A Modular GCD algorithm over Number Fields presented ... - FSU Math

3 downloads 0 Views 175KB Size Report
coefficient of ╖Э2, ·mi, . . . , ·mn vanishes mod p then we .... Li-i. The degree of mi is d i, mi is monic (the leading coefficient is lc(mi ) = 1) and mi (a i ) = 0.
A Modular GCD algorithm over Number Fields presented with Multiple Extensions.  Mark van Hoeij Department of Mathematics Florida State University Tallahassee, FL 32306-4510, USA.

ABSTRACT    !"#   $%"  $ &'(

*)+,-/.  " 10 243560 7#8-:91';=A@CBEDGF&HHHIFBKJMLON PQ 0( M0(  SRMTI0 $8.7U0( M6VW4X+0#Y0&35Z0(0 .  4)U  &)\[]4)U S^ _"7#10(_`aXEbc0($  / =dA- /. " 10 U(3  >\&0 e-f"7 /9M&2:)+(gdA>A@CBQLON h #Q9 iQ 7  #   j  k0 jOl    j(mPQ &04 M0 1 I^ E"77n # 10(E`aXEbo0$ ( /cfp0 pqsrot+)U /  # ] 735  $f 0"   $89MeOl    SN h # _  % G # 1 %  Z0" G( 0(U /p  U (p   0(.28 iU ue 137 1  +Z   " 1 0 G&N v+  p  1"  9 +f0$ ( /ew /U 1 EOp)U   #p  E i&N h #% /xo G # 1 \  %y  $ z20' 0(x0{ i## dQ  G  $Z8#/ 3 04 04+- /. " 10 |435Q 7#8-K9M )U /,8#/ 891sl7    N:,:0&35"06 ": 1" n " 7x04  "SU"7#10(p`aXEb\0(1$ /}#   $~ /&N|,Un 37 1 ~x0  UQ "Z x0( &0I 1"435" G N

1. _INTRODUCTION 0S _30 GUx0  UIf 8&0&sj€&‚ƒ„…j†Z‡‰ˆ

„ƒ Š5€…O‹dŒd7Ž9  i2 3  -&G.{[k&)U   z‘ ’4“Ad2-.  " 10 435Oe”}0 M  •G.•TI0 $8.760 –VW4X+0#— 1 ˜‘ ™4“a0 M PQ 0( M0(  2  %‘ š“Md+-/.  " 10 ]435E;,z  6 Z¶)Ej ( 1  A0(Z Z 0"a# 6:0:  $ IÁ 6· Å_ÆSÇ-È®É|ÊdËÌ Í]¥*IANf¬7#- _ f10($ iA # "x0((+(A   "  M04+  Ÿ

+ *N6v‰e  i# ~ŸG.s "#  $6Ÿ"7- ,=f@CBEDGFHH&HIFBKì*L 0( M%;UF¿0( M Bo< B"° j4klHI @«’5L ¥*7¦W;ym "  U0‚7©‹dŒm 1f B I /|0( M2 .2 /‰-n 20 M%t ¤  0(2 o BI,@ª)U  3 ~)+")p /t ¤ ® /8  ! "  /.0  # "& M04p @~l>%€n>µqo„©- W¦ ƒ I D ;  Œd ¨OS© ‹ª£a„ ‚7© ‹ªŒm‹ª© ƒ I:‹ ¡+„©-a€(©Mƒ åf‹ ¡  ì @  Lk‹ª£E„f‚7©‹ªŒm‹ª© ƒ IMâ]îx©Zæ„…xŒC‹« ‚ƒ„…xï 2¦ ƒ I2‹ª£A„!‚© ‹ªŒK‹ ¡A„©Mj€©Mƒ å~‹ M ¡ @  L+¦W>˜‹ª£A„8‚7©‹dŒK‹ª©8” ` Ida ª© €(Œd¨O…"äk€…£ï_ဌds©‚72¨O…i„Œ¢€…2„(©-G¨O©-€(:‹ª©M„Œ¢€…2€i4¡ @  L2„(…¨ ©M€ŒU‹ 𠋪£‹«áƒ1¨!áåUu|â!öI¨a£„(2¨~‹d£a„ ƒ £O€"ŒC…O‚¨E¡€(C… BCIMâ ú"Ë ÈsÇ ûü|Í6¥*Qu-]4F6"o BIo… ƒ I0 M 21"20W "  0(A /2¦ B I 0 ®t ¤ 6¦ ƒ I   st ¤ S¦ B I N uZdû vwvqxÍAv+_;kìCn¢ 1 &0(+20X  ‚Á57; Yz?7; f0(+ - M + 8#/  &0(  G . j  + O9M j (3  ƒ I RG CN  NQU G  E(I  204 /ls(C‚c0("  ƒ IN¥*C ì @  LOR‰ 2 "  0 GaC‚ARK  0j#  /U  ƒ I   6 a20( /l 1 A  735 a435 ƒ I Np¬7: ‚ ² D @it&L_¦ ƒ IRm ®t ¤ %¦ ƒ INaXE 735 /.GRm /\W  Z  735 ! 1 ƒ I o ‚˜ 1 j0 { 1 735O 1 6  &04"20SRQ s / ""  M0( G 8# iU-a08#  /&N J ¹_&† ) @  L~‡ <  @  L:¦; =0 > D ƒ I%UNAv+U20( /l!- + i. icZ-p  35:  U204 l8Z‚ANQv+U 0"A0(1 ~  1 ]ª ¦ B8R5)U  35] /

 k  735  1R5 / k  735 p0 "-p"# !)U /j  &04+0(1$ x0 435g H I NQ[E#p   i&0(K 137  $8 1 &0(+&ýG#M0(   R7)+A)U 1S#  El7 M&:PQ# 1 0 "0(1$ /cZ0#104A  735  ]  B~N ±f&)E35&R(  K&0( :  O&0 E E 7#8-IMª0 7  " K-0#  a0#104 1 s0 eC0( K35 W    _  735  Npv+  _  _ _0   # f =-0# a ! 7# :-p(QC0 K " p)U 1K i  -Z9M /j@C a   t N šGLON ¥¶ fd &)U 1 $ RmC ‰=-a0: ":#x0( 35A 1 $:)U /W 1  7 /*. t ³G.60:10($f91 > I N bf ( BC¼ Iae < BI5j4k ½ ©˜¾ g” ¼ I4NQ¹_4) B¼ I"0( MW;{&0 6-a37 1O)+&60 #    $ U ; ¼ I 0( M B I < B ¼ I\b ; @ L ¼ ¦ ¾U¼ d6

 $s 1 9M .{20( 7.±_  A i ")+W9 M›  £ ¼ F ¤¼ F Y B I ‘ §“S # OW0( £&¼  D Ó ¤¼  ž < k¼ H ¹_ì &) W¼  ]"  +0( M! $-@ K¼ L]_‘ í“*‘ §“p0( M6>A‘ í“ ¤ @«í Îy­L+ 1 ËPÌÄÍÎÏUÌdÐ ÑÄÒÍGÓ$ÝëØPݵãØVìäØPÝ0ää؛ÝÝëØëØ·í.äØPÝë7Øï í.äØVëØPÝîí.ää‘Ü ËPÌÄÍÎÏUÌdÐ ÑÄÒÍGÓ$ÝëØPݵãØVìäØPÝÝVïñ7Øë7ؘí.äääGØ$ÝÝVñäØPݵëØJï í.äØë7ØPÝîí.ä$ä‘Ü

*¥ e!04x0" i## R-- /. " 10 Z04!&#e"7 #j  èWìA    # &Njv+" ix0($ "&ýG# /" 7f  2t&™W0 {t )+(x  - 35/.GN ÅAÆIÇMÈsÉ|Êd‡ Ë ôSÍÏv+,#   35{  04x0' i##y 1 ® ( 0(  RQ # ~  /~  ! ~# .s   N h s M0( 2-.  " /n 0( R  f ix0($ Z&ýG# " G+  p i 1S35.2$G7SNEXE  1 p  0( "-.  " 10+tpӕ­(§ J Ӑ”’ õ J Ӑš5í J )UOjq