Dr. Gábor Somlyai â HYD, LLC. Dr. W-N Paul Lee â UCLA. Dr. W. Marston Linehan â NCI. Dr. Dominic D'Agostino â USF. Drs. Howard Katz and Justine Roth â ...
13C-SUBSTRATE 13C
FATE ASSOCIATIONS
GUIDED METABOLOMICS
1st Annual Conference on Nutritional Ketosis and Metabolic Therapeutics Tampa, Florida, USA January 28-30, 2016
STABLE ISOTOPE METHODS TO TRACE METABOLIC CHANNELS Aims: • To monitor the fate of specific substrates through biologically relevant enzyme reaction hierarchies •
To determine disease states, drug response and individual variations of metabolism
•
To aid sports medicine
•
….many others
H HO H H H
O C C C C C C H
H OH H OH OH OH
D-glucose
H HO H H H
O C C C C C C H
H OH H OH OH OH
[1,2-13C2]-D-glucose
Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,213C ]glucose 2 Am J Physiol. 1998, 274(5 Pt 1):E843-51 Wai-Nang P. Lee et al.
CARBON (12C) • Carbon (12C) nuclei contain six protons and six neutrons • Atomic mass units are 12 (atomic mass unit, Dalton, Da)
CARBON (14C) • Carbon (14C) nuclei contain six protons and eight neutrons • Atomic mass units are 14 (atomic mass unit, Dalton, Da) • Half life is ~5700 years
TRACER CARBONS (13C) • Carbon (13C) nuclei contain six protons and seven neutrons • Atomic mass units are 13 (atomic mass unit, Dalton, Da) • Stable, non-radiating isotopes
13C IS
1.1% IN THE ATMOSPHERE
• Out of one thousand CO2 molecules - 11 are 13C and their concentration remains the same with small variations that depend on temperature, air pressure and altitude •
13CO 2
gas can be collected and stored in containers
13CO •
2
→ METABOLIC TRACERS
13C
containing substrates can be produced by extracting photosynthetic products from e.g. algae that used 13CO2 as the only carbon source
13CO 2
and light
green algae
PHOTOSYNTHESIS
Energy from sunlight
13CO CO
H2O
2
2
Light reactions:
Calvin Cycle
Photosystem II Electron transport chain Photosystem I
O2 Light driven cycle
NADP+ ADP
13C H O n n n
Dark cycle
PHOTOSYNTHESIS AND 13C ENRICHMENT IN PRODUCTS
There are many other 13C labeled products, such as fatty acids and phytochemicals, that can be used as tracers CYS ACP
S S
N=8 acetate units - [U-13C6]-palmitate
H HO H H H
O C C C C C C H
H OH H OH OH OH
[U-13C6]-D-glucose
[U-13CN]-SUBSTRATES (I.) • Non-toxic, non-radiating • No IND needed, cleared by FDA • Molar Mass (C16:0) = 272.43 g·mol−1 • Natural glucose = 256.43 g·mol−1 • 6.2% difference in mass CYS ACP
S S
N=8 acetate units - [U-13C6]-palmitate
H HO H H H
O C C C C C C H
H OH H OH OH OH
[U-13CN]-SUBSTRATES (II.) • Chemically identical to natural substrates • Cells, hosts do not recognize it • 1% to 10% enrichment in clinical studies • 0.5 to 1 g/kg (body weight) glucose challenge, $200/g (glucose) CYS ACP
S S
N=8 acetate units - [U-13C6]-palmitate
H HO H H H
O C C C C C C H
H OH H OH OH OH
[U-13CN]-SUBSTRATES (III.) Biological Gas-Chromatography and Mass Spectrometry (GC-MS) can find about 400 12C- and 13C- labeled products
CYS ACP
S S
H HO H H H
O C C C C C C H
H OH H OH OH OH
BASIC PRINCIPLES OF GC/MS (II.)
12C
Glucose products fly “fast”
C C C
13C
C C
C
Glucose products fly “slow”
40
DHA-P
4
P
2
6
III.
7
8
9
P P P
CO2
GA-3P IV.
P
P 1,3P-Glyc
Gluc-6P
Fruc-1,6P
39 CO2
21
P
P
PEP
2P-Glyc
3P-Glyc
GLUCONEOGENESIS – SOGC P
P
GA-3P
Oxaloacetate
Acetyl- CoA
Acetyl- CoA
Malate
V.
Low deuterium drinking water
Malate shuttle PENTOSE CYCLE
Fatty acid oxidation (bcarbon)
Citrate
Oxaloacetate
12 III.
Malate
13 20
Fumarate
II.
Low deuterium metabolic water recycling
14
19
Carbons with high deuterium (sugars/amino acids) Carbons with low deuterium (fatty acids from natural fat)
18
Low deuterium carrying fatty acid carbons
Isocitrate
Xylulose-5P Succinate
I.
Succinyl-CoA
15 16 17
CO2
a-ketoglutarate
CO2
KREBS-SZENT-GYÖRGYI CYCLE
Glycolysis Tracer TCA RNA ribose Fatty acid
WT-pFH+262
EV-FH-262
FH-262
FH-268
R2
Correlations
[7] - Glucose tracer consumption (mg/24h)
100.0
128.1
147.5
167.3
1
1
[12] - 13CO2 Glucose oxidation complete (D13C/12C)
100.0
66.3
59.1
76.4
0.3991
-0.6318
[17] - Lactate 13C labeled fraction (Sm)
100.0
107.3
107.8
107.2
0.6793
0.8242
[22] - G6PDH flux NADPH production (m1/m2)
100.0
104.9
105.6
113.6
[22B] - Lactate concentration (peak area)
100.0
123.2
137.0
126.2
[76] - Glutamate 13C labeled fraction (Sm)
100.0
47.9
42.9
34.4
[77] - Glutamate 13C Content (Smn)
100.0
49.9
43.4
33.7
[79] - Glutamate via PDH (m2/Sm)
100.0
82.4
78.6
60.4
[80] - Glutamate via OA recycling (m3/Sm)
100.0
72.9
55.8
58.1
[81] - Glutamate via PC and PDH (m4/Sm)
100.0
226.0
219.8
248.7
[87B] - Glutamate-concentration (peak area)
100.0
74.7
55.6
59.5
[143] - Lignocerate (C24:0) 13C labeled fraction (Sm)
100.0
73.2
64.9
70.1
[144] - Lignocerate (C24:0) 13C Content (Smn)
100.0
67.2
57.2
60.1
[150B] - Lignocerate (C24:0) concentration (peak area)
100.0
176.1
258.8
136.1
100.0
91.8
92.1
74.3
100.0
91.6
92.1
73.7
[296] - RNA-ribose via G6PDH/NADPH (m1/Sm)
100.0
112.2
111.8
140.4
[297] - RNA-ribose via Transketolase (m2/Sm)
100.0
91.2
91.3
74.0
0.8318
-0.9120
[305B] - RNA-ribose concentration (peak area)
100.0
113.2
124.6
116.9
0.6701
0.8186
107 % - 120 %
121 % - 134 %
135 % - 149 %
[294] - RNA-ribose
13
C labeled fraction (Sm)
[295] - RNA-ribose
Percent of Control:
< 64 %
13
C content (Smn)
65 % - 78 %
79 % - 92 %
93 % - 106 %
0.8904 0.9436 Normalization 0.8101 or to0.6562 control the 0.8458 reference -0.9196 time point 0.8720 -0.9338 (100%) 0.9581
-0.9788
0.8740 -0.9349 Color helps to 0.7986 0.8936 monitor flux 0.8614 -0.9281 changes 0.7310
13C
0.7962
-0.8550 -0.8923
normalized 0.1717 0.4143 data to 0.8121 -0.9011 overcome 0.8069 -0.8983 experimental variations 0.7991 0.8939
> 150 %
WT-pFH+262
EV-FH-262
FH-262
FH-268
R2
Correl
[7] - Glucose tracer consumption (mg/24h)
100.0
128.1
147.5
167.3
1
1
[22] - G6PDH flux NADPH production (m1/m2)
100.0
104.9
105.6
113.6
0.8904
0.9436
[296] - RNA-ribose via G6PDH/NADPH (m1/Sm)
100.0
112.2
111.8
140.4
0.7991
0.8939
[81] - Glutamate via PC and PDH (m4/Sm)
100.0
226.0
219.8
248.7
0.7986
0.8936
[17] - Lactate 13C labeled fraction (Sm)
100.0
107.3
107.8
107.2
0.6793
0.8242
[305B] - RNA-ribose concentration (peak area)
100.0
113.2
124.6
116.9
0.6701
0.8186
[22B] - Lactate concentration (peak area)
100.0
123.2
137.0
126.2
0.6562
0.8101
[150B] - Lignocerate (C24:0) concentration (peak area)
100.0
176.1
258.8
136.1
0.1717
0.4143
[12] - 13CO2 Glucose oxidation complete (D13C/12C)
100.0
66.3
59.1
76.4
0.3991
-0.6318
[143] - Lignocerate (C24:0) 13C labeled fraction (Sm)
100.0
73.2
64.9
70.1
0.7310
-0.8550
[144] - Lignocerate (C24:0) 13C Content (Smn)
100.0
67.2
57.2
60.1
0.7962
-0.8923
C content (Smn)
100.0
91.6
92.1
73.7
0.8069
-0.8983
C labeled fraction (Sm)
100.0
91.8
92.1
74.3
0.8121
-0.9011
[297] - RNA-ribose via Transketolase (m2/Sm)
100.0
91.2
91.3
74.0
0.8318
-0.9120
[76] - Glutamate 13C labeled fraction (Sm)
100.0
47.9
42.9
34.4
0.8458
-0.9196
[87B] - Glutamate-concentration (peak area)
100.0
74.7
55.6
59.5
0.8614
-0.9281
[77] - Glutamate 13C Content (Smn)
100.0
49.9
43.4
33.7
0.8720
-0.9338
[80] - Glutamate via OA recycling (m3/Sm)
100.0
72.9
55.8
58.1
0.8740
-0.9349
[79] - Glutamate via PDH (m2/Sm)
100.0
82.4
78.6
60.4
0.9581
-0.9788
107 % - 120 %
121 % - 134 %
135 % - 149 %
> 150 %
[295] - RNA-ribose [294] - RNA-ribose
Percent of Control:
13
< 64 %
13
65 % - 78 %
79 % - 92 %
93 % - 106 %
WT-pFH+262
EV-FH-262
FH-262
FH-268
R2
Correl
[76] - Glutamate 13C labeled fraction (Sm)
100.0
47.9
42.9
34.4
1
1
[77] - Glutamate 13C Content (Smn)
100.0
49.9
43.4
33.7
0.9986
0.9993
[144] - Lignocerate (C24:0) 13C Content (Smn)
100.0
67.2
57.2
60.1
0.9655
0.9826
[143] - Lignocerate (C24:0) 13C labeled fraction (Sm)
100.0
73.2
64.9
70.1
0.9360
0.9675
[80] - Glutamate via OA recycling (m3/Sm)
100.0
72.9
55.8
58.1
0.9227
0.9606
[87B] - Glutamate-concentration (peak area)
100.0
74.7
55.6
59.5
0.8951
0.9461
[79] - Glutamate via PDH (m2/Sm)
100.0
82.4
78.6
60.4
0.8122
0.9012
[12] - 13CO2 Glucose oxidation complete (D13C/12C)
100.0
66.3
59.1
76.4
0.7196
0.8483
[297] - RNA-ribose via Transketolase (m2/Sm)
100.0
91.2
91.3
74.0
0.6138
0.7835
100.0
91.8
92.1
74.3
0.5852
0.7650
100.0
91.6
92.1
73.7
0.5787
0.7607
[150B] - Lignocerate (C24:0) concentration (peak area)
100.0
176.1
258.8
136.1
0.3430
-0.5857
[296] - RNA-ribose via G6PDH/NADPH (m1/Sm)
100.0
112.2
111.8
140.4
0.5622
-0.7498
[22] - G6PDH flux NADPH production (m1/m2)
100.0
104.9
105.6
113.6
0.6817
-0.8257
[305B] - RNA-ribose concentration (peak area)
100.0
113.2
124.6
116.9
0.7880
-0.8877
[22B] - Lactate concentration (peak area)
100.0
123.2
137.0
126.2
0.8310
-0.9116
[7] - Glucose tracer consumption (mg/24h)
100.0
128.1
147.5
167.3
0.8458
-0.9197
[17] - Lactate 13C labeled fraction (Sm)
100.0
107.3
107.8
107.2
0.9531
-0.9763
[81] - Glutamate via PC and PDH (m4/Sm)
100.0
226.0
219.8
248.7
0.9886
-0.9943
107 % - 120 %
121 % - 134 %
135 % - 149 %
> 150 %
[294] - RNA-ribose
13
C labeled fraction (Sm)
[295] - RNA-ribose
Percent of Control:
< 64 %
13
C content (Smn)
65 % - 78 %
79 % - 92 %
93 % - 106 %
o TARGETED 13C FATE ASSOCIATIONS IN DISEASE 167 (±7.05)
279 (±20.70)*
7.2 (±0.16)
5.52 (±0.17)*
22.69 (±0.53)
24.33 (±0.85)
2.49 (±0.005)
2.82 (±0.004)*
307229 (±10561)
387634 (±9403)*
0.82 (±0.25)
0.28 (±0.01)*
0.012 (±0.0005)
0.0053 (±0.0002)*
61.87 (±1.97)
37.36 (±1.06)*
6.13 (±0.13)
3.56 (±0.16)*
5.81 (±0.22)
14.44 (±0.73)*
82860 (±4152)
49335 (±4472)*
31.76 (±0.88)
22.26 (±0.60)*
0.86 (±0.02)
0.51 (±0.014)*
3474 (±104)
4728 (±236)*
14.17 (±0.09)
10.53 (±0.18)*
0.286 (±0.0009)
0.211 (±0.0032)*
42.37 (±1.3)
59.50 (±1.58)*
41.60 (±1.18)
30.76 (±1.04)*
636 (±24)
743 (±12)*
NON-TRACER NON-TARGETED METHODS ARE NON-REPRODUCIBLE
STABLE ISOTOPE METHODS TO TRACE METABOLIC CHANNELS Advantages: • 13C tracer labeled fractions are internal standards •
Product synthesis rates are determined over time and/or a drug dosing regimen (challenge)
STABLE ISOTOPE METHODS TO TRACE METABOLIC CHANNELS ARE HIGHLY REPRODUCIBLE •
13C
mass spectra reflect biology
27
APPLICATIONS IN TARGETED CANCER DRUG DISCOVERY
RESULTS
GLEEVEC INDUCES FATTY ACID OXIDATION, I.E. IMPLEMENTS KETOGENIC DIET, IN LEUKEMIA CELLS
THE JOURNAL OF BIOLOGICAL CHEMISTRY 276(41), 37747-53, 2001
NEJM ARTICLE ABOUT GLEEVEC’S MECHANISMS OF ACTION
NEJM ARTICLE ABOUT GLEEVEC’S MECHANISMS OF ACTION
LETTER TO NEJM EDITOR
LETTER TO NEJM EDITOR
KETOGENIC DIET DEPLETION
- DEUTERIUM
– METABOLIC WATER
Malate
http://high-fat-nutrition.blogspot.com/2012/07/protons-wheres-bias.html
40
DHA-P
4
P
2
6
III.
7
8
9
P P P
CO2
GA-3P IV.
P
P 1,3P-Glyc
Gluc-6P
Fruc-1,6P
39 CO2
21
P
P
PEP
2P-Glyc
3P-Glyc
GLUCONEOGENESIS – SOGC P
P
GA-3P
Oxaloacetate
Acetyl- CoA
Acetyl- CoA
Malate
V.
Low deuterium drinking water
Malate shuttle PENTOSE CYCLE
Fatty acid oxidation (bcarbon)
Citrate
Oxaloacetate
12 III.
Malate
13 20
Fumarate
II.
Low deuterium metabolic water recycling
14
19
Carbons with high deuterium (sugars/amino acids) Carbons with low deuterium (fatty acids from natural fat)
18
Low deuterium carrying fatty acid carbons
Isocitrate
Xylulose-5P Succinate
I.
Succinyl-CoA
15 16 17
CO2
a-ketoglutarate
CO2
KREBS-SZENT-GYÖRGYI CYCLE
1
2
LOW DEUTERIUM CARRYING CARBON
P Gluc
Gluc-6P
22
Transketolase 26 CO2 R-ulose-5P
23 P 6-Phosphogluc
Deoxyribose and DNA strand sugar synthesis
NADPH R-ulose-5P
26
27
4
3 P
5 P
P
DHA-P
PENTOSE CYCLE
GA-3P
GLYCOLYSIS P GA-3P
P Fruc-6P
Fruc-1,6P
APPLICATIONS IN SPORTS MEDICINE
“NO DRUGS IN SPORTS BUT PERFECT MITOCHONDRIAL PRIMING”
- DEUTERIUM DEPLETION – ATP SYNHTESIS
KETOGENIC DIET
Malate
http://high-fat-nutrition.blogspot.com/2012/07/protons-wheres-bias.html
CONCLUSIONS •
Cancer is a deuterium driven metabolic disease
•
Nutritional ketosis using natural fat and fat products control deuterium loading via mitochondrial water recycling into DNA, RNA and biological membranes
•
Oncogenes, oncometabolites and the oncoisotopic role of deuterium need to be explored as drivers of malignant cell transformation
•
Nutritional ketosis needs to be monitored for deuterium enrichment using T1 weighted MR sequence imaging
HEXOSE, PENTOSE, TRIOSE ALDOSE-KETOSE ISOMERIZATION DNA STABILITY
G6PDH NADPH DEUTERIUM DEPLETED WATER ACHIEVES DNA STABILITY VIA GLYCOLYSIS-BOUND LOBRY DE BRUYN TRANSFORMATIONS BY DEPLETING DEUTERIUM2, A KNOWN ONCOISOTOPE, IN PROCESSED DIETARY CARBOHYDRATES
-
CANCER CELL Malate shuttle
Citrate
Fumarate hydratase Hypoxia α-ketoglutarate
DOI: 10.1016/J.MEHY.2015.11.016
LOW DEUTERIUM FATTY ACID Literature: 1DOI: 10.1016/j.mehy.2015.11.016 2http://www.cell.com/molecular-cell/comments/S1097-2765(14)00402-X
OXIDATION AND METABOLIC WATER PRODUCTION ARE DEFECTIVE IN MITOCHONDRIA1
ACKNOWLEDGMENTS Dr. Gábor Somlyai – HYD, LLC Dr. W-N Paul Lee – UCLA Dr. W. Marston Linehan – NCI Dr. Dominic D’Agostino – USF Drs. Howard Katz and Justine Roth – JHU Eszter Boros Agi Hirshberg (pancreatic.org)
HTTPS://WWW.YOUTUBE.COM/USER/FUMARATEHYDRATASELGB