Fluid Dynamics. 4. Fluid Networks. 5. Energy Transport. 6. Interfacial Surface
Tension. 7. Electrokinetics. 3. Physics of Microfluidic Systems. Microfluidics - Jens
...
Contents
1. Introduction
9. Liquid Handling
2. Fluids
10.Microarrays
3. Physics of Microfluidic Systems
11.Microreactors 12.Analytical Chips
4. Microfabrication Technologies Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
13.Particle-Laden Fluids
5. Flow Control
a. Measurement Techniques
6. Micropumps 7. Sensors
b. Fundamentals of Biotechnology
8. Ink-Jet Technology
c. High-Throughput Screening
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
1
3. Physics of Microfluidic Systems
1. Navier-Stokes Equations 2. Laminar and Turbulent Flow 3. Fluid Dynamics 4. Fluid Networks 5. Energy Transport
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Interfacial Surface Tension 7. Electrokinetics
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
2
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through a Tube 5. Laminar PDF through a Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
3
3.2.1. Critical Reynolds Number Three types of flow conditions Laminar Low flow velocities Smooth sliding of adjacent layers Field of velocity vectors constant in time
Turbulent
Curling of field lines Mixing between adjacent layers „Unpredictable" development of field of velocity vectors Flow patterns increasingly turbulent towards high velocities Sometimes laminar flow preserved up to higher velocities Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Periodic flow 3rd flow regime Surface waves Acoustic waves
All three flow types solutions of NS-equation Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
4
3.2.1. Perturbation Analysis Transition from laminar to turbulent flow regime Mathematical perturbation analysis Prediction whether velocity distribution belongs to distinct flow regime
Ansatz Known solution of NS-equation (guessed or measured) Superimposing small perturbation Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Product of - Amplitude - Oscillatory factor - Exponential term
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
5
3.2.1. Perturbation Analysis
Properties Locally varying amplitude A and constant for given problem Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Insertion of perturbed solution in NS as initial velocity field Result: First order equations of and Sign of indicates decay of perturbation into v0
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
6
3.2.1. Critical Reynolds Number Condition = 0 defines critical Reynolds number Re* Re < Re* Perturbations damped in time
Re > Re* Exponential growth of perturbations in time Perturbation theory not valid „Unpredictable“ behavior of velocity field Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Transition point Re = Re* Flow oscillates between two flow regimes
As Re increases further, turbulent character of flow increases
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
7
3.2.1. Critical Reynolds Number Re* ranges between 1 and 100,000 Re* depends on Material properties (density, viscosity) Boundary conditions Critical velocity
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microdevice l = 100 µm v* = 25 m s-1 Hardly reached in microdevices
Re* geometries Sphere: 2320 Flow parallel to plate: Re* = 500,000 Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
8
3.2. Laminar Flow
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
9
3.2.1. Critical Reynolds Number Transition point also depends on Initial velocity field Experimental environment
Domain Re < Re* No survival of initial turbulences
Domain Re > Re* Laminar flow still possible under certain conditions Turbulences hampered by Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
- Smooth walls - Smooth endings at orifices
Laminar conditions up to Re = 100,000 Re > 100,000 - Thermal motion of molecules sufficient to trigger transition to turbulence
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
10
3.2.1. Shift of Re* in MF Systems In MF-systems
Channel diameter 100 µm Flow velocity v = 10 mm s-1 Flow rate Av = 6 µl min-1 Re ~ 1 Re* Turbulent regime
Laminar regime restricted to Tiny layer < d near moving body "Prandtl layer" Diffusion-limited mass and heat transfer Decisive impact on mass and heat exchange in macrosystems Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Estimate for thickness by energy analysis Viscous work
Spent when body traveling at v0 covers distance of its own length l Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
16
3.2.2. Prandtl Boundary Layer Setting adjacent fluid into motion requires kinetic energy
Assuming linear flow profile within Prandtl layer Setting equal kinetic energy and viscous work yields Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Typical MF-values: l = 1cm, d = 100 µm and Re = 1 1 cm >> d Fully developed Prandtl layer therefore not found in MF systems Attention - Re increases with speed of flow
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
17
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
18
3.2.3. Couette Flow Azimuthal symmetry
Purely azimuthal fluid motion Cylindrical coordinates (r, , z) Velocity field v(r) Pressure distribution p Symmetry reduces NS-equations and continuity equation to Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
19
3.2.3. Couette Flow Azimuthal symmetry Purely azimuthal fluid motion Cylindrical coordinates (r, , z) Velocity field v(r)
Ansatz
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Solution
small ~r
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
20
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
21
3.2.4. Laminar PDF through Tube
Pressure-driven flow Important phenomenon in nature E.g., transport of nutrients in plants and animals by heart Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Law of Hagen-Poisseuille Pressure drop Throughput
Symmetry Parabolic flow profile Cylindrical symmetry Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
22
3.2.4. Laminar PDF through Tube
Pressure forces Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Viscous forces
Relationship for stationary flow (dvz/dt = 0) Fp = F Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
23
3.2.4. Laminar PDF through Tube
Integration Extension of auxiliary cylinder of radius r to tube radius r0 Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Flow velocity profile
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
24
3.2.4. Laminar PDF through Tube
Maximum velocity (in center at r = 0) Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Average velocity
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
25
3.2.4. Flow Rate Volumetric flow IV determined by integration of vz(r) dA over r0
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Law of Hagen-Poiseuille IV scales with r 4
Average velocity Alternative expression for Reynolds number Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
26
3.2.4. Throughput
IV ~ r 4 = A2
Hagen-Poiseuille
A0/4 A0
I0,V ~ A02
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
IV ~ 4 (A0 / 4)2 = ¼ I0V IV ~ ´N (A0 / N)2 = (1/N) I0V
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
27
3.2.4. Hydraulic Diameter Based on law of Hagen-Poiseuille for cylindrical geometry PDF through duct with non-circular cross-section Equivalent hydraulic diameter
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
28
3.2.4. Hydraulic Diameter Round tube
Square tube Edge length Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Annular geometry
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
29
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
30
3.2.5. Laminar PDF through Gap
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Pressure-driven flow
No (external) shear or volume forces Parallel plates Laminar regime Pressure gradient antiparallel to direction of flow
No-slip conditions
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
31
3.2.5. Laminar PDF through Gap
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Rectangular element
Width 2x Length l Depth b Cross section Ax = b l Fore-part Az = 2 x b
Total velocity gradient across element 2 dv / dx |+/-x Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
32
3.2.5. Laminar PDF through Gap Differential relationship
Parabolic flow profile
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Peak velocity
Overall volume flow rate IV per channel width y
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
33
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
34
3.2.6. Irrotational Flows Vorticity
Vanishes in irrotational flows
Vector identity Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Vanishing divergence of vorticity
For vanishing vorticity, i.e. irrotational flow, v can be written
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
35
3.2.6. Potential Flow Theory Basic building blocks Set of special flow schemes Analogous to multipole concept in electrodynamics
Mathematical point of view Special instances of Green’s function Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
36
3.2.6. Velocity Potentials (2-dim.) Simplification 2-dim. velocity field v = (vx, vy)
Velocity potential Scalar
Stream function Scalar Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
monopole dipole
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
37
3.2.6. Hele-Shaw Table Visualization of basic 2-dim. flows Uniform stream over floor to drain Bottles Raised or lowered to adjust gravitational pressure Connected to through holes
2-dim. flow (top view) Sources and drains (monopoles)
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Holes
Doublets (dipoles) Source and sink very close to each other Bottles spaced by same distance above and below floor
Sometimes transparent cover to ensure uniform depth Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
38
3.2.6. Bernoulli Equation Continuity equation Irrotational flow Navier-Stokes Rewritten Using vector analysis Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
General form of Bernoulli
vanishing vorticity
Integration in space
Bernoulli Stationary conditions Integration in space
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
39
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
40
3.2.7. Centrifugal-Force Driven Flow Flow Profile
Laminar flow only driven by centrifugal forces Fluidic duct with radius r0, angular frequency Stationary conditions, incompressible fluids No-slip boundary conditions Neglecting inertia and pressure effects
Solution: z-dependent flow profile Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
At center r
z
Velocity profile typically more flat than in PDF Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
41
3.2.7. Comparison to PDF CD
PDF
Parabolic velocity profiles Relation between steepness of velocity profiles Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Example -
z = l = 1 cm = 1000 kg m-3 (water) p = 1000 hPa = 500 rpm (single speed CD player)
Microfluidics - Jens Ducrée
v^ 2.7 103 PDF profile much steeper
Physics: Laminar and Turbulent Flow
42
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
43
3.2.8. Taylor Dispersion Axial dispersion of solute in laminar flow Dispersion of drugs in blood flow
Situation Steady state flow Round tube
Hypothetical absence of diffusion Solute follows flow profile
Molecular diffusion
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Counteracts dispersion Axial spreading at Deff t Radial diffusion exchanges solute molecules between layers
MF example v = 1 mm s-1 , r0 = 100 µm , D = 3 x 10-9 m2 s-1 Second term prevails over unity Effective constant for axial diffusion ~ D(1 + c D –2)
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
44
3.2.8. Hydrodynamic Focusing Situation Microscopic tip at end of capillary Sucking in liquid from larger vessel Laminar regime Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Full solid angle projected onto tiny orifice cross section
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
45
3.2.8. Hydrodynamic Focusing Example: Ink dispenser near orifice of capillary Vertical position within capillary adjusts to transversal shift of dispenser
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
46
3.2.8. Reversed Experiment Fluid plug expelled from orifice of capillary into larger tank Small velocity Laminar
High velocity Turbulent
Microfluidics - Jens Ducrée
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Physics: Laminar and Turbulent Flow
47
3.2.8. Application to Cytometry and Mixing
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
48
3.2. Laminar and Turbulent Flow 1. Critical Reynolds Number 2. Shear-Driven Laminar Flow 3. Couette Flow 4. Laminar PDF through Tube 5. Laminar PDF through Gap Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
6. Irrotational Flow 7. Centrifugal-Force Driven Flow 8. Effects in Laminar Flows 9. Turbulent Flows
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
49
3.2.9. Turbulent Flows
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Turbulent flow in tube for Re > Recrit Turbulent profile
Velocity vectors unpredictably oscillating in time Time-averaged profile Much flatter profile than laminar flow Tendency for flattening grows with Re
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
50
3.2.9. Turbulent Flows Throughput according to Blasius (1883-1970)
Laminar
Approximations well above 3Re*
p l
0.57
r0
2.71
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Mean velocity
p l
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
0.57
r0
0.71
51
3.2.9. Scaling of Mean Velocity Turbulent
Laminar Pressure gradient Radius Density Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Viscosity
Same pressure gradient applied to tube Smaller turbulent flow velocity
Turbulent velocity varies with density Flow energy dissipated by turbulent mixing
Laminar flow Viscous forces between smoothly sliding layers
Turbulent regime Enhanced flow resistance Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
52
3.2.9. Entrance Effects
Laminar
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Turbulent Microfluidic systems Re ~1 and r0 = 100 µm
Microfluidics - Jens Ducrée
zdevel = 10 µm (laminar)
Physics: Laminar and Turbulent Flow
53
3.2.9. Friction Losses Surface roughness Local eddy formation Darcy-Weissbach relation Pressure loss Flow velocity Friction factor Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
f = const. for smooth tube and laminar conditions
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
54
3.2.9. Roughness-Viscosity Model Surface roughness induces turbulence in boundary layer Surface roughness height Roughness viscosity Adding to bulk viscosity
Surface roughness Reynolds number Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Empirical factor
Microfluidics - Jens Ducrée
Physics: Laminar and Turbulent Flow
55