Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2014, Article ID 841718, 12 pages http://dx.doi.org/10.1155/2014/841718
Research Article A Generalized Henry-Type Integral Inequality and Application to Dependence on Orders and Known Functions for a Fractional Differential Equation Jun Zhou1,2 1 2
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
Correspondence should be addressed to Jun Zhou;
[email protected] Received 30 March 2014; Accepted 10 June 2014; Published 7 July 2014 Β¨ ΒΈ Academic Editor: Turgut Ozis Copyright Β© 2014 Jun Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss on integrable solutions for a generalized Henry-type integral inequality in which weak singularity and delays are involved. Not requiring continuity or differentiability for some given functions, we use a modified iteration argument to give an estimate of the unknown function in terms of the multiple Mittag-Leffler function. We apply the result to give continuous dependence of solutions on initial data, derivative orders, and known functions for a fractional differential equation.
1. Introduction Since Gronwall [1] and Bellman [2] discussed the integral inequalities
if and only if π’ = 0) on [0, β). In 2000 this result was generalized by Lipovan [4] to the delay case π‘
π’ (π‘) β€ π + β« π (π ) π€ (π’ (π )) ππ π‘0
π‘
0 β€ π’ (π‘) β€ β« (π + ππ’ (π )) ππ , πΌ
(1)
π‘
π’ (π‘) β€ π + β« π (π ) π’ (π ) ππ ,
(2)
πΌ
respectively, there have been made many generalizations, some of which were applied to existence, uniqueness, boundedness, and stability of solutions and invariant manifolds for differential equations and integral equations. In 1956 Bihari [3] discussed a nonlinear version of the integral inequality π‘
π’ (π‘) β€ π + β« π (π ) π€ (π’ (π )) ππ , 0
π‘ β₯ 0,
(3)
where the given function π€ is continuous, nondecreasing, and positive definite (i.e., π€(π’) β₯ 0 for all π’ and π€(π’) = 0
+β«
π(π‘)
π(π‘0 )
(4) π (π ) π€ (π’ (π )) ππ ,
π‘0 β€ π‘ < π‘1 ,
where π is a continuously differentiable and nondecreasing function from [π‘0 , π‘1 ) to [π‘0 , π‘1 ) such that π(π‘) β€ π‘. In 2005 Agarwal et al. [5] investigated the integral inequality of a finite sum π
π’ (π‘) β€ π (π‘) + β β«
ππ (π‘)
π=1 ππ (π‘0 )
ππ (π‘, π ) π€π (π’ (π )) ππ ,
(5)
π‘0 β€ π‘ < π‘1 , where the monotonicity of π is not required but π€π+1 has stronger monotonicity than π€π for each π. In recent years some new generalizations were given in, for example, [6β8]. Many results on integral inequalities can be found in Pachpatteβs monograph (see [9]). Among various types of integral inequalities, integral inequalities with weakly singular kernels are important tools
2
Journal of Applied Mathematics
in the discussion of reaction-diffusion equations and fractional differential equations. As shown in [10], the integral π‘ β«π‘0 πΎ(π‘, π ) is singular on the line π = π‘; it is referred to be π‘
weakly singular if it is singular and β«π‘0 |π(π‘, π )|ππ < β for all π‘0 β€ π‘ < π β€ β. In fractional differential equations we need to consider the following Riemann-Liouville derivative operator and integral operator (see [11]) π·π‘πΌ0 π (π₯) :=
1 π Ξ (1 β πΌ) ππ₯ π₯
Γ β« (π₯ β π‘)βπΌ π (π‘) ππ‘, π‘0
π½ πΌπ‘0 π (π₯)
0 < πΌ < 1,
(6)
(7)
in a Banach space π, where π΄ is a sectorial operator and π is locally HΒ¨older continuous with HΒ¨older index 0 < π < 1. From the variation-constant formula (see [12]), we encounter the following: σ΅©σ΅© βπ΄(π‘βπ ) σ΅©σ΅© σ΅©σ΅© = π ((π‘ β π )β1 ) , σ΅©σ΅©π΄π σ΅© σ΅© σ΅© σ΅©σ΅© π σ΅©σ΅©π (π‘) β π (π )σ΅©σ΅©σ΅© = π ((π‘ β π ) ) ,
(8)
and therefore the singular kernel (π‘ β π ) is the estimation of its solution. For this reason the integral inequality with a weakly singular kernel π‘ β₯ 0,
π
(πΞ (π½)) π’ (π‘) β€ π (π‘) + β« { β (π‘ β π )ππ½β1 π (π )} ππ , Ξ (ππ½) 0 π=1
π‘ β₯ 0,
π‘
Γ (β« πΉ(π )π πβππ π€(π’ (π ))π ππ ) 0
πβ1 πβ1
π’ (π‘) β€ π (π‘) + π (π‘) β« (π‘π β π π ) 0
π‘
+ π (π‘) β« (π‘πΌ β π πΌ ) 0
π½β1 πΎβ1
π
π
0
π‘
+ π4 β« (π‘ β π ) 0
π½β1
π’ (π ) ππ ,
(11) π‘ β₯ 0,
where π1 , π2 , π3 , π4 β₯ 0, 0 < π½ < 1. Inequality (9) was also extended by Ye et al. [14] in 2007 by replacing the constant
π (π ) π’ (π ) ππ
π (π ) π€ (π’ (π )) ππ ,
(14)
where πΌ, π½, πΎ, π, π, π β₯ 0. Recently Ma and PeΛcariΒ΄c [17] also employed the separation approach to discuss another weakly singular integral inequality π‘
π½β1 πΎβ1
π’π (π‘) β€ π (π‘) + π (π‘) β« (π‘πΌ β π πΌ ) 0
π
π (π ) π’π (π ) ππ ,
(15)
π‘ β₯ 0, under the condition π β₯ π β₯ 0. In this paper we investigate the following integral inequality of finite sum: π
ππ (π‘)
π=1 ππ (π‘0 )
π’ (π‘) β€ π1 + π2 π‘π½β1 + π3 β« π’ (π ) ππ
,
π‘ β₯ 0,
π’ (π‘) β€ π (π‘) + β β«
π‘
1/π
where π, π > 1 are certain constants such that 1/π + 1/π = 1, so that the inserted exponential factor ππ makes the singular π‘ integral β«0 (π‘ β π )π(π½β1) πππ ππ convergent as π β π‘ and the inequality is reduced to the classic Bihariβs form (3). In 2002 Ma and Yang [16] improved Medvedβs method and gave an estimation to the Volterra-type integral inequality with a more general form of weakly singular kernel
(10) where Ξ is the Gamma function, was given by an iteration approach. Following Henryβs idea, in 1994 Sano and Kunimatsu [13] extended Henryβs result to a more general integral inequality
(13)
0
(9)
where π β₯ 0, 0 < π½ < 1 and both π and π’ are nonnegative and locally integrable, was considered in Henryβs book [12] in 1981 and the estimate β
1/π
β€ π (π‘) + (β« (π‘ β π )π(π½β1) πππ ππ )
π‘
πβ1
π‘
where 0 < π½ < 1. This inequality is of Bihariβs form (3) with a weakly singular kernel. He applied the well-known HΒ¨older inequality to separate the unknown π’ from the singular kernel, that is,
π‘
π½β1
π₯ (π‘0 ) = π₯0 ,
0
π‘ β₯ 0, (12)
0
are in which the singular kernels (π₯ β π‘) and (π₯ β π‘) included, respectively. Another example can be seen from the Cauchy problem of the evolution equation
π’ (π‘) β€ π (π‘) + π β« (π‘ β π )π½β1 π’ (π ) ππ ,
0
π’ (π‘) β€ π (π‘) + β« (π‘ β π )π½β1 ππ πΉ (π ) πβπ π€ (π’ (π )) ππ
π½ > 0,
βπΌ
π‘
π‘
π’ (π‘) β€ π (π‘) + β« (π‘ β π )π½β1 πΉ (π ) π€ (π’ (π )) ππ ,
π‘
π₯ 1 := β« (π₯ β π‘)π½β1 π (π‘) ππ‘, Ξ (π½) π‘0
π₯Μ + π΄ (π‘) π₯ = π (π‘) ,
π with a nonnegative, nondecreasing, bounded, and continuous function π(π‘). Another idea for inequalities with a weakly singular kernel was introduced by Medved [15] in 1997 for the following Henry-Bihari type integral inequality:
π½
(π‘ β ππ (π )) π βπ (π‘, π ) π’ (π ) ππ ,
(16)
π‘ β₯ 0, in which weakly singular kernels and delays are involved. Not requiring continuity of π or differentiability of ππ , we give an estimate for locally integrable π’ in terms of the multiple Mittag-Leffler function (see [18]). We prefer Henryβs iteration
Journal of Applied Mathematics
3
approach in our proof because the approach does not reduce the problem to the classic one so that no more continuity and differentiability are required. Our result generalizes the works made in [14β17] in some sense because of the more general form (16). Finally, we apply the result to give continuous dependence of solutions on initial data, derivative orders, and known functions for a fractional differential equation.
2. Main Results For constants π‘0 , π such that π‘0 < π β€ +β, consider inequality (16), where π, ππ , ππ and βπ are given nonnegative functions and satisfy the following hypotheses: (H1 ) π is a locally integrable function on [π‘0 , π), that is, Lebesgue integrable on every compact subset of [π‘0 , π), and the integrations in (16) are bounded by replacing π’ with π in (16);
was proposed as an extension of the exponential function by Mittag-Leffler ([19]) in 1903. An extension of two parameters β
π§π , Ξ (ππΌ + π½) π=0
(19) was proposed by Wiman [20] in 1905. Later, two MittagLeffler functions with three parameters were given separately by Prabhakar [21] and Kilbas and Saigo [22]. In 1996 Hadid and Luchko [18] generalized the function into the multiple form
(H4 ) every ππ , π = 1, . . . , π, is continuously differentiable on [π‘0 , π) such that ππσΈ (π‘) > 0 and π‘ β€ ππ (π‘) β€ ππβ1 (π‘) for all π‘ β [π‘0 , π). Theorem 1. Suppose that (H1 )β(H4 ) hold and π½π > β1, π = 1, . . . , π. Then, every nonnegative and locally integrable function π’(π‘) which satisfies (16) on [π‘0 , π) and the integrations in (16) bounded has the estimate π’ (π‘) β€ π (π‘)
π
(π; π1 , . . . , ππ ) βππ=1 π§ππ , πΈ(πΌ1 ,...,πΌπ ),π½ (π§1 , . . . , π§π ) := β β Ξ (βππ=1 ππ πΌπ + π½) π=0 π +β
β
β
+π =π β
1
(20) where πΌπ , π½, π§π β C, R(πΌπ ), R(π½) > 0, π = 1, . . . , π and (π; π1 , . . . , ππ ) :=
β
β«
ππ1 (π‘)
ππ1 (π‘0 )
(π‘ β ππ1 (π ))
π
π=1
πΌπ , π§π β R+ ,
π§π , Ξ (ππΌ + 1) π=0
π
π
π=1
π=1
ππ > 0, π = 1, . . . , π. (23)
π‘ β [π‘0 , π) , (17)
β 1 (1 + (1/π))βπ=1 ππ +1 . Ξ (βππ + 1) = π β βπ=1 ππ + 1 π=1 1 + (βπ π=1 (ππ + 1) /π) π=1
(24)
It follows that Ξ (βπ π=1 ππ + 1) π βπ=1 Ξ (ππ + 1) =
β βπ βπ π=1 (ππ + 1) π=1 (1 + ((ππ + 1) /π)) . β π βπ=1 ππ + 1 π=1 (1 + (1/π))πβ1 (1 + (βπ π=1 (ππ + 1) /π)) (25)
π It is easy to know that βπ π=1 (ππ + 1) β₯ βπ=1 ππ + 1. Then, we can prove by induction that π
(18)
1 β (1 + (1/π))ππ +1 , β ππ + 1 π=1 1 + ((ππ + 1) /π) π
π
π§ β C, πΌ > 0,
π = 1, . . . , π.
In fact, we can show that
Ξ (ππ + 1) =
We leave the proof of this theorem to next section. In what follows, we express the estimate of series form in terms of the multiple Mittag-Leffler function (see [18]). The original Mittag-Leffler function β
(22)
By Eulerβs definition on Gamma function (see [24]), we have
where Μβπ (π‘) = max(π ,π)β[π‘0 ,π‘]Γ[π‘0 ,π‘] βπ (π , π)/ππσΈ (π), π = 1, . . . , π.
πΈπΌ (π§) := β
(21)
πΈ(πΌ1 ,...,πΌπ ),1 (π§1 , . . . , π§π ) β€ βπΈπΌπ (π§π ) ,
βππ=1 π½ππ +πβ1
} ΓππσΈ 1 (π ) π (π ) ππ } , }
π! . π1 ! Γ β
β
β
Γ ππ !
These generalized Mittag-Leffler functions have been treated as significant special functions since they played an important role in computing fractional calculus and solving fractional differential and integral equations modeled in physics, chemistry, biology, engineering, and applied sciences (see monographs [11, 23]). We have the following inequality:
Ξ (βππ + 1) β₯ βΞ (ππ + 1) ,
β { βππ=1 Ξ (π½ππ + 1) Μβππ (π‘) +β{ β Ξ (βππ=1 π½ππ + π) π=1 1β€π1 ,...,ππ β€π {
π
π1 ,...,ππ β₯0
(H2 ) every βπ , π = 1, . . . , π, is continuous on [π‘0 , π)Γ[π‘0 , π); (H3 ) every ππ : [π‘0 , π) β [π‘0 , π), π = 1, . . . , π, is continuous and strictly increasing such that ππ (π‘) β€ π‘ for all π‘ β [π‘0 , π);
πΌ, π½, π§ β C, R (πΌ) , R (π½) > 0,
πΈπΌ,π½ (π§) := β
β (1 + π=1
βπ π + 1 ππ + 1 1 πβ1 (1 + π=1 π ) β₯ (1 + ) ). π π π
(26)
4
Journal of Applied Mathematics
Obviously, (26) is true for π = 1. Assume that (26) is true for π = π. We get π+1
β (1 + π=1
βπ π + 1 ππ + 1 1 πβ1 ) = (1 + ) (1 + π=1 π ) π π π π +1 Γ (1 + π+1 ) π βπ+1 π + 1 1 π β₯ (1 + ) (1 + π=1 π ), π π
β βππ=1 Ξ (π½ππ + 1) Μβππ (π‘) { β€ πΜ (π‘) {1 + β ( β π π=1 1β€π1 ,...,ππ β€π Ξ (βπ=1 π½ππ + π + 1) { βππ=1 (π½ππ +1)
Γ(π‘ β π‘0 ) (27)
β
= πΜ (π‘) β
} )} }
π
(βΞ (π½ππ + 1) Μβππ (π‘)
β
π=0 1β€π1 ,...,ππ β€π
π=1
π½ππ +1
Γ(π‘ β π‘0 )
since βππ=1 ππ
(1 +
+1
π
) (1 +
ππ+1 + 1 ) π
β1
π
βπ+1 π + 1 1 ), β₯ (1 + ) (1 + π=1 π π π
(28)
Γ (Ξ (βπ½ππ + π + 1)) π=1
= πΜ (π‘) β
implying that (26) holds for π = π + 1. Thus, from (26) we see that (23) holds. By (23), we have
Γβ
β
π=0 π1 +β
β
β
+ππ =π π1 ,...,ππ β₯0
( (π; π1 , . . . , ππ ) π
πΈ(πΌ1 ,...,πΌπ ),1 (π§1 , . . . , π§π ) β
= β
β
β
β
Γ β (Ξ (π½π + 1) Μβπ (π‘) π=1
βπ π=1 π§ππ
π π=0 1β€π1 ,...,ππ β€π Ξ (βπ=1
πΌππ + 1)
ππ
π½π +1 ππ
Γ(π‘ β π‘0 )
(29)
π
π βππ=1 π§π π = βπΈπΌπ (π§π ) . π β Ξ (ππ πΌπ + 1) π=1 =0 π=1
π
β€ β β
β
β
β π1 =0
)
) )
β1
Γ (Ξ (βππ (π½π + 1) + 1)) π=1
Therefore, (22) is proved.
= πΜ (π‘) πΈ(π½1 +1,...,π½π +1),1
Corollary 2. Suppose that the hypotheses of Theorem 1 hold and additionally that π(π‘) is continuous on [π‘0 , π). Then,
π½ +1 Γ (Μβ1 (π‘) Ξ (π½1 + 1) (π‘ β π‘0 ) 1 ,
. . . , Μβπ (π‘) Ξ (π½π + 1) (π‘ β π‘0 )
π’ (π‘) β€ πΜ (π‘) πΈ(π½1 +1,...,π½π +1),1
π½π +1
). (31)
π½ +1 Γ (Μβ1 (π‘) Ξ (π½1 + 1) (π‘ β π‘0 ) 1 , π½π +1
. . . , Μβπ (π‘) Ξ (π½π + 1) (π‘ β π‘0 )
)
(30)
π
π½ +1 β€ πΜ (π‘) βπΈπ½π +1 (Μβπ (π‘) Ξ (π½π + 1) (π‘ β π‘0 ) π ) , π=1
where πΜ(π‘) = maxπ‘0 β€πβ€π‘ π(π) and πΈπΌ (π§) and πΈ(πΌ1 ,...,πΌπ ),1 are defined in (18) and (20).
ππ1 (π‘0 )
π½ +1 Γ (Μβ1 (π‘) Ξ (π½1 + 1) (π‘ β π‘0 ) 1 , π½ +1 . . . , Μβπ (π‘) Ξ (π½π + 1) (π‘ β π‘0 ) π )
(32)
π
β { βππ=1 Ξ (π½ππ + 1) Μβππ (π‘) { π’ (π‘) β€ πΜ (π‘) {1 + β { β Ξ (βππ=1 π½ππ + π) π=1 1β€π1 ,...,ππ β€π { { ππ1 (π‘)
πΜ (π‘) πΈ(π½1 +1,...,π½π +1),1
π½ +1 β€ πΜ (π‘) βπΈπ½π +1 (Μβπ (π‘) Ξ (π½π + 1) (π‘ β π‘0 ) π ) .
Proof. Starting from (17), we have
Γβ«
It follows from (22) that
(π‘ β ππ1 (π ))
βππ=1 π½ππ +πβ1
}} ΓππσΈ 1 (π ) ππ }} }}
π=1
The corollary is proved.
3. Proof of Theorem Let πΏ1loc,π€ [π‘0 , π) consist of all locally integrable nonnegative π (π‘)
π π½π functions π on [π‘0 , π) such that βπ π=1 β«ππ (π‘0 ) (π‘ β ππ (π )) βπ (π‘, π )π(π )ππ < β for arbitrarily given π‘ β [π‘0 , π). We can
Journal of Applied Mathematics
5
verify that πΏ1loc,π€ [π‘0 , π) is a linear space, due to the linearity of integration. Define a linear operator π΅ on πΏ1loc,π€ [π‘0 , π) as π
π΅π (π‘) := β β«
ππ (π‘)
π½
π=1 ππ (π‘0 )
(π‘ β ππ (π )) π βπ (π‘, π ) π (π ) ππ ,
It follows that π΅π+1 π’ (π‘) β€
π‘ β [π‘0 , π) ,
π (π‘)
π π½π [π‘0 , π), βπ π=1 β«ππ (π‘0 ) (π‘ β ππ (π )) βπ (π‘, π )π(π )ππ < β, implying that π΅π β πΆ+ [π‘0 , π), the set of all continuous and nonnegative functions on [π‘0 , π). We know that πΆ+ [π‘0 , π) β πΏ1loc [π‘0 , π). For all π β πΆ+ [π‘0 , π), from the continuity of π and βπ , we know that they are all locally bounded. We also know that (π‘ β ππ (π ))π½π are integrable on π β [ππ (π‘0 ), ππ (π‘)] by (H3 ), (H4 ) and π½π > β1. It follows that
π (π‘)
π π½π βπ π=1 β«π (π‘ ) (π‘ β ππ (π )) βπ (π‘, π )π(π )ππ π
0 on [π‘0 , π). In fact, (35) is true for π = 1. Assume that (35) is true for π = π. Then
β€
πππ (πππ (π‘))
πππ (πππ (π‘0 ))
(35)
βππ=1 Ξ (π½ππ β Ξ (βππ=1 1β€π1 ,...,ππ β€π
(π β πππ+1 (π))
(π ) π (π ) ππ ,
Note that πππ (πππ (π‘)) β€ π‘ by (H4 ). It implies that π β πππ+1 (π) β₯ 0 for all π β [πππ+1 (π‘0 ), πππ+1 (π )] by the monotonicity of πππ+1 . It follows from (39) that π is a nondecreasing function. Hence, π(ππβ1 (π‘)) β€ π(π‘) by (H4 ). On the other hand, from (H3 ) π and (H4 ) we see that ππ (π‘0 ) = ππ (π‘0 ) = π‘0 , implying that πππ (πππ (π‘0 )) = π‘0 . With the change of variables π = πππ (π ), it follows from (38) that
π½ππ + π) βππ=1
βππ=1 π½ππ +πβ1 σΈ πππ
(π‘ β πππ (π ))
πππ+1 (π‘0 )
βππ=1 Ξ (π½ππ + 1) Μβππ (π‘)
β
(37)
π
π=0
We claim that for all integers π β₯ 1,
Ξ (βππ=1 π½ππ + π)
1β€π1 ,...,ππ β€π
(33) where π β πΏ1loc,π€ [π‘0 , π). We claim that π΅ is self-mapping on πΏ1loc,π€ [π‘0 , π). In fact, for all π β πΏ1loc,π€ [π‘0 , π) and given π‘ β
βππ=1 Ξ (π½ππ + 1) Μβππ (π‘)
β
(π‘ β π )βπ=1 π½ππ +πβ1 Γ (π β πππ+1 (π))
(π )
(41) π½ππ+1
ππ
Γ ππσΈ π+1 (π) π’ (π) ππ, (36)
βππ+1 (π , π)
Γ (π β πππ+1 (π)) Γπ’ (π) ππ} ππ .
π½ππ+1
by interchanging the order of integration. In (41) we observe that β«
π‘
π
ππβ1 (π) π+1
(π‘ β π )βπ=1 π½ππ +πβ1 (π β πππ+1 (π)) βπ+1 π=1 π½ππ +π
= (π‘ β πππ+1 (π))
π½ππ+1
ππ
6
Journal of Applied Mathematics π‘
Γβ«
ππβ1
π+1
π‘βπ ) ( (π) π‘ β πππ+1 (π) Γ(
π β πππ+1 (π) π‘ β πππ+1 (π)
βππ=1 π½ππ +πβ1
π½ππ+1
)
π(
where π₯ β (0, β) and π > 0 is a constant. By Eulerβs definition on Gamma function (see [24]), Ξ(π₯) = (1/π₯)ββ π=1 (1 + (1/π))π₯ /(1 + (π₯/π)), we know that
π β πππ+1 (π) π‘ β πππ+1 (π)
)
Ξ¨π (π₯) = (1 +
βπ+1 π=1 π½ππ +π
= (π‘ β πππ+1 (π)) 1
π
π§1
βπ+1 π=1 π½ππ +π
β€ (π‘ β πππ+1 (π)) Γ β« (1 β π§)
π§
0
βπ+1 π=1 π½ππ +π
= (π‘ β πππ+1 (π)) =
Ξ (π½ππ + 1)
βππ=1 π½ππ +πβ1 π½ππ+1
Ξ (βππ=1
ππ§
π΅ (βπ½ππ + π, π½ππ+1 + 1) π=1
,
β€
where π§ := {π β πππ+1 (π)}/{π‘ β πππ+1 (π)} and π§1 := β πππ+1 (π)}/{π‘ β πππ+1 (π)} β₯ 0 by (H4 ). Thus, from (37) we see that inequality (35) holds for π = π + 1 and the claimed (35) is proved. For every π(π‘) β πΏ1loc,π€ [π‘0 , π) and each π = 0, 1, . . . , β, define a sequence of linear operators π΄ π : πΏ1loc,π€ [π‘0 , π) β πΆ[π‘0 , π) by
πππ (π‘)
β
β«
πππ (π‘0 )
βππ=1 Ξ (π½ππ + 1) Μβππ (π‘) Ξ (βππ=1 π½ππ + π) βππ=1
(π‘ β πππ (π )) Γ
πππ (π‘)
where β«π πππ (π‘)
β«π
ππ (π‘0 )
ππ (π‘0 )
(π‘ β
ππσΈ π
Ξ (βππ=1 π½ππ β πΏ + π)
Let π½β := min1β€πβ€π π½π , π½β := max1β€πβ€π π½π and π := (π½β + 1)/(π½β + 1) β₯ 1. Then (48) implies that βππ=1 Ξ (π½ππ + 1) Ξ (βππ=1 π½ππ + π)
Theorem 1 and (π‘ β [πππ (π‘0 ), πππ (π‘)). It implies from (35) that π
π΅ π (π‘) β€ π΄ π π (π‘) .
are continuous on
(44)
In what follows we will prove that for all π β πΏ1loc,π€ [π‘0 , π) and arbitrarily given π‘ β [π‘0 , π), ββ π=1 π΄ π π(π‘) converges. Define Ξ (π₯) , Ξ (π₯ + π)
(45)
(49)
=
Ξ (βππ=1 π½ππ + π)
1β€π1 ,...,ππ β€π πππ (π‘)
πππ (π‘0 )
(π ) π (π ) ππ ,
πβ1 πππ (π ))βπ=1 (π½ππ +1) ππσΈ π (π )
(Ξ (π½β + 1)) . Ξ (π (π½β + 1))
βππ=1 Ξ (π½ππ + 1) Μβππ (π‘)
β Γβ«
(π‘ β πππ (π ))π½ππ π(π )ππ < β from the supposition of
π
β€
When π‘ β (π‘0 + 1, π), we have
(43)
< β since
.
(48)
π΄ π π (π‘) =
π½ππ +πβ1
π πππ (π ))βπ=1 π½ππ +πβ1 ππσΈ π (π )π(π )ππ
Ξ¨π (π₯) :=
(47)
πβ1
{ππβ1 (π) π+1
β
.
βπ=1 Ξ (π½ππ + 1) Ξ (π½ππ β πΏ + 1) βππ=π+1 Ξ (π½ππ + 1)
(42)
1β€π1 ,...,ππ β€π
Ξ (βππ=1 π½ππ β πΏ + π)
Ξ (βππ=1 π½ππ + π)
Ξ (βπ+1 π=1 π½ππ + π + 1)
π΄ π π (π‘) :=
Ξ (π½ππ β πΏ + 1)
βππ=1 Ξ (π½ππ + 1)
Ξ (βππ=1 π½ππ + π) Ξ (π½ππ+1 + 1)
Γ (π‘ β πππ+1 (π))
π½ππ + π)
β€
Multiplying the above inequality by (βππ=1 Ξ(π½ππ + 1))/Ξ(π½ππ + 1), we get that
π
βπ+1 π=1 π½ππ +π
(46)
and therefore Ξ¨π is strictly decreasing on (0, β). Thus, for all integers 1 β€ ππ , ππ β€ π, 1 β€ π, π β€ π and πΏ β₯ 0 satisfying that β1 < π½ππ β πΏ < 0, we have Ξ¨π (π½ππ + 1) β€ Ξ¨π (π½ππ β πΏ + 1), where π := (βππ=1 π½ππ ) + π β π½ππ β 1, implying that
Γ β« (1 β π§)βπ=1 π½ππ +πβ1 π§π½ππ+1 ππ§
1
1 π π β )β ), π (1 + π₯ π=1 (1 + (1/π)) π+π₯
(π‘ β πππ (π ))
(π ) π (π ) ππ
βππ=1 Ξ (π½ππ + 1) Μβππ (π‘)
β 1β€π1 ,...,ππ β€π
Γ {β«
βππ=1 π½ππ +πβ1 σΈ πππ
ππβ1 (π‘β1) π
πππ (π‘0 )
Ξ (βππ=1 π½ππ + π) π½ππ
(π‘ β πππ (π ))
π (π )
βπβ1 π=1 π½ππ +πβ1 σΈ πππ
Γ (π‘ β πππ (π )) +β«
πππ (π‘)
ππβ1 (π‘β1) π
π½ππ
(π‘ β πππ (π ))
Γ(π‘ β πππ (π ))
(π ) ππ
π (π )
βπβ1 π=1 π½ππ +πβ1 σΈ πππ
(π ) ππ }
Journal of Applied Mathematics
7 π
Then ββ π=1 ππ (π‘) is convergent on (π‘0 + 1, π) by the ratio test ([25, pages 66-67]) because
π (Ξ (π½ + 1)) β β€ ππβ1 ( max {Μβπ (π‘)}) π=1,...,π Ξ (π (π½β + 1)) π
Γ β {β«
ππβ1 (π‘β1)
ππ (π‘0 )
π=1
(π‘ β ππ (π )) π (π )
Γ (π‘ β ππ (π‘)
+β«
lim
π½π
π β +β
(πβ1)π(π½β +1) σΈ ππ (π )) ππ
= lim π max {Μβπ (π‘)} π β +β
(π ) ππ
Γ
π½π
ππβ1 (π‘β1)
ππ+1 (π‘) ππ (π‘)
(π‘ β ππ (π )) π (π )
π=1,...,π
Ξ (π½β + 1) Ξ (π (π½β + 1)) π(π½ +1) (π‘ β π‘0 ) β Ξ ((π + 1) (π½β + 1))
= lim π΅ (π½β + 1, π (π½β + 1)) π
(53)
π β +β
(πβ1)(π½β +1) σΈ ππ
Γ(π‘ β ππ (π ))
(π ) ππ }
π(π½ +1) Γ max {Μβπ (π‘)} (π‘ β π‘0 ) β π=1,...,π
π
π (Ξ (π½ + 1)) β β€ (π max {Μβπ (π‘)}) π=1,...,π Ξ (π (π½β + 1))
= lim
Γ {(π‘ β π‘0 ) Γβ«
ππ (π‘0 )
+β«
ππ (π‘)
where we note that π maxπ=1,...,π {Μβπ (π‘)}(π‘ β π‘0 )π(π½β +1) is a continuous function on [π‘0 , π) and Ξ(π½β + 1)/(π(π½β + 1))π½β +1 is a Stirlingβs approximation of π΅(π½β + 1, π(π½β + 1)) as π β +β, as known in [26, pages 59]. It implies that ββ π=1 π΄ π π(π‘) is convergent on (π‘0 + 1, π). The case of π‘ β [π‘0 , π‘0 + 1] can be proved similarly. Then, ββ π=1 π΄ π π(π‘) is convergent for π β πΏ1loc,π€ [π‘0 , π) and arbitrarily given π‘ β [π‘0 , π). Passing to the limit as π β +β in (34), by (44) we get
π½π
(π‘ β ππ (π )) π (π ) ππσΈ (π ) ππ (π‘ β ππ (π )) π (π ) ππσΈ (π ) ππ } π
π (Ξ (π½ + 1)) β β€ (π max {Μβπ (π‘)}) π=1,...,π Ξ (π (π½β + 1))
β
π’ (π‘) β€ β π΄ π π (π‘) π=0
(πβ1)π(π½β +1)
Γ (π‘ β π‘0 ) ππ (π‘)
βππ=1 Ξ (π½ππ + 1) Μβππ (π‘) { = π (π‘) + β { β Ξ (βππ=1 π½ππ + π) π=1 1β€π1 ,...,ππ β€π { β
π½π
Γβ«
ππ (π‘0 )
(π‘ β ππ (π )) π (π ) ππσΈ (π ) ππ , (50)
Γβ«
πππ (π‘)
πππ (π‘0 )
where β«
ππ (π‘)
(π‘ β ππ (π )) π (π ) ππσΈ (π ) ππ
= max {β« π=1,...,π
(51)
ππ (π‘)
π½
ππ (π‘0 )
(π‘ β πππ (π ))
βππ=1 π½ππ +πβ1
(54)
} ΓππσΈ π (π ) π (π ) ππ } . }
π½π
ππ (π‘0 )
π
π=1,...,π
π½π
ππβ1 (π‘β1)
π½β +1
(π (π½β + 1))
π(π½ +1) Γ max {Μβπ (π‘)} (π‘ β π‘0 ) β = 0,
(πβ1)π(π½β +1)
ππβ1 (π‘β1)
Ξ (π½β + 1)
π β +β
(π‘ β ππ (π )) π π (π ) ππσΈ (π ) ππ } < β.
Since ππ βs are chosen arbitrarily, by interchanging ππ with π1 in (54), we obtain the estimate (17) and complete the proof of the theorem.
4. Application to Dependence
Let
Recently, increasing interest was given to fractional differential equations (see monographs [11, 23]). In this section we consider the Cauchy problem of the general fractional differential equation
π
(Ξ (π½β + 1)) ππ (π‘) := (π max {Μβπ (π‘)}) π=1,...,π Ξ (π (π½β + 1)) π
(πβ1)π(π½β +1)
Γ (π‘ β π‘0 ) Γβ«
ππ (π‘)
ππ (π‘0 )
(52) π½π
(π‘ β ππ (π )) π (π ) ππσΈ (π ) ππ .
π
πΌ
π·π‘10 π₯ (π‘) = βπ·π‘0π ππ (π‘, π₯ (ππ (π‘))) ,
(55)
π₯ (π‘0 ) = π,
(56)
π=1
8
Journal of Applied Mathematics πΌ
where 0 β€ πΌπ < 1, π‘0 β€ π‘ β€ π < +β, π·π‘0π is defined as in the Introduction, particularly, π·π‘10 denotes π/ππ‘ and π·π‘00 denotes identity map, ππ : [π‘0 , π] β [π‘0 , π] and ππ : [π‘0 , π] Γ R β R, π = 1, . . . , π. This system includes the system π·01 π₯ (π‘)
+
ππ·0πΌ π₯ (π‘)
+
π·00 π₯ (π‘)
= π (π‘) ,
+
π₯ (0 ) = π,
Proposition 3. Suppose that each ππ β πΆ1 ([π‘0 , π], [π‘0 , π]) is strictly increasing such that ππ (π‘) β€ π‘ and each ππ β πΆ([π‘0 , π] Γ [πβπ, π+π], R) satisfies that |ππ (π‘, π₯1 )βππ (π‘, π₯2 )| β€ πΏ π |π₯1 βπ₯2 |, π = 1, . . . , π, where π > 0, π > 0, and πΏ π > 0 are constant. Then, the Cauchy problem (55)-(56) has a unique solution on [π‘0 , π‘0 + β] for a certain constant 0 < β < π and the solution depends continuously on π, πΌπ βs, ππ βs, and ππ βs for all π‘ β [π‘0 , π‘0 + β]. Proof. The Cauchy problem (55)-(56) is equivalent to the integral equation π₯ (π‘) π
π‘
π=1 π‘0 π
π :=
π
ππ1βπΌπ = π. π=1 Ξ (2 β πΌπ )
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ππ (π‘) β ππβ1 (π‘)σ΅¨σ΅¨σ΅¨ β€
πβππ=2 πΏ ππ
β
1β€π1 ,...,ππ β€π Ξ (1
Define a sequence {ππ (π‘)} such that π0 (π‘) β‘ π and 1 π=1 Ξ (1 β πΌπ )
ππ (π‘) = π + β
β€ (59)
πβ β€ π, π=1 Ξ (2 β πΌπ )
β€β
1β€π1 ,...,ππ β€π Ξ (1
βππ=1 (1βπΌππ )
πβππ=2 πΏ ππ
β
1β€π1 ,...,ππ β€π Ξ (1
+ βππ=1 (1 β πΌππ )) .
Combining with (59), we have σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ππ+1 (π‘) β ππ (π‘)σ΅¨σ΅¨σ΅¨ π
1
β€ β
ππ+1 =1 Ξ (1
β πΌππ+1 )
π‘
Γ β« (π‘ β π )βπΌππ+1 (60)
(63)
+ βππ=1 (1 β πΌππ ))
βππ=1 (1βπΌππ )
π
,
πβππ=2 πΏ ππ
β
Γ (π β π‘0 )
π‘0
1βπΌπ
(1 β πΌππ ))
Γ (πππ+1 (π ) β π‘0 )
π
π
βππ=1 (1βπΌππ )
(π‘ β π‘0 )
σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ππ (πππ+1 (π )) β ππβ1 (πππ+1 (π ))σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
(58)
π‘ 1 σ΅¨ σ΅¨ β€β β« (π‘ β π )βπΌπ σ΅¨σ΅¨σ΅¨ππ (π , ππ (ππ (π )))σ΅¨σ΅¨σ΅¨ ππ π=1 Ξ (1 β πΌπ ) π‘0
+
βππ=1
for all π‘ β [π‘0 , π‘0 + β] and all integers π. It can be checked easily for π = 1. Suppose that it is true for some π. By changing π‘ into πππ+1 (π ) in (63), we get from πππ+1 (π ) β€ π that
β€
where π‘ β [π‘0 , π‘0 + β]. We first claim that all ππ (π‘) are welldefined and continuous in [π‘0 , π‘0 +β], such that |ππ (π‘)βπ| β€ π. In fact, it is true for π = 0. Suppose that it is true for some π. Then, ππ+1 is also well defined by (59) and continuous in [π‘0 , π‘0 + β]. Moreover, σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ππ+1 (π‘) β πσ΅¨σ΅¨σ΅¨
(62)
The existence of π is guaranteed by the intermediate theorem for continuous functions. Thus, the claim is proved by induction for all π. The convergence of the sequence {ππ (π‘)} is equivalent to the convergence of the series π0 (π‘) + ββ π=1 (ππ (π‘) β ππβ1 (π‘)). We claim that
π‘ 1 β« (π‘ β π )βπΌπ ππ (π , π₯ (ππ (π ))) ππ . π=1 Ξ (1 β πΌπ ) π‘0
π = 1, 2, . . . ,
(61)
β
=π+β
Γ β« (π‘ β π )βπΌπ ππ (π , ππβ1 (ππ (π ))) ππ ,
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ππ (π‘, π₯)σ΅¨σ΅¨σ΅¨ ,
and π is a positive constant such that
π 1 π (β« (π β π)βπΌπ ππ (π, π₯ (ππ (π))) ππ) Ξ (1 β πΌπ ) π‘0
π‘
max
(π‘,π₯)β[π‘0 ,π]Γ[πβπ,π+π] π=1,...,π
β := min {π β π‘0 , π} ,
(57)
as a special case, which was considered in [27] and corresponds to the Basset problem when πΌ = 1/2, a classical problem in fluid dynamics concerning the unsteady motion of a particle accelerating in a viscous fluid under the action of gravity (see [28]). We will give continuous dependence for solutions of (55) associated with the initial condition (56) on the derivative orders πΌπ βs, the initial data π, and the functions ππ and ππ .
= π + ββ«
where
π‘0
σ΅¨ Γ σ΅¨σ΅¨σ΅¨σ΅¨πππ+1 (π , ππ (πππ+1 (π )))
σ΅¨ βπππ+1 (π , ππβ1 (πππ+1 (π )))σ΅¨σ΅¨σ΅¨σ΅¨ ππ
(64)
Journal of Applied Mathematics π
9
πΏ ππ+1
β€ β
Next, we prove the continuous dependence of the solution. Consider the Cauchy problem
ππ+1 =1 Ξ (1 β πΌππ+1 )
π
π‘ σ΅¨ σ΅¨ Γ β« (π‘ β π )βπΌππ+1 σ΅¨σ΅¨σ΅¨σ΅¨ππ (πππ+1 (π )) β ππβ1 (πππ+1 (π ))σ΅¨σ΅¨σ΅¨σ΅¨ ππ π‘
1β€π1 ,...,ππ+1 β€π Ξ (1
+ βππ=1 (1 β πΌππ )) Ξ (1 β πΌππ+1 )
π‘
βππ=1 (1βπΌππ )
π‘0
(68)
where 0 β€ πΌΜπ < 1, π‘0 β€ π‘ β€ π < +β, Μππ β πΆ1 ([π‘0 , π], [π‘0 , π]) is strictly increasing such that ππ (π‘) β€ π‘, and πΜπ β πΆ([π‘0 , π] Γ [Μ π β π, πΜ + π], R) is Lipschitzian in the second variable with Μ π , π = 1, . . . , π. As above, we similarly the Lipschitz constant πΏ obtain a solution π of the Cauchy problem (67)-(68). Similar to (58), we have
ππ
π+1
β 1β€π1 ,...,ππ+1 β€π
(π (βπΏ ππ ) π=2
π
π‘ 1 β« (π‘ β π )βπΌπ ππ (π , π (ππ (π ))) ππ , π=1 Ξ (1 β πΌπ ) π‘0
π (π‘) = π + β
π
Γ π΅ (1 + β (1 β πΌππ ) , 1 β πΌππ+1 ) π=1
π
π‘ 1 β« (π‘ β π )βΜπΌπ πΜπ (π , π (Μππ (π ))) ππ . Μπ ) π‘0 π=1 Ξ (1 β πΌ (69)
π (π‘) = πΜ + β
π
Γ (Ξ (1 + β (1 β πΌππ )) π=1
It follows that
β1
Γ Ξ (1 β πΌππ+1 ) ) )
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π (π‘) β π (π‘)σ΅¨σ΅¨σ΅¨
π σ΅¨σ΅¨ 1 σ΅¨ β€ |π β πΜ| + β σ΅¨σ΅¨σ΅¨σ΅¨ π=1 σ΅¨σ΅¨ Ξ (1 β πΌπ )
βπ+1 π=1 (1βπΌππ )
Γ (π‘ β π‘0 ) =
π₯ (π‘0 ) = πΜ,
πβπ+1 π=2 πΏ ππ
β
Γ β« (π‘ β π )βπΌππ+1 (π β π‘0 ) =
(67)
π=1
0
β€
πΌΜ π·π‘10 π₯ (π‘) = βπ·π‘0π πΜπ (π‘, π₯ (Μππ (π‘))) ,
πβπ+1 π=2 πΏ ππ
β
1β€π1 ,...,ππ+1 β€π Ξ (1
+
βπ+1 π=1
βπ+1 π=1 (1βπΌππ )
(1 β πΌππ ))
(π‘ β π‘0 )
π‘
.
Γ β« (π‘ β π )βπΌπ ππ (π , π (ππ (π ))) ππ π‘0
(65) β
σ΅¨σ΅¨ π‘ σ΅¨ Γ β« (π‘ β π )βΜπΌπ πΜπ (π , π (Μππ (π ))) ππ σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ π‘0
Thus, (63) holds for π + 1 and the claim is proved for all π by induction. From (63), for π‘ β€ π‘0 + β we have
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ππ (π‘) β ππβ1 (π‘)σ΅¨σ΅¨σ΅¨ β€
π σ΅¨σ΅¨ 1 σ΅¨ β€ Ξ (π‘) + β {σ΅¨σ΅¨σ΅¨σ΅¨ Ξ (1 β πΌπ ) σ΅¨ π=1 σ΅¨
π
β
πββπ=1 (1βπΌππ ) βππ=2 πΏ ππ
1β€π1 ,...,ππ β€π Ξ (1
+ βππ=1 (1 β πΌππ ))
1 Ξ (1 β πΌΜπ )
π‘
Γ β« (π‘ β π )βπΌπ ππ (π , π (ππ (π ))) ππ
(66)
π‘0
ππ πβπ(1βπΌβ ) πΏπβ1 , β€ Ξ (1 + π (1 β πΌβ )) where πΏ := max1β€πβ€π πΏ π , πΌβ := max1β€πβ€π πΌπ , and πΌβ := min1β€πβ€π πΌπ . By the ratio test ([25, pp. 66-67]), we get that π π(1βπΌβ ) πβ1 πΏ /Ξ(1 + π(1 β πΌβ )) is convergent, implying ββ π=1 π πβ that the series π0 (π‘) + ββ π=1 (ππ (π‘) β ππβ1 (π‘)) and therefore the sequence {ππ (π‘)} are uniformly convergent in [π‘0 , π‘0 + β]. Let π(π‘) := limπ β β ππ (π‘), which is well-defined and continuous in [π‘0 , π‘0 + β] such that |π(π‘) β π| β€ π. One can check that π is a continuous solution of the Cauchy problem (55)-(56) in [π‘0 , π‘0 + β].
β
1 Ξ (1 β πΌπ )
σ΅¨σ΅¨ π‘ σ΅¨ Γ β« (π‘ β π )βπΌπ ππ (π , π (ππ (π ))) ππ σ΅¨σ΅¨σ΅¨σ΅¨} σ΅¨σ΅¨ π‘0 π
πΏπ π=1 Ξ (1 β πΌπ )
β€ Ξ (π‘) + β ππ (π‘)
Γβ«
ππ (π‘0 )
(π‘ β ππβ1 (π ))
βπΌπ
σ΅¨ σ΅¨σ΅¨ β1 σ΅¨σ΅¨π (π ) β π (π )σ΅¨σ΅¨σ΅¨ π (ππ (π )) , (70)
10
Journal of Applied Mathematics Μ contains |(π‘ β π‘0 )1βπΌπ /Ξ(2 β πΌπ ) β Note from (71) that Ξ(π‘) 1βΜ πΌπ (π‘ β π‘0 ) /Ξ(2 β πΌΜπ )| and |π(ππ (π )) β π(Μππ (π ))|, which will be estimated with βππ β Μππ β := maxπ‘0 β€πβ€π‘0 +β |ππ (π) β Μππ (π)| and |πΌπ β πΌΜπ |, respectively. In (71) we have βππ β β€ π in (61). Since (π‘ β π‘0 )1βπΌπ and Ξ(2 β πΌπ ) are both πΆ1 functions in πΌπ β [0, 1], and Ξ(2βπΌπ ) > 0 for all πΌπ β [0, 1], we see that (π‘ β π‘0 )1βπΌπ /Ξ(2β πΌπ ) is πΆ1 in πΌπ β [0, 1]. By the Lagrange mean value theorem (see [25, page 108]), function (π‘ β π‘0 )1βπΌπ /Ξ(2 β πΌπ ) satisfies the Lipschitz condition uniformly with respect to π‘ β [π‘0 , π‘0 + β]; that is, there exists a constant π > 0 such that
where Ξ (π‘) := |π β πΜ| π σ΅¨σ΅¨ 1 σ΅¨ + β {σ΅¨σ΅¨σ΅¨σ΅¨ π=1 σ΅¨σ΅¨ Ξ (1 β πΌπ ) π‘
Γ β« (π‘ β π )βπΌπ ππ (π , π (ππ (π ))) ππ π‘0
σ΅¨σ΅¨ 1βπΌ 1βΜ πΌ σ΅¨ σ΅¨σ΅¨ (π‘ β π‘0 ) π (π‘ β π‘0 ) π σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ Ξ (2 β πΌ ) β Ξ (2 β πΌΜ ) σ΅¨σ΅¨σ΅¨ β€ π σ΅¨σ΅¨πΌπ β πΌΜπ σ΅¨σ΅¨ , σ΅¨σ΅¨ π π σ΅¨σ΅¨
1 β Ξ (1 β πΌΜπ ) σ΅¨σ΅¨ σ΅¨ Γ β« (π‘ β π )βΜπΌπ ππ (π , π (ππ (π ))) ππ σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ π‘0 σ΅¨σ΅¨ π‘ 1 σ΅¨ + σ΅¨σ΅¨σ΅¨σ΅¨ β« (π‘ β π )βΜπΌπ ππ (π , π (ππ (π ))) ππ σ΅¨σ΅¨ Ξ (1 β πΌΜπ ) π‘0
βπΌπ , πΌΜπ β [0, 1] . (73)
π‘
On the other hand, from the equivalent integral equation of (67) π (π‘) = π (π‘0 ) π
+β
σ΅¨σ΅¨ 1 σ΅¨ β β« (π‘ β π )βΜπΌπ πΜπ (π , π (ππ (π ))) ππ σ΅¨σ΅¨σ΅¨σ΅¨ Ξ (1 β πΌΜπ ) π‘0 σ΅¨σ΅¨ π‘
σ΅¨σ΅¨ π‘ 1 σ΅¨ + σ΅¨σ΅¨σ΅¨σ΅¨ β« (π‘ β π )βΜπΌπ πΜπ (π , π (ππ (π ))) ππ σ΅¨σ΅¨ Ξ (1 β πΌΜπ ) π‘0
π=1 Ξ (1
(74)
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨π (π‘) β π (π‘0 )σ΅¨σ΅¨σ΅¨ β€ β
+
π‘ Μπ πΏ β« (π‘ β π )βΜπΌπ Ξ (1 β πΌΜπ ) π‘0
π
βππ β := max(π‘,π₯)β[π‘0 ,π]Γ[πβπ,π+π] |ππ (π‘, π₯)|, and βππ β πΜπ β := max(π‘,π₯)β[π‘0 ,π]Γ[πβπ,π+π] |ππ (π‘, π₯) β πΜπ (π‘, π₯)|. Thus, applying the inequality given in Corollary 2 to (70), we obtain that π
Μ := maxπ‘ β€πβ€π‘ Ξ(π). where Ξ(π‘) 0
(76)
Μ π
σ΅©σ΅© σ΅©1βΜπΌ σ΅©σ΅©ππ β Μππ σ΅©σ΅©σ΅© π . σ΅© σ΅© Μπ ) π=1 Ξ (2 β πΌ
β€β
(71)
βπ‘ β [π‘0 , π‘0 + β] ,
σ΅¨ σ΅¨σ΅¨ Μ σ΅¨σ΅¨ππ (π‘, π₯)σ΅¨σ΅¨σ΅¨ . σ΅¨
max
(π‘,π₯)β[π‘0 ,π]Γ[πβπ,π+π] σ΅¨ π=1,...,π
Μ π σ΅¨1βΜπΌ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ π σ΅¨σ΅¨ππ (π ) β Μππ (π )σ΅¨σ΅¨σ΅¨ π σ΅¨σ΅¨π (ππ (π )) β π (Μππ (π ))σ΅¨σ΅¨σ΅¨ β€ β σ΅¨ σ΅¨ σ΅¨ σ΅¨ Μπ ) π=1 Ξ (2 β πΌ
σ΅¨ σ΅¨ Γ σ΅¨σ΅¨σ΅¨σ΅¨π (ππ (π )) β π (Μππ (π ))σ΅¨σ΅¨σ΅¨σ΅¨ ππ } ,
π=1
(75)
Choosing π‘ = ππ (π ) and π‘0 = Μππ (π ) in (74), we obtain
σ΅© σ΅©σ΅© σ΅©σ΅©ππ β πΜπ σ΅©σ΅©σ΅© σ΅© σ΅©
1βπΌ σ΅¨ Μ σ΅¨σ΅¨ (π‘) βπΈ1βπΌπ (πΏ π (π‘ β π‘0 ) π ) , σ΅¨σ΅¨π (π‘) β π (π‘)σ΅¨σ΅¨σ΅¨ β€ Ξ
σ΅¨σ΅¨ σ΅¨1βΜπΌ σ΅¨σ΅¨π‘ β π‘0 σ΅¨σ΅¨σ΅¨ π ,
where Μ := π
σ΅¨σ΅¨ 1βπΌ 1βΜ πΌ σ΅¨ σ΅¨σ΅¨ (π‘ β π‘0 ) π (π‘ β π‘0 ) π σ΅¨σ΅¨σ΅¨ σ΅© σ΅© σ΅¨σ΅¨ σ΅©σ΅©π σ΅©σ΅© + β {σ΅¨σ΅¨σ΅¨ β σ΅¨ Ξ (2 β πΌΜπ ) σ΅¨σ΅¨σ΅¨σ΅¨ σ΅© π σ΅© π=1 σ΅¨σ΅¨ Ξ (2 β πΌπ )
Μ π
Μπ ) π=1 Ξ (2 β πΌ
π
(π‘ β π‘0 ) Ξ (2 β πΌΜπ )
π‘0
π
β€ |π β πΜ|
+
β πΌΜπ )
β« (π‘ β π )βΜπΌπ πΜπ (π , π (Μππ (π ))) ππ ,
we get
σ΅¨σ΅¨ π‘ 1 σ΅¨ β β« (π‘ β π )βΜπΌπ πΜπ (π , π (Μππ (π ))) ππ σ΅¨σ΅¨σ΅¨σ΅¨} Ξ (1 β πΌΜπ ) π‘0 σ΅¨σ΅¨
1βΜ πΌπ
π‘
1
(72)
(77) Summarily, from (71), (73) and (75) we get Ξ (π‘) β€ |π β πΜ| 1βΜ πΌ
π
π σ΅¨ (π‘ β π‘0 ) σ΅¨ + β {ππ σ΅¨σ΅¨σ΅¨πΌπ β πΌΜπ σ΅¨σ΅¨σ΅¨ + Ξ (2 β πΌΜπ ) π=1
+
σ΅© σ΅©σ΅© σ΅©σ΅©ππ β πΜπ σ΅©σ΅©σ΅© σ΅© σ΅©
π π‘ Μπ Μ πΏ π β« (π‘ β π )βΜπΌπ β Μ Ξ (1 β πΌπ ) π‘0 Μπ ) π=1 Ξ (2 β πΌ
σ΅©1βΜπΌπ σ΅© Γσ΅©σ΅©σ΅©σ΅©ππ β Μππ σ΅©σ΅©σ΅©σ΅© ππ }
Journal of Applied Mathematics
11
π { β1βΜπΌπ σ΅©σ΅© σ΅© σ΅¨ σ΅¨ σ΅©σ΅©ππ β πΜπ σ΅©σ΅©σ΅© β€ |π β πΜ| + β {ππ σ΅¨σ΅¨σ΅¨πΌπ β πΌΜπ σ΅¨σ΅¨σ΅¨ + σ΅© σ΅© Μ Ξ (2 β πΌ ) π π=1 {
σ΅© σ΅©1βΜπΌπ ΜπΏ Μ π β1βΜπΌπ π σ΅©σ΅©σ΅©σ΅©ππ β Μππ σ΅©σ΅©σ΅©σ΅© } π + . β Ξ (2 β πΌΜπ ) π=1 Ξ (2 β πΌΜπ ) } } (78) It follows from (72) that π
σ΅© σ΅©σ΅© 1βπΌ σ΅©σ΅©π β πσ΅©σ΅©σ΅© β€ βπΈ1βπΌπ (πΏ π β π ) |π β πΜ| π=1
π
π
π=1
π=1
σ΅¨ σ΅¨ + ππβπΈ1βπΌπ (πΏ π β1βπΌπ ) β σ΅¨σ΅¨σ΅¨πΌπ β πΌΜπ σ΅¨σ΅¨σ΅¨ π
π
β1βΜπΌπ σ΅©σ΅© σ΅© σ΅©σ΅©ππ β πΜπ σ΅©σ΅©σ΅© σ΅© σ΅© Μ Ξ (2 β πΌ ) π π=1
+ βπΈ1βπΌπ (πΏ π β1βπΌπ ) β π=1
π
ΜβπΈ1βπΌ (πΏ π β1βπΌπ ) +π π π=1
Μ π β1βΜπΌπ πΏ
σ΅©1βΜπΌ σ΅©σ΅© σ΅©σ΅©ππ β Μππ σ΅©σ΅©σ΅© π ; σ΅© σ΅© Μπ ) Ξ (2 β πΌΜπ ) 1β€π,πβ€π Ξ (2 β πΌ
Γ β
(79) that is, the solution π of the Cauchy problem (55)-(56) depends continuously on π, πΌπ , ππ and ππ . As a complement, we note from (79) that π β‘ π in [π‘0 , π‘0 + β] if π = πΜ, πΌπ = πΌΜπ , ππ β‘ πΜπ , and ππ β‘ Μππ . This implies the uniqueness of the solution.
Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper.
Acknowledgment The author is very grateful to Professor Weinian Zhang for his valuable suggestions.
References [1] T. H. Gronwall, βNote on the derivatives with respect to a parameter of the solutions of a system of differential equations,β Annals of Mathematics, vol. 20, no. 4, pp. 292β296, 1919. [2] R. Bellman, βThe stability of solutions of linear differential equations,β Duke Mathematical Journal, vol. 10, pp. 643β647, 1943. [3] I. A. Bihari, βA generalization of a lemma of Bellman and its application to uniqueness problems of differential equations,β Acta Mathematica Academiae Scientiarum Hungaricae, vol. 7, pp. 81β94, 1956. [4] O. Lipovan, βA retarded Gronwall-like inequality and its applications,β Journal of Mathematical Analysis and Applications, vol. 252, no. 1, pp. 389β401, 2000.
[5] R. P. Agarwal, S. Deng, and W. Zhang, βGeneralization of a retarded Gronwall-like inequality and its applications,β Applied Mathematics and Computation, vol. 165, no. 3, pp. 599β612, 2005. [6] S. D. Borysenko, M. Ciarletta, and G. Iovane, βIntegro-sum inequalities and motion stability of systems with impulse perturbations,β Nonlinear Analysis: Theory, Methods & Applications, vol. 62, no. 3, pp. 417β428, 2005. [7] W.-S. Cheung, βSome new nonlinear inequalities and applications to boundary value problems,β Nonlinear Analysis: Theory, Methods & Applications, vol. 64, no. 9, pp. 2112β2128, 2006. [8] W.-S. Wang and X. L. Zhou, βA generalized Gronwall-BellmanOu-Iang type inequality for discontinuous functions and applications to BVP,β Applied Mathematics and Computation, vol. 216, no. 11, pp. 3335β3342, 2010. [9] B. G. Pachpatte, Inequalities for Differential and Integral Equations, vol. 197 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1998. [10] E. M. Stein, Harmonic Analysis, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, USA, 1993. [11] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999. [12] D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1981. [13] H. Sano and N. Kunimatsu, βModified Gronwallβs inequality and its application to stabilization problem for semilinear parabolic systems,β Systems & Control Letters, vol. 22, no. 2, pp. 145β156, 1994. [14] H. P. Ye, J. M. Gao, and Y. S. Ding, βA generalized Gronwall inequality and its application to a fractional differential equation,β Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1075β1081, 2007. [15] M. Medvedβ, βA new approach to an analysis of Henry type integral inequalities and their Bihari type versions,β Journal of Mathematical Analysis and Applications, vol. 214, no. 2, pp. 349β 366, 1997. [16] Q. H. Ma and E. H. Yang, βEstimates on solutions of some weakly singular Volterra integral inequalities,β Acta Mathematicae Applicatae Sinica, vol. 25, no. 3, pp. 505β515, 2002. [17] Q. H. Ma and J. PeΛcariΒ΄c, βSome new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations,β Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 894β905, 2008. [18] S. B. Hadid and Y. F. Luchko, βAn operational method for solving fractional differential equations of an arbitrary real order,β Panamerican Mathematical Journal, vol. 6, no. 1, pp. 57β 73, 1996. [19] G. M. Mittag-Leffler, βSur la nouvelle fonction πΈπΌ (π₯),β Comptes Rendus de lβAcadΒ΄emie des Sciences, vol. 137, pp. 554β558, 1903. Β¨ [20] A. Wiman, βUber den Fundamentalsatz in der Teorie der Funktionen πΈπΌ (π₯),β Acta Mathematica, vol. 29, no. 1, pp. 191β 201, 1905. [21] T. R. Prabhakar, βA singular integral equation with a generalized Mittag Leffler function in the kernel,β Yokohama Mathematical Journal, vol. 19, pp. 7β15, 1971. [22] A. A. Kilbas and M. Saigo, βOn solution of integral equation of Abel-Volterra type,β Differential and Integral Equations, vol. 8, no. 5, pp. 993β1011, 1995.
12 [23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, North-Holland, Amsterdam, The Netherlands, 1981. [24] E. D. Rainville, Special Functions, The Macmillan Company, New York, NY, USA, 1960. [25] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, NY, USA, 3rd edition, 1976. [26] R. Remmert, Classical Topics in Complex Function Theory, Springer, New York, NY, USA, 1997. [27] R. Gorenflo and F. Mainardi, βFractional calculus: integral and differential equations of fractional order,β in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., vol. 378, pp. 223β276, Springer, New York, NY, USA, 1997. [28] F. Mainardi, βFractional calculus: some basic problems in continuum and statistical mechanics,β in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., vol. 378, pp. 291β348, Springer, New York, NY, USA, 1997.
Journal of Applied Mathematics
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014