A Mechanically Enhanced Storage node for virtually ...

204 downloads 0 Views 3MB Size Report
node for virtually unlimited Height. (MESH) Capacitor Aiming at sub 70nm DRAMs. *Dae-Hwan Kim, J.Y. Kim, M. Huh, Y.S. Hwang, J.M. Park,. H.S. Kim, W.T. ...
A Mechanically Enhanced Storage node for virtually unlimited Height (MESH) Capacitor Aiming at sub 70nm DRAMs *Dae-Hwan Kim, J.Y. Kim, M. Huh, Y.S. Hwang, J.M. Park, H.S. Kim, W.T. Choi, G.Y. Jin, Y.G. Park and Kinam Kim Advanced Technology Development Team, Semiconductor R&D Div. , Samsung Electronics Co

Contents  Introduction : Background - Capacitor evolution - Problems

 Key technologies of MESH capacitor - Define - Process scheme - Key processes

 Characteristics - Electrical characterization, TEM - Reliability

 Conclusions

Introduction The evolution of DRAM capacitor MIS (TIS)

MIM (TIT)

POLY-Si

SiGe or W

TiN DIELECTRICS POLY-Si

TiN DIELECTRICS TiN

SIS POLY-Si DIELECTRICS POLY-Si

0.23 μm NO, SIS S-STACK

1.5-2.0 μm

1 μm

1 μm

0.18 μm NO, SIS DHOCS

0.18-0.1 μm NO, ALO, SIS ALO MIS S-OCS

1.7 μm

0.09 μm AHO MIS RSOCS

< 0.08 μm

Introduction How to obtain high capacitance? Why 30fF/cell ? - Data retention time - signal margin for S/A operation How to obtain sufficient cell cap.? - New high-k materials : TIT - area increase : HSG, tall cylinder 50 Teq 25Å Teq 23Å Teq 20Å Teq 23Å, HSG 20%

45

20 23

35 30

25

25

2.5 μm @ TEQ 23Å

15 10 14

16

18

20

3.2 μm

40

40

20

Teq=23Å Teq=20Å

45

22

24

SN Height (kÅ)

26

28

30

SN Height (kÅ)

Cell Capacitance (fF/cell)

50

35

2.5 μm

30 25

2.7 μm

20

2.1 μm

15 10 90

80

70

Design Rule (nm)

Cylinder height for 30fF/cell

60

Introduction Problems Leaning : a bending of bottom electrode Factors : thermal stress, surface tension, aspect ratio Leaning begins to appear severely at height of 1.5μm @80nm tech.

Contents  Introduction : Background - Capacitor evolution - Problems

 Key technologies of MESH capacitor - Define - Process scheme - Key processes

 Characteristics - Electrical characterization, TEM - Reliability

 Conclusions

Key technologies Robust OCS : Forming supporter

Supporter Supporter

*LERI *J.M. Park et al., in Symp. on VLSI Tech., p. 34 (2004)

MESH

Key technologies Define What is MESH capacitor? 1. Mechanically Enhanced Storage node for virtually unlimited Height 2. Each SN is linked by meshes made of Si3N4 which prevent touching among the nodes

Key technologies Process flow (1) Play a role of a ‘Wet stopper’

MESH Si3N4

(a) PR patterning

(b) openings after hole etch

(c) deposition of (d) partial wet strip first electrode after node separation

Key technologies A?

Process flow (2)

A-A

B-B

B?

c

Definition of B direction (A-A & B-B)

‘c/2 < t < d/2’ A-A

B-B

A-A

d

A

B-B

t

MESH Si3N4 opens

(e) deposition of MESH spacer

MESH Si3N4 remains

(f) supporter dry etch

(g) wet lift–off of sacrificial oxide and MESH spacer

Key technologies Process flow (SEM) Poly Si 1st electrode Exposed MESH Si3N4

MESH SPACER

A B

MESH supporter etch

Partial wet strip Spacer deposition Remained MESH Si3N4 Overlap (final)

Overlap (before)

Spacer etch

MESH Supporter

HSG

Poly Si

MESH Supporter (Ring + Beam type) Poly Si

After full lift-off : Top view and slanted View

Vertical view

Key technologies Typical dimension of MESH supporter 55 a

10 b

35nm

10nm 55nm

35

c

Good Example of nano-patterning technology a

Key technologies Integration issue (1) Non-uniform mesh supporter formation

edge

center

Key technologies Integration issue (2) Wet chemical penetration

Inner hole filling ability of masking oxide is important

Wet penetration

TEM image

Thinning of SN bottom

Key technologies ALD spacer Masking oxide : ALD SiO2 Outer

Poly Si Masking oxide

Inner

Cutting direction MESH Si3N4

TEM images of MESH spacer showing good step-coverage

CENTER

EDGE

Key technologies Comparison of LERI and MESH MESH

LERI

Lithography add?

No

No

Supporter

Silicon nitride / other

Silicon nitride

Key concept

Using a masking oxide after partial wet strip

Using wet enlargement after partial etch

Node separation

Etch back / CMP

CMP preferred

Hole etch mask

PR

Hard mask (Poly-Si)

Supporter position

Below the top SN

Top of the SN

Process controllability

Very easy

Moderate

Key technologies Distinctive process (D80 512M DDR DRAM) a

c

RCAT

MESH b

TSC

Contents  Introduction : Background - Capacitor evolution - Problems

 Key technologies of MESH capacitor - Define - Process scheme - Key processes

 Characteristics - Electrical characterization, TEM - Reliability

 Conclusions

Characteristics AHO step coverage Bottom

Top TiN HfO2 Al2O3 PN Poly-Si

MESH supporter

MESH Si3N4

Poly-Si Poly-Si

HfO2

MESH Si3N4

TOP(%)

Al2O3 TiN

BOTTOM(%)

PN

AlO

HfO

TiN

PN AlO

100

100

100

100

92

93

MESH WING(%)

HfO

TiN

AlO

HfO

TiN

89

83

93

90

80

Characteristics

1E-6 1E-7 1E-8 1E-9 1E-10 1E-11 1E-12 1E-13 1E-14 1E-15 1E-16 1E-17 1E-18 1E-19 1E-20

40

Conventional OCS

30

Fail Bit (ea)

Lekage Current (A/Cell)

Leakage current, Vp behavior

MESH Cap. Normal OCS -5

-4

-3

-2

-1

0

1

2

3

20

0.3V UP MESH

10

0

4

5

Cell Plate Volatge (V)

Leakage current characteristics

0.3

0.6

0.9

1.2

1.5

1.8

2.1

Aplied Voltage (V)

Vp take off characteristics

Characteristics Cell capacitance, data retention time 105

Distribution (%)

80

MESH

60 40 20

Cumulative Bit Failure

Conventional OCS

100

104

Conventional OCS MESH

103

102

101

MESH with HSG

0

10 MESH with HSG 30 35 40 0

5

10

15

20

25

Cell Capacitance (fF/cell)

The cell capacitance distributions

Normalized Data Retention Time [a.u.]

The comparison of retention time

Characteristics Full integration yield

100

MESH

OCS (16k) 8 7

60

6

Normalized Yield

Distribution (%)

80

40 20

5

7 times

4 3 2 1

0

0

OCS (16k)

0

100

200

300

400

MESH (25k)

500

Two Bit Failure (ea)

TYPICAL BIT FAIL MAP

2-BIT FAIL DISTRIBUTION

600

Contents  Introduction : Background - Capacitor evolution - Problems

 Key technologies of MESH capacitor - Define - Process scheme - Key processes

 Characteristics - Electrical characterization, TEM - Reliability

 Conclusions

Conclusions Distinctive features of MESH capacitor

Lean-free High retention time High Capacitance Enlarged process margin

MESH Capacito r

Nanopatterning

Small dimension

Compatibility

Conclusions Fully reliable lean-free MESH Capacitor has been successfully developed on 80nm technology 512Mb DRAMs We expect that our success in capacitors with increased height will give great influence on the future DRAM technology. We think that the success of MESH supporter showing extremely small dimension is an amazing result in the area of nano-patterning.

Suggest Documents