  employs  complex  systems  modeling  tools  to  “test”  the   explanatory  power  of  these  theories  in  a  large  variety  and  contexts  of  policy  domains.       The  treatment  of  time  plays  a  key  role  in  the  structuring  of  such  meta-­‐theoretical   research  program.    Building  our  capacity  to  design  computer  simulation  models  that   captures  the  temporal  dimensions  of  complex  systems  and  tests  policy  and  governance   frameworks  will  ultimately  help  us  to  address  questions  relating  to  policy  and  governance   system  stability,  innovation  and  collapse.    Recall  our  earlier  discussion  of  the  relationship   between  system  stability  and  its  capacity  to  innovate  and  change,  and  between  system   instability  and  its  vulnerability  for  collapse.    Developing  our  capacity  to  understand  how   complex  adaptive  social  systems  adapt  is  of  tremendous  importance.     The  long  term  development  of  a  meta-­‐theoretical  program  for  modeling  the   complexity  of  policy  and  governance  systems  will  likely  hinge  on  three  critical  questions:   1.)  How  incommensurable  are  policy  and  governance  theoretical  frameworks?    To   what  extent  are  they  compatible  or  comparable?       2.)  What  are  the  boundary  conditions  set  for  empirical  studies  of  policy  and   governance  systems?    Where  does  the  system  begin  and  end?    What  get  included   and  left  out  of  the  model?   3.)  To  what  extent  do  assumptions  concerning  meta-­‐patterning  predetermine   outcomes?    How  rational  can/should  actors  be?    When  are  discrete  processes,   discrete  processes?     It  has  long  been  noted  that  policy  and  governance  systems  exist  within  (and   sometimes  across)  virtually  all  policy  domains  (Baumgartner  and  Jones,  1993).   The  relative  resiliency  of  any  complex  policy  or  governance  system  needs  to  be  gauged   against  certain  outputs  that  are  produced  by  these  whole  systems.    The  table  below  lays  out   how  the  various  major  theoretical  constructs  found  in  the  five  frameworks  reviewed  above   that  are  being  operationalized  in  two  different  types  of  policy  and  governance  systems:   transportation  planning  and  watershed  management.              

20  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  Table  2.  Application  of  major  theoretical  constructs  by  policy  domain     Theoretical   Constructs   Multiple  Streams:     Problems  /     Policies   Punctuated   Equilibrium:     Radical  Departures   from  the  Norm     Advocacy  Coalition   Framework:   Dominant  Advocacy   Coalitions     Institutional  Analysis   and  Development:   Institutional  Rules  /     Action  Arenas   Governance   Networks:   Governance   Structures  /     Resource  Flows   System  Outputs   System  Outcomes  

Policy  Domain   Transportation  Planning  Networks   Watershed  Management  Networks   Transportation  infrastructure  maintenance  or   Water  quality  improvement  or  maintenance   growth  /  Project  funding  (grants;  state  &  local   /  Environmental  regulations,  public   budget  allocations)   information  campaigns,  grants   Changes  in  funding  criteria;  Changes  in   Institution  of  watershed  management  plans   project  evaluation  criteria  

State  transportation  planners;  State   transportation  engineers;  Regional   planners;  Town  planners;  State  and  local   legislators  

Regional  watershed  management  program   staff;  Land  owners  &  users;  Economic   developers;  Regulators;  etc.  

Federal  and  state  laws  and  regulations;   Rational  project  evaluation  processes  /   State  agencies  offices;  Regional  planning   boards  and  committees;  State  legislative   committees;  Regional  planning  offices   Intergovernmental  arrangements;  Lead   state  agencies  /  Funding;  technical   information;  political  capital  

Federal  and  state  environmental  laws;   Regional  agreements  /  Regional  planning   and  oversight  committees  

Transportation  projects  implemented  

Water  management  initiatives  (policies)   implemented   High  water  quality  (and  quantity   management)  

High  performing  transportation   infrastructure  

Intergovernmental  arrangements;  Regional   network  administrative  organization  /   Funding;  public  information;  political  capital  

    Space  precludes  a  deeper  description  of  how  we  are  operationalizing  the  meta-­‐ theoretical  framework  across  these  two  examples.    Descriptions  of  these  projects  have   been  presented  and/or  published  elsewhere  (Zia  et  al,  2010;  Koliba  et  al.,  2011;  Zia  et  al.,   2011  forthcoming).    We  briefly  introduce  this  table  to  highlight  how  the  theoretical   frameworks  introduced  in  the  section  above  may  be  operationalized  for  a  given  empirically   observable  phenomena—in  these  cases,  regional  transportation  planning  and  watershed   governance  networks.     In  the  next  section  we  discuss  how  several  different  kinds  of  modeling  platforms   may  be  used  to  test  the  efficacy  of  each  of  these  policy  and  governance  frameworks.    We   will  discuss  how  a  meta-­‐theoretical  research  program  can  use  computer  simulations   predicated  on  system  dynamics  and  network  architecture  we  believe  that  major   advancements  in  public  administration/policy  theory,  research  and  practice  are  possible.           Common  Computer  Simulation  Modeling  Platforms   Most  computer  simulation  tools  currently  employed  to  study  and  model  complex   governance  and  policy  systems  use  one  or  more  combinations  of  linear  modeling  (discrete   event),  system  dynamics  (complex  system  dynamics,  agent-­‐based  models),  and  network   architecture  (agent-­‐based  models,  discrete  event).  They  provide  a  basis  on  which  to   capture  the  range  of  complex,  adaptive  characteristics  found  in  policy  and  governance   systems.    

21  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

   Models  are  built  on  representations  of  observable  phenomena.    Miller  and  Page   (2007)  describe  the  process  of  modeling  as  an,  “attempt  to  reduce  the  world  to  a   fundamental  set  of  elements  (equivalent  classes)  and  laws  (transition  functions),  and  on   this  basis  ….  understand  and  predict  key  aspects  of  the  world…    Modeling  proceeds  by   deciding  what  simplifications  to  impose  on  the  underlying  entities  and  then,  based  on  those   abstractions,  uncovering  their  implications”  (Miller  &  Page,  2007,  p.40,  65).  The  effort  to   translate  a  conceptual  model  drawn  up  in  abstract  into  an  adequate  simulation  of  real   world  phenomenon  requires  that  model  development  be  anchored  in  and  calibrated  to   empirically  observed  phenomena.     Three  of  the  more  prominent  modeling  approaches  being  applied  to  study  social   dynamics  are  discrete-­‐event  modeling  (DEM),  agent-­‐based  modeling  (ABM),  and  complex   systems  dynamics  (CSD)  modeling.    Each  modeling  tool  relies  on  a  certain  level  of   abstraction  that  may  be  characterized  in  terms  of  macro-­‐meso-­‐micro  level  scales;  strategic,   tactical,  and  operational  levels;  and  degrees  of  detail  used  as  parameters  and  variables  for   the  models.    Figure  2  below  provides  a  visual  overview  of  where  each  of  these  modeling   types  fits  along  a  continuum  of  abstraction.  

High

Complex   Systems   Dynamics   Modeling

Minimum  details Macro  level Strategic  level

Medium Level  of   Abstraction

Medium  details Meso level Tactical  level

Low

Maximum  details Micro  level Operational  level

Agent  Based   Modeling Discrete   Event   Modeling

Figure  2.  Methods  in  Simulation  Modeling               (Source:  Rivera,   2009)

  Discrete-­‐event  models  are  usually  structured  as  a  rational  sequencing  of  events,  like   a  supply  chain,  assembly  line  or  some  queuing  functions.    DEMs  can  be  constructed  using  a   high  resolution  of  details  to  guide  the  design  of  operating  functions  of  a  social  system.     DEMs  rely  on  linear  logic  to  sequence  events.  Events  may  happen  simultaneously,   significant  lags  may  be  evident,  and  emergent  properties  of  network  dynamics  will  likely   evolve.  DEMs  are  quite  useful  in  certain  kinds  of  industrial  engineering  and  industrial   ecology  design  efforts.    Their  applications  in  models  of  complex  policy  and  governance   systems  may  be  used  to  capture  the  rationalized  processes  that  follow  a  logical  sequence  of   discrete  events.  DEMs  can  be  used  to  model  the  routinized  exchanges  of  resources  and   execution  of  public  policies.    This  brings  to  mind  Herbert  Simon’s  distinction  between  

 

22  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  programmable  and  unprogrammable  policy  problems.  Problems  that  could  be  (or  have   been)  programmed  are  amenable  to  DEMs,  e.g.  organizational  routines;  while   unprogrammable  problems  defy  modeling  through  DEMs  (Simon,  1980).     The  logic  of  complex  system  dynamics  models  (CSDs)  may  be  traced  to  the  long   history  of  systems  theory  that  is  predicated  on  the  flow  of  inputs,  processes,  outputs,  and   outcomes,  stocks  and  flows,  and  feedback  loops  (Meadows,  2008).    Systems  dynamics  is   often  employed  using  high  levels  of  abstraction  at  the  macro  level.    The  articulation  of   feedback  loops  can  aid  in  strategic  planning  when  a  deeper  understanding  of  the   relationship  between  variables  is  important.    CSDs  follow  a  non-­‐linear  logic  and  can  be   used  to  anticipate  the  emergence  of  new  patterns  of  governing  authority,  resource   exchanges,  and  policy  actor  interactions.    CSDs  are  also  critical  because  they  can  be  used  to   track  feedback  loops,  the  shifting  nature  of  resource  flows,  and  assumed  relationship   between  inputs,  outputs  and  outcomes.  While  CSDs  are  extremely  useful  in  understanding   the  inter-­‐connections  among  different  elements  of  a  system,  their  high  level  of  abstraction   could  diminish  their  utility  in  public  management  systems  that  are  sensitive  to   disaggregate  bottom-­‐up  as  well  as  top-­‐down  processes  and  other  boundary  conditions.     Agent-­‐based  modeling  (ABMs)  provides  the  most  useful  modeling  framework  to   capture  the  interplay  between  the  micro,  meso,  and  macro  levels  (North  and  Macal,  2007)   and  can  accommodate  the  varying  degrees  of  detail  that  are  possible  and  desirable  within  a   model  of  a  governance  network.      In  discussing  the  value  of  ABMs  to  the  study  of  policy  and   governance  dynamics,  Squazzoni  and  Boero  observe  that,  “Standard  policy  making  models   consider  agents  as  atomized  entities  possessing  rational  expectations  which  individually   react  to  a  set  of  incentives,  do  not  consider  interactions  or  the  mutual  influence  between   agents  and  seem  to  take  place  ‘off-­‐line’  and  outside  the  particular  system  involved”   (Squazzoni  &  Boero,  2010,  p.5).  They  go  on  to  add  that  ABM  is  currently,  “the  only   technique  available  today  to  formalize  models  based  on  micro-­‐foundations,  such  as  agents’   beliefs  and  behavior  and  social  interactions,  all  aspects  that  we  know  are  of  a  certain   importance  [in  order]  to  understand  macro  outcomes…”  (Squazzoni,  &  Boero,  2010,  p.6).  In   discussing  the  potential  application  of  ABM  to  the  study  of  policy  processes,  they  suggest   that  in  ABMs,  “…  agents  are  not  usually  viewed  as  fully  rational  utility  maximizers  who   behave  independently  of  each  other,  but  rather  as  adaptive  agents  who  are  context   dependent  and  follow  heterogeneous  threshold  preferences…”  (p.2).  These  threshold   preferences  may  be  described  as  the  “decision  heuristics”  of  network  agents  (North  &   Macal,  2007).  ABMs  appear  to  be  the  most  effective  means  of  modeling  the  types  of   emergent  behaviors,  structures,  functions  and  actions  that  occur  as  a  result  of  “bottom-­‐up”   dynamics.     Those  who  have  considered  the  promise  of  ABMs  and  CSDs  to  the  study  of  policy   processes  recognize  that  the  field  is  still  in  the  early  stages  of  development  (OECD,  2009).   The  capacity  of  ABMs  and  CSDs  of  complex  policy  and  governance  systems  to  lead  to   accurate  forecasting  and  predicting  particular  policy  outcomes  is  predicated  on  a  “deep   uncertainty”  that  characterizes  our  current  state  of  understanding  of  complex  social   systems.  Bankes  (2002)  characterizes  this  deep  uncertainty  arising  as,  “the  result  of   pragmatic  limitations  in  our  ability  to  use  the  presentational  formalisms  of  statistical   decision  theory  to  express  all  that  we  know  about  complex  adaptive  systems  and  their   associated  policy  problems”  (p.7263).  Rendering  the  kind  of  validity  needed  to  confirm  or  

 

23  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  disprove  empirical  hypotheses  requires  the  development  of  large  samples  and  a  set  of   empirically-­‐normed  instruments  and  measures.       The  extent  to  which  simulations  can  be  used  to  undertake  theory  testing  in  these   contexts  remains  to  be  seen.    We  need  to  ask,  just  what  kind  of  inferential  reasoning  is   possible  given  the  inherent  nonlinearity  and  uncertainty  characteristics  of  complex  social   systems?    The  deep  uncertainty  that  characterizes  simulated  experimentation  needs  to  be   accounted  for.    The  level  of  systemic  error  that  is  possible  in  computer  simulation  models   can  potentially  be  quite  large.    Modelers  refer  to  this  as  “noise”  in  the  model.    Although   efforts  can  be  made  to  reduce  the  noise  of  a  model,  the  propensity  for  large  systemic  error   virtually  assures  us  that  the  error  rates  of  simulation  models  of  social  systems  far  exceed   levels  of  statistical  significance  found  in  more  linear  regression  models.    We  are  mindful  of   why  these  error  rates  may  be  higher  in  social  systems,  than  they  are  in  the  more  predicable   (but  still  uncertain)  areas  of  natural  and  biological  systems.        We  have  noted  already  how   social  agents  maintain  a  certain  level  of  autonomy  in  most  social  systems.  The  capacity  of   individual  social  agents  to  exert  their  own  free  will  inevitably  leads  to  a  certain  level  of   unpredictability.    Agent  based  modelers  account  for  this  unpredictability  in  ascribing   probability  functions  to  agent  behavior  that  are,  ideally,  calibrated  to  empirical   observations.    Modelers  must  still  make  a  wide  range  of  choices  in  building  their  models,  as   they  are  boundedly  rational  as  well.    They  make  choices  around  what  elements  to   incorporate  into  the  model  and  should  be  prepared  to  defend  those  choices  (Batty,  2005).     We  will  argue  that  those  looking  to  apply  complexity  science  and  theory  to  the  study   of  policy  and  governance  phenomena  will  be  pressed  to  avoid  the  kinds  of  positivist  and   postpositivist  legacies  found  in  most  computer  simulation  models  of  complex  systems   (Buijs,  Eshuis  and  Byrne,  2009).    The  ontological  tensions  that  arise  between  the  “naïve   realist”  or  “empiricist  epistemologies”  found  in  the  positivist  traditions  of  science  and  the   social  constructionism  common  to  more  qualitative,  interpretive  sciences  may  be  found  in   virtually  all  attempts  to  apply  complexity  science  to  the  study  of  social  phenomena.    We   argue  that  rather  than  call  for  the  purging  these  models  of  rationalist  assumptions,  we  need   to  recognize  how  these  tensions  play  out  within  computer  simulation  models  of  policy  and   governance  systems  (Richardson,  2008a).   Those  familiar  with  the  current  discourse  around  complexity  science  and  public   administration  and  policy  will  likely  be  familiar  with  Christopher  Pollitt’s  skepticism   relative  to  this  subject  (2009).  He  bases  his  observations  on  the  apparent  dichotomy  that   persists  between  conceptual  abstractions  and  the  incapacity  to  empirically  prove  the   validity  of  these  constructs  using  complexity  science.   Although  space  precludes  a  deeper  discussion  here,  we  recognize  that  the   development  of  models  that  are  calibrated  to  observed  patterns  hinges  on  our  capacity  to   render  a  “thick  description”  of  these  phenomena.    To  adequately  develop  models  that  may   be  able  to  test  the  validity  of  certain  theoretical  constructs  requires  finer  and  finer  grain   analysis  of  social  phenomena  extending  across  all  levels  of  social  scale  (individual,  group,   or  organizations).    In  order  to  study  and  test  the  efficacy  of  theories  relating  to  the  social   construction  of  policy  streams,  the  path  dependency  of  stable  and  destabilized  systems,  the   decision  making  structures  within  action  arenas,  the  belief  networks  of  advocacy  coalitions,   or  the  emergent  features  of  network  composition,  we  will  need  to  develop  mixed  method   studies  that  combine  elements  of  quantitative  and  qualitative  social  science  approaches.    As   our  capacity  to  undertake  data  mining  of  textual  and  narrative  data  expands,  the    

24  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  opportunities  to  understand  the  phenomenological  traces  of  nuanced  social  interactions   intensifies.    The  further  development  of  methodologies  that  blur  the  lines  between   qualitative  and  quantitative  approaches,  like  those  found  in  Ragin’s  qualitative  comparative   method,  (2008)  are  called  for.    These  advancements  will  deepen  our  capacity  to  develop   finer  and  finer  grained  analysis  of  social  systems  and,  in  the  long  run,  allow  for  the   integration  of  theories  and  frameworks  drawn  from  not  only  the  kinds  of  policy  and   governance  theories  highlighted  in  this  manuscript,  but  also  extending  into  our  theories  of   management  as  well.   Are  these  assertions  based  on  wishful  thinking?    To  what  extent  do  we  need  to   recount  Christopher  Pollitt’s  view  that,  “complexity  theorists  should  stand  on  their  own   two  feet,  epistemologically  speaking,  and  should  not  need  to  invent  or  magnify  paper  tigers   in  order  to  enhance  the  value  of  their  own  perspective,”  (2008,  p.223)?    In  this  manuscript   we  assert  that  this  epistemological  foundation  may  be  found  in  the  integration  of  systems   and  network  theories  with  some  of  the  major  theoretical  frameworks  influencing  the  public   administration  and  policy  fields.    Pollitt  argues  rightly  that,  “there  are  many  theories  and   approaches  which  are  non-­‐hierarchical,  dynamic,  acknowledge  the  significance  of   endogenous  as  well  as  exogenous  change,  and  so  on”  (2008,  p.  223).  We  counter  argue  that   the  range  of  theories  that  he  had  in  mind  may  be  combined  with  many  other  “complexity   friendly”  theories  to  develop  computer  simulation  models  of  policy  and  governance   systems.    In  other  words,  we  should  not  construe  complexity  theory  as  mutually  exclusive   of  existing  theories  and  framework.    In  this  sense,  the  kind  of  theory  that  is  derived  through   complexity  science  will,  likely,  not  displace  existing  theories  and  frameworks,  but  rather   deepen  the  explanatory  authority  many  existing  theories  and  frameworks,  a  point  that   Pollitt  fails  to  recognize.       Conclusions   Those  who  have  written  about  the  promise  and  limitations  of  developing  computer   simulations  of  policy  and  governance  systems  note  that  the  purpose  for  undertaking  this   may  not  lie  in  predicting,    “the  future  state  of  a  given  system,  but  to  understand  the   system’s  properties  and  dissect  its  generative  mechanisms  and  processes,  so  that  policy   decisions  can  be  better  informed  and  embedded  within  the  system’s  behavior,  thus   becoming  part  of  it”  (Squazzoni  and  Boero,  2010,  p.3).  Under  the  rubric  of  computer   generated  decision  support  systems,  the  very  process  of  providing  feedback  about  a   systems’  dynamics  and  network  structure  back  to  critical  agents  in  the  system  itself   becomes  an  important  component  of  decision  making  and  action  (Gammock  et  al.,  2007).   These  models  can  be  used  “when  policy  makers  need  to  learn  from  science  about  the   complexity  of  systems  where  their  decision  is  needed,”  as  well  as  “when  policy  makers   need  to  find  and  negotiate  certain  concrete  ad  hoc  solutions,  so  that  policy  becomes  part  of  a   complex  process  of  management  that  is  internal  to  the  system  itself”  (Squazzoni  and  Boero,   2010,  p.6).      There  is,  indeed,  a  long  history  of  employing  computer  simulation  modeling  to   stimulate  systems  thinking  (Mitroff  et  al.,  1974).   Could  it  be  that  the  main  utility  of  complexity  science  to  the  study  of  policy  and   governance  systems  lies  in  its  capacity  to  free  the  mind  to  think  about  alternative   possibilities  or  develop  deeper  situational  awareness  (Endsley,  1995).  We  believe  that  the  

 

25  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  kinds  of  visualizations,  scenario  generation  and  theory  testing  that  are  possible  through   computer  simulation  may  be  harnessed  to  design  or  redesign  policy  and  governance   systems.    Although  we  believe  that  using  computer  simulation  to  provide  “decision   support”  to  policy  designers  and  network  managers  is  extremely  important,  we  need  to   recognize  that  tailoring  models  to  meet  the  needs  of  stakeholders  possess  significant   challenges  for  those  looking  to  create  simulations  to  test  theories  (Koliba  et  al.,  2011).   Applied  scientists  will  be  more  amenable  to  modify  their  models  to  meet  the  needs  of   stakeholders,  and  in  the  end  if  these  models  are  used  to  promote  better  performing,  more   accountable  policy  and  governance  systems,  then  are  not  purposes  of  science  as  an  engine   of  social  progress  fulfilled?7  The  type  of  theories  and  frameworks  that  we  have  surveyed  in   this  paper  may  then  be  viewed  as  important  tools  to  be  employed  as  a  means  to  other,   highly  desirable  ends  (eg.  better  performance,  knowledge  transfer,  learning,  etc.).   Does  the  inherent  uncertainty  of  these  models  mean  that  there  is  no  room  to   undertake  simulation  experiments  for  the  sake  of  theory  testing  and  knowledge  discovery?     We  would  certainly  hope  not.    In  order  to  evolve  our  theory  testing  capacities,  we  will  need   to  develop  more  models  that  rely  on  empirical  data  drawn  from  a  variety  of  quantitative   and  qualitative  sources.    Although  our  early  attempts  to  develop  this  kind  of  patterned   oriented  modeling  will  generate  crude  approximations  of  reality  with  limited  predictive   power,  we  believe  that  these  early  attempts  of  courser  grain  models  will  evolve  as  our   computational  power  and  theoretical  understanding  of  how  complex  adaptive  systems   work  evolves.    Early  attempts  at  theory  testing  in  these  models  will  need  to  be  evaluated   with  a  less  restrictive  margin  of  error  than  what  has  traditionally  been  acceptable  in   hypothesis  testing.       We  do  not  believe  that  we  have  to  sacrifice  the  pragmatic  utility  of  developing  these   models  in  collaboration  with  stakeholders  in  order  to  advance  scientific  understanding.     Partnering  with  stakeholders  in  the  development  of  research  questions  (Koliba  and   Lathrop,  2007)  and  model  parameters  can  improve  not  only  the  relevance  of  the  model   (Van  den  Belt,  2004),  but  the  rigor  of  the  model  as  well.    This  is  particularly  true  when  the   authenticity  of  the  data  is  predicated  on  the  rapport  that  is  established  between  research   subjects  and  modelers.    The  complexity  of  most  policy  and  governance  systems  will  not   easily  reveal  itself  to  modelers.    In  many  instances  the  complexity  of  a  system  may  remain  a   mystery  to  those  who  are  most  intimately  involved  in  its  daily  operations.    We  believe  that   by  partnering  with  the  actors  who  contribute  to  the  management  of  a  policy  or  governance   system  a  thicker  description  of  the  system  may  be  rendered.    These  thick  descriptions  may,   in  turn,  be  used  to  design  calibrated  models  of  operating  policy  and  governance  systems.   We  have  asserted  here  that  Newtonian  assumptions  regarding  rational  action  and   the  linearity  of  causes  and  effects  are  not  sufficient  enough  to  describe,  evaluate  and  design   effective  policy  and  governance  systems.    The  persistence  of  wicked  problems,  from   funding  for  health  care,  to  managing  the  stability  of  our  financial  system  or  climate,  to  the   preservation  of  our  ecosystems  and  social  welfare,  suggests  that  we  may  cling  exclusively   to  the  Newtonian  approach  to  science  at  our  peril.  A  complex  systems  approach,  on  the   other  hand,  may  open  up  new  vistas  to  confront  these  wicked  public  problems.                                                                                                                       7

In other papers we discuss the role that “governance informatics” can play in informing decision making of policy makers and public administrators (Koliba, et al., 2011a; Zia, et al., 2011)

 

26  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

        References     1. Ackoff,  R.  L.  (1980).  The  systems  revolution.  In  M.  Lockett  &  R.  Spear  (Eds.),  Organizations   as  systems.  Milton  Keynes:  The  Open  University  Press.   2. Adams,  S.,  &  Kriesi,  H.  (2007).  The  network  approach.  In  P.  A.  Sabatier  (Ed.),  Theories  of  the   policy  process.  Boulder,  CO:  Westview  Press.  129-­‐154.   3. Agranoff,  R.  (2007).  Managing  within  networks:  Adding  value  to  public  organizations.   Washington,  DC:  Georgetown  University  Press.   4. Agranoff,  R.,  &  McGuire,  M.  (2003).  Collaborative  public  management:  New  strategies  for  local   governments.  Washington,  D.C.:  Georgetown  University  Press.   5. Argyris,  C.,  &  Schon,  D.  A.  (1996).  Organizational  learning  II:  Theory,  method,  and  practice.   MA:  Addison-­‐Wesley  Publishing.   6. Axelrod,  R.,  &  Cohen,  M.  (1999).  Harnessing  complexity:  Organizational  implications  of  a   scientific  frontier.  New  York:  Free  Press.   7. Bankes,  S.  (2002).  Tools  and  techniques  for  developing  policies  for  complex  and  uncertain   systems.  PNAS.  99(3):  7263-­‐7266.   8. Baumgartner,  F.  R.,  &  Jones,  B.  D.  (1993).  Agendas  and  instability  in  American  politics.  Chicago   and  London:  The  University  of  Chicago  Press.   9. Baumgartner,  F.  R.,  &  Jones,  B.  D.  (Eds.).  (2002).  Policy  dynamics.  Chicago:  University  of   Chicago  Press.   10. Batty,  M.  (2005).  Cities  and  complexity:  Understanding  cities  with  cellular  automata,  agent-­‐ based  models  and  fractals.  Cambridge,  MA:  MIT  Press.   11. Berry,  F.  S.,  Choi,  S.  O.,  Goa,  W.  X.,  Jang,  H.,  Kwan,  M.,  &  Word,  J.  (2004).  Three  traditions  of   network  research:  What  the  public  management  research  agenda  can  learn  from  other   research  communities.  Public  Administration  Review,  64(5),  539-­‐552.   12. Bogason,  P.,  &  Musson,  J.  A.  (2006).  The  democratic  prospects  of  network  governance.   American  Review  of  Public  Administration,  36(1),  3-­‐18.   13. Borgatti,  S.  P.,  &  Foster,  P.  C.  (2003).  The  network  paradigm  in  organizational  research:  A   review  and  typology.  Journal  of  Management,  29(6),  991-­‐1013.   14. Boulding,  K.  E.  (1956).  General  systems  theory:  The  skeleton  of  science.  Management   Science.  2(3):  197-­‐208.   15. Bourdieu,  P.  (1986).  The  forms  of  capital.  In  J.  G.  Richardson  (Ed.),  Handbook  for  theory  and   research  for  the  sociology  of  education.    Greenwood  Press.  241-­‐258.   16. Bryson,  J.,  Crosby,  B.,  &  Stone,  M.  (2006).  The  design  implications  of  cross-­‐sector   collaborations:  Propositions  from  the  literature.  Public  Administration  Review.  66(6):  44-­‐55.   17. Buijs,  J.M.,  Eshuis,  J.,  &  Byrne,  D.  (2009).  Approaches  to  researching  complexity  in  public   management.  In  Teisman,  G.,  van  Burren,  A.  and  Gerrits,  L.  (eds.)  (2009).  Managing  complex   governance  systems:  Dynamics,  self-­‐organization  and  coevolution  in  public  investments.  New   York:  Routledge  Press.  37-­‐55.   18. Burt,  R.  S.  (1997).  The  contingent  value  of  social  capital.  Administrative  Science  Quarterly,   42:  339-­‐365.   19. Checkland,  P.B.  (1978).  The  origins  and  nature  of  hard  systems  thinking.  Journal  of  Applied   Systems  Analysis.  5(2):  99-­‐100.   20. Cohen,  M.  D.,  March,  J.  G.,  &  Olsen,  J.  P.  (1972).  A  garbage  can  model  of  organizational  choice.   Administrative  Science  Quarterly.  17(1):  1-­‐25.  

 

27  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  21. Coleman,  J.,  Katz,  E.,  &  Menzel,  H.  (1977).  The  diffusion  of  an  innovation  among  physicians.   In  S.  Leinhardt  (Ed.),  Quantitative  Studies  in  Social  Relations.  New  York:  Academic  Press,  Inc.   107-­‐124.   22. Comfort,L.  (1994)  Self-­‐organization  in  complex  systems.  Journal  of  Public  Administration   Research  and  Theory.  4(3):  393-­‐411.   23. Comfort,  L.  (2007).  Crisis  management  in  hindsight:  Cognition,  communication,   coordination,  and  control.  Public  Administration  Review,  67(Supplement):  189-­‐197.   24. Dennard,  L.,  Richardson,  K.A.  &  Morcol,  G.  (eds.)  (2008).  Complexity  and  policy  analysis:   Tools  and  methods  for  designing  robust  policies  in  a  complex  world.  Goodyear,  AZ:  ISCE   Press.   25. Dror,  Y.  (1967).  Policy  analysis:  A  new  professional  role  in  government  service.  Public   Administration  Review.  27:  197-­‐203.   26. Endsley,  M.  R.  (1995).  Toward  a  theory  of  situation  awareness  in  dynamic  systems.  Human   Factors.  37(1):  32-­‐64.   27. Epstien,  J.  (2006).  Generative  social  science:  Studies  in  agent-­‐based  computational  modeling.   Princeton,  NJ:  Princeton  University  Press.   28. Etzioni,  A.  (1961)  A  comparative  analysis  of  complex  organizations.  Glenco,  IL:  The  Free   Press.   29. Farazmand,  A.  Chaos  and  transformation  theories:  A  theoretical  analysis  with  implications   for  organization  theory  and  public  management.  Public  Organization  Review  3.4  (2003):   339+.  Expanded  Academic  ASAP.  Web.  4  May.  2011   30. Frederickson,  D.,  &  Frederickson,  H.  G.  (2006).  Measuring  the  performance  of  the  hollow   state.  Washington,  DC:  Georgetown  University  Press.     31. Gage,  R.  W.,  &  Mandell,  M.  P.  (Eds.).  (1990).  Strategies  for  managing  intergovernmental   policies  and  networks.  New  York:  Praeger.   32. Gammack,  J.,  Hobbs,  V.  &  Pigott,  D.  (2007).  The  book  of  informatics.  South  Melbourne,   Australia:  Thomson.   33. Goldsmith,  S.,  &  Eggers,  W.  (2004).  Governing  by  network.  Washington  D.C:  Brookings.   34. Grimm,  V.  Revilla,  E.,  Berger,  U.,  Jetsch,  F.,  Mooij,  W.,  Railsback  S.,  Thulke,  H.,  Weiner,  J.,   Wiegand,  T.,  and  DeAnelis,  D.  (2005).  Pattern-­‐oriented  modeling  of  agent-­‐based  complex   systems:  Lessons  from  Ecology.  Science.  310(5750):  987-­‐991.   35. Haynes,  P.  (2003).  Managing  complexity  in  the  public  services.  London:  Open  University   Press.   36. Heclo,  H.  (1978).  Issue  networks  and  the  executive  establishment.  Washington,  DC:  American   Enterprise  Institute.     37. Hill,  M.,  &  Hupe,  P.  (2002).  Implementing  public  policy:  Governance  in  theory  and  in  practice.   London,  Thousand  Oaks,  New  Dehli:  Sage  Publications.   38. Jones,  B.D.  (1994).  Reconceiving  decision-­‐making  in  democratic  politics:  Attention,  choice  and   public  policy.    Chicago:  University  of  Chicago  Press.   39. Johnston,  E.,  Hicks,  D.,  Nan,  N.,  &  Auer,  J.  C.  (2010)  Managing  the  Inclusion  Process  in   Collaborative  Governance.  Journal  of  Public  Administration  Research  and  Theory  2010.  doi:   10.1093/jopart/muq045   40. Johnston,  E.,  Nan,  N.,  Hicks,  D.,  &  Zhong,  W.  (2008)  Between  implementation  and  outcomes,   growth  matters:  Validating  an  agent-­‐based  modeling  approach  for  understanding   collaboration  process  management.  Special  Journal  of  Complexity  and  Innovation  of  The   Innovation  Journal.  13  (3).  

 

28  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  41. Kapucu,  N.  (2006).  Public-­‐nonprofit  partnerships  for  collective  action  in  dynamic  contexts   of  emergencies.  Public  Management.  84(1):  205-­‐220.   42. Katz,  D.,  &  Khan,  R.  (1978).  The  social  psychology  of  organizations.  New  York:  Wiley.   43. Kemp,  R.  &  Loorback,  D.  (2003).  Governance  for  sustainability  through  transition   management.  Paper  for  the  EAEPA  2003  conference.     44. Kettl,  D.  (2006).  Managing  boundaries  in  American  administration:  The  collaborative   imperative.  Public  Administration  Review.  66(6):  10-­‐19.   45. Kickert,  W.  J.  M.,  Klijn,  E.-­‐H.,  &  Koppenjan,  J.  F.  M.  (Eds.).  (1997).  Managing  complex  networks:   strategies  for  the  public  sector.  London:  Sage  Publications.   46. Kiel,  L.  D.  (1994).  Managing  chaos  and  complexity  in  government:  A  new  paradigm  for   managing  change,  innovation  and  organizational  renewal.  San  Francisco:  Jossey-­‐Bass.   47. Kingdon,  J.  (1984).  Agendas,  alternatives,  and  public  policies.  New  York:  Harper  Collins.     48. Klijn,  E.-­‐H.,  &  Snellen,  I.  (2009).  Complexity  theory  and  public  administration:  A  critical   appraisal.  In  Teisman,  G.,  van  Burren,  A.  and  Gerrits,  L.  (eds.)  (2009).  Managing  complex   governance  systems:  Dynamics,  self-­‐organization  and  coevolution  in  public  investments.   New  York:  Routledge  Press.   49. Knott,  J.H.,  Miller,  G.J.  &  Verkuilen,  J.  (2003).  Adaptive  incrementalism  and  complexity:   Experiments  with  two-­‐person  cooperative  signaling  games.  Journal  of  Public  Administration   Research  and  Theory.  13(3):  341-­‐366.   50. Koliba,  C.,  &  Gajda,  R.  (2009).  Communities  of  practice  as  an  empirical  construct:   Implications  for  theory  and  practice.  International  Journal  of  Public  Administration.  32:  97-­‐ 135.     51. Koliba,  C.,  &  Lathrop,  J.  (2007).  Inquiry  as  intervention:  Employing  action  research  to   support  an  organization's  capacity  to  learn.  Administration  &  Society.  39(1):  51-­‐  76.   52. Koliba,  C.  &  Meek,  J.  (2009).  ‘Mixed-­‐form’  governance  structures:  An  analytical  turn.  Public.   Institute  of  Public  Governance  and  Management.  47(19).   http://www.esade.edu/public/modules.php?name=news&idnew=521&idissue=47   53. Koliba,  C.,  Meek,  J.  &  Zia,  A.  (2010).  Governance  networks  in  public  administration  and  public   policy.  New  York:  CRC  Press/Taylor  &  Francis.   54. Koliba, C., Zia, A., & Lee, B.H.Y., (2011a). Governance Informatics: Managing the Performance of Inter-Organizational Governance Networks. The Innovation Journal: The Public Sector Innovation Journal. 16(1).   55. Koliba,  C.,  Mills,  R.  &  Zia,  A  (2011b).    Accountability  in  governance  networks:  Implications   drawn  from  studies  of  response  and  recovery  efforts  following  Hurricane  Katrina.  Public   Administration  Review.   56. Koppenjan,  J.,  &  Klijn,  E.  (2004).  Managing  uncertainties  in  networks.  London:  Routledge.   57. Lindblom,  C.  E.  (1959).  The  science  of  'muddling  through.’  Public  Administration  Review.  19:   79-­‐88.   58. Lockett,  M.  &  Spear,  R.  (eds.)  (1980).  Organizations  as  systems.  Stratford,  UK:  Open   University  Press.   59. Manson,  S.  &  Evans,  T.  (2007).  Agent-­‐based  modeling  of  deforestation  in  southern  Yucatan,   Mexico,  and  reforestation  in  the  Midwest  United  States.  Proceedings  of  the  National  Academy   of  Sciences  (PNAS),  104(52):  20678-­‐20683.   60. Marion,  R.  (1999).  The  edge  of  organization:  Chaos  and  complexity  theories  of  formal  social   systems.  Thousand  Oaks,  CA:  Sage.   61. McNabb,  D.  E.  (Ed.).  (2007).  Knowledge  management  in  the  public  sector:  A  blueprint  for   innovation  in  government.  Armonk,  NY:  M.E.  Sharpe.  

 

29  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  62. Meadows,  D.  H.  (2008).  Thinking  in  systems.  White  River  Junction,  VT:  Chelsea  Green   Publishing.   63. Miller,  J.  H.,  &  Page,  S.  E.  (2007).  Complex  adaptive  systems:  An  introduction  to  computational   models  of  social  life.  Princeton:  Princeton  University  Press.   64. Milward,  H.,  &    K.  Provan  (2006).  A  manager's  guide  to  choosing  and  using  collaborative   networks.  IBM  Center  for  the  Business  of  Government.   65. Milward,  H.,  &  Provan,  K.  (1998).  Principles  for  controlling  agents:  The  political  economy  of   network  structure.  Journal  of  Public  Administration  Research  and  Theory,  8(2),  203-­‐222.   66. Milward,  H.  B.,  &  Provan,  K.  G.  (2000).  How  networks  are  governed.  In  C.  Heinrich,  J.  and   Lynn,  Laurence,  E.  (Ed.),  Governance  and  performance:  New  perspectives.  Washington,  DC:   Georgetown  University  Press.  238-­‐262.   67. Mintzberg,  H.  (1983).  Power  in  and  around  organizations.  Englewood,  Cliffs,  NJ:  Prentice-­‐ Hall,  Inc.   68. Mitroff,  I.  I.,  Betz,  F.,  Pondy,  L.  R.,  &  Sagasti,  F.  (1974).  On  managing  science  in  the  systems   age:  Two  schemes  for  the  study  of  science  as  a  whole  systems  phenomenon.  Interfaces,  4(3):   46-­‐58.   69. Nan,  N.,  Johnston,  E.,  &  Olson,  J.  (2008)  Unintended  consequences  in  central-­‐remote  office   arrangement:  A  study  coupling  laboratory  experiment  with  multi-­‐agent  simulation.   Computational  &  Mathematical  Organization  Theory.  14  (2):  57–83.   70. North,  M.  &  Macal,  C.  (2007).  Managing  business  complexity:  Discovering  strategic  solutions   with  agent-­‐based  modelling  and  simulation.  Oxford:  Oxford  University  Press.   71. Norton,  B.  (2005)  Sustainability:  A  philosophy  of  adaptive  ecosystem  management.  Chicago:   University  of  Chicago  Press.   72. OECD.  (2009).  Applications  of  complexity  science  for  public  policy:  New  tools  for  finding   unanticipated  consequences  and  unrealized  opportunities.  Global  Science  Forum.  Retrieved:   7/15/10:  http://www.oecd.org/dataoecd/44/41/43891980.pdf   73. Ostrom,  E.  (1990).  Governing  the  commons:  The  evolution  of  institutions  for  collective  action.   New  York:  Cambridge  University  Press.   74. Ostrom,  E.  (2005).  Understanding  institutional  diversity.  Princeton,  NJ:  Princeton  University   Press.   75. O'Toole,  L.  J.  (1990).  Multiorganizational  implementation:  Comparative  analysis  for   wastewater  treatment.  In  R.  W.  Gage  &  M.  P.  Mandell  (Eds.),  Strategies  for  managing  policies   and  networks.  New  York:  Praeger  Publishers.   76. O'Toole,  J.  L.  (2000).  Research  on  policy  implementation:  Assessment  and  prospects.  Journal   of  Public  Administration  Research  and  Theory.  10(2):  263-­‐288.   77. Parker,  D.  C.,  &  Manson,  S.  M.  (2003).  Multi-­‐agent  systems  for  the  simulation  of  land-­‐use  and   land  cover  change:  A  review.  Annals  of  the  Association  of  American  Geographers.  93(2):  314-­‐ 337.   78. Pierson,  P.  (2004).  Politics  in  time:  History,  institutions,  and  social  analysis.  Princeton,  NJ:   Princeton  University  Press.   79. Perrow,  C.  (1967).  A  framework  for  the  comparative  analysis  of  organizations.  American   Sociological  Review.  32(2):  194-­‐208.   80. Pressman,  J.,  &  Wildavsky,  A.  (1973).  Implementation.  Berkley,  CA:  University  of  California   Press.   81. Provan,  K.  G.,  &  Kenis,  P.  (2007).  Modes  of  network  governance:  Structure,  management  and   effective.  Journal  of  Public  Administration  Research  and  Theory.  18:  229-­‐252.   82. Pollitt,  C.  (2009).  Complexity  theory  and  evolutionary  public  management.  In  Teisman,  G.,   van  Burren,  A.  &  Gerrits,  L.  (eds.)  (2009).  Managing  complex  governance  systems:  Dynamics,   self-­‐organization  and  coevolution  in  public  investments.  New  York:  Routledge  Press.  213-­‐230.   83. Poister,  T.H.  (2003).  Measuring  performance  in  public  and  non-­‐profit  organizations.    San  

 

30  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

  Francisco,  CA:  Jossey-­‐Bass.   84. Radcliffe-­‐Brown,  A.  R.  (1940).  On  Social  Structure.  In  S.  Leinhardt  (Ed.),  Quantitative  studies   in  social  relations.  New  York:  Academic  Press.   85. Ragin,  C.  (2008).  Redesigning  social  inquiry:  Fuzzy  sets  and  beyond  .  Chicago  :  University  of   Chicago  Press.   86. Rhodes,  R.  (1997).  Understanding  governance:  Policy  networks,  governance,  reflexivity  and   accountability.  Buckingham:  Open  University  Press.   87. Richardson,  G.  (1991).  Feedback  Thought  in  Social  Science  and  Systems  Theory.  Philadelphia:   University  of  Pennsylvania  Press.   88. Richardson,  K.A.  (2008a).  On  the  limits  of  bottom-­‐up  computer  simulation.  In  Dennard,  L.,   Richardson,  K.A.  &  Morcol,  G.  (eds.)  (2008).  Complexity  and  policy  analysis:  Tools  and   methods  for  designing  robust  policies  in  a  complex  world.  Goodyear,  AZ:  ISCE  Press.  37-­‐54.   89. Richardson,  K.A.  (2008b).  The  role  of  ‘waste’  in  complex  systems.  In  Dennard,  L.,   Richardson,  K.A.  &  Morcol,  G.  (eds.)  (2008).  Complexity  and  policy  analysis:  Tools  and   methods  for  designing  robust  policies  in  a  complex  world.  Goodyear,  AZ:  ISCE  Press.  55-­‐70.   90. Rittel,  H.  W.  J.,  &  Webber,  M.  M.  (1973).  Planning  problems  are  wicked  problems.  In  N.  Cross   (Ed.),  Developments  in  design  methodology.  Chichester:  John  Wiley  and  Sons.  135-­‐  144     91. Sabatier,  P.  A.,  &  Jenkins-­‐Smith,  H.C.  (1993).  The  advocacy  coalition  framework:  An   assessment.  Boulder,  CO:  Westview  Press.   92. Sabatier,  P.  A.  (Ed.).  (2007).  Theories  of  the  policy  process  (Second  ed.).  Boulder:  Westview   Press.   93. Sabatier,  P.A.  (2007b).  Fostering  development  of  policy  theory.    In  Sabatier,  P.  A.  (Ed.).   (2007).  Theories  of  the  policy  process  (Second  ed.).  Boulder:  Westview  Press.  321-­‐336.   94. Sabatier,  P.  A.,  &  Weible,  C.  M.  (2007).  The  advocacy  coalition  framework:  Innovations  and   clarifications.  In  P.  A.  Sabatier  (Ed.),  Theories  of  the  Policy  Process.  Boulder,  CO:  Westview   Press.  189-­‐220.   95. Salamon,  L.  (2002).  The  new  governance  and  the  tools  of  public  action.  The  tools  of   government:  A  guide  to  the  new  governance.  New  York:  Oxford  University  Press:  1-­‐47.   96. Schick,  A.  (1966).  The  road  to  PPB:  The  stages  of  budget  reform.  Public  Administration   Review.  26:  243-­‐258.   97. Schlager,  E.  (2007).  A  comparison  of  frameworks,  theories  and  models  of  policy  processes.   In  Sabatier,  P.  A.  (Ed.).  (2007).  Theories  of  the  policy  process  (Second  ed.).  Boulder:  Westview   Press.  293-­‐319.   98. Scott,  R.  W.  (1987).  Organizations:  Rational,  natural,  and  open  systems  (Second  ed.).   Englewood  Cliffs,  NJ:  Prentice-­‐Hall.   99. Senge,  P.  M.  (1990).  The  fifth  discipline:  The  art  and  practice  of  the  learning  organization.   New  York:  Doubleday  Currency.   100. Silke,  A.  &  Kriesi,  H.  (2007).  The  network  approach.    In  Sabatier,  P.  A.  (Ed.).  (2007).   Theories  of  the  Policy  Process  (Second  ed.).  Boulder:  Westview  Press.  129-­‐154.   101. Simon,  H.  (1957).  Administrative  behavior:  A  study  of  decision-­‐making  processes  in   administrative  organization.  New  York:  MacMillian.   102. Simon,  H.  (1966).  Thinking  by  computers.  In  G.  C.  Robert  (Ed.),  Mind  and  cosmos:   Essays  in  contemporary  science  and  philosophy.  Latham,  MD:  Center  for  the  Philosophy  of   Science.  3-­‐21.   103. Simon,  H.  (1980).  Cognitive  science:  The  newest  science  of  the  artificial.  Cognitive   Science.  4(1):  33-­‐46.   104. Sorensen,  E.,  &  Torfing,  J.  (2005).  The  democratic  anchorage  of  governance   networks.  Scandinavian  Political  Studies.  28(3):  195-­‐218.   105. Sorensen,  E.,  &  Torfing,  J.  (Eds.).  (2008).  Theories  of  democratic  network  governance.  

 

31  

Theory  Testing  Using  Complex  Systems  Modeling  

Koliba  &  Zia,  2011  

 

 

 

New  York:  Palgrave  Macmillan.   106. Squazzoni,  F.  &  Boero,  R.  (2010).  Complexity-­‐friendly  policy  modeling.  In  Ahrweiler,   P.  (ed.)  Innovation  in  complex  systems.  London:  Routledge.   107. Stone,  D.  (2002).  Policy  Paradox  :  The  art  of  political  decision  making.  New  York:   Norton.   108. Stacey,  R.  D.  (2001).  Complex  responsive  processes  in  organizations:  Learning  and   knowledge  creation.  London:  Routledge.   109. Teisman,  G.,  van  Burren,  A.  and  Gerrits,  L.  (eds.)  (2009).  Managing  complex   governance  systems:  Dynamics,  self-­‐organization  and  coevolution  in  public  investments.   New  York:  Routledge  Press.   110. True,  J.L.,  Jones,  B.D.,  &  Baumgartner,  F.R.  (2007).  Punctuated-­‐equilibrium  theory:   Explaining  stability  and  change  in  public  policymaking.  In  Sabatier,  P.  A.  (Ed.).  (2007).   Theories  of  the  Policy  Process  (Second  ed.).  Boulder:  Westview  Press.  155-­‐188.   111. Tsoukas,  H.  (2005).  Complex  knowledge:  Studies  of  organizational  epistemology.   New  York:  Oxford  University  Press.   112. Van  den  Belt,  M.  (2004).  Mediated  modeling:  A  system  dynamics  approach  to   environmental  consensus  building.  Washington,  D.C.:  Island  Press.   113. Von  Bertalanffy,  L.  (1968).  General  systems  theory:  Foundations,  development,   applications.  New  York:  George  Braziller.   114. Wasserman,  S.,  &  Faust,  K.  (1994).  Social  network  analysis:  Methods  and  applications.   Cambridge,  UK:  Cambridge  University  Press.   115. Weick,  K.  E.  (1976).  Educational  organizations  as  loosely  coupled  systems.   Administrative  Science  Quarterly  21(1),  1-­‐19.   116. Wenger,  E.  (1998).  Communities  of  practice:  Learning,  meaning,  and  identity.   Cambridge,  UK:  Cambridge  University  Press.   117. Wright,  D.  S.  (2000).  Models  of  national,  state,  and  local  relationships.  Washington,   D.C.:  CQ  Press.     118. Yang,  K.,  &  Bergrud,  E.  (Eds.).  (2008).  Civic  engagement  in  a  network  society.   Charlotte,  NC:  Information  Age  Publishing.   119. Zahariadis,  N.  (2007).  The  multiple  streams  framework:  Structure,  limitations,   prospects.  In  Sabatier,  P.  A.  (Ed.).  (2007).  Theories  of  the  policy  process  (Second  ed.).   Boulder:  Westview  Press.  65-­‐92.   120. Zia,  A.,  Metcalf,  S.,  Koliba,  C.  &  Widener,  M.  (2010).    Management  of  complex   governance  networks:  Opportunities  and  challenges  for  agent  based  models  of  policy   analysis.  American  Society  of  Public  Administration  Annual  Conference.  San  Jose,  CA.     121. Zia,  A.,  Koliba,  C.,  Metcalf,  S.,  &  Widener,  M.  (Forthcoming  in  2011)  Agent  Based   Models  of  Cross-­‐Jurisdictional  Governance  Networks:  Simulating  the  Emergence  of  Project   Prioritization  Patterns  Under  Alternate  Policy  Theoretical  Frameworks  and  Network   Structures.  “Challenges  of  Making  Public  Administration  and  Complexity  Theory  Work”   (COMPACT)  Conference.  Rotterdam,  The  Netherlands.    

32  

Suggest Documents