A. Sistem Pertidaksamaan Linear Dua Variabel

178 downloads 5337 Views 80KB Size Report
Persamaan semacam ini dinamakan persamaan linear dalam variabel x dan y ... A. Sistem Pertidaksamaan Linear Dua Variabel. x y x y. 1 2 3. 3. 2. 1. 1. 2. 3.
h a n g e Vi e

w

N y bu to k lic

c u -tr a c k

w

.d o

Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: a1x  a2y b Persamaan semacam ini dinamakan persamaan linear dalam variabel x dan y (dua variabel). Secara umum, dapat didefinisikan sebagai persamaan linear dengan n variabel x1, x2, . . . xn dalam bentuk berikut. a1x1  a2x2  . . .  anxn b dengan a1, a2, . . ., an, b adalah konstanta-konstanta real Jika melibatkan lebih dari satu persamaan, maka disebut dengan sistem persamaan linear. Dapat dituliskan sebagai berikut. a11x1  a12x2  . . .  a1nxn b1 a21x1  a22x2  . . .  a2nxn b2 # # # # an1x1  an2x2  . . .  amnxn bn dengan x1, x2, . . ., xn adalah variabel a11, a12, . . ., a1n, a21, a22, . . ., a2n, . . ., amn adalah konstanta real.

Untuk saat ini, pembahasan dibatasi menjadi dua variabel saja. Untuk pertidaksamaan linear, tanda “ ” diganti dengan “ d ”, “”, “t”, “!”. Sebagai contoh, untuk pertidaksamaan linear dua variabel dijelaskan sebagai berikut. Misalnya, kalian menggambar garis x  y 2 dapat digambarkan sebagai berikut. y

3 2 1 3 2 1 O 1

x 1

2

3

2 3 x y 

Gambar 2.1 Garis x  y 2

Garis x  y 2 membagi bidang koordinat menjadi dua daerah, yaitu daerah x  y  2 dan daerah x  y ! 2. Sekarang, substitusi titik sembarang, misalnya titik O(0, 0) ke persamaan garis tersebut. Didapat, 0  0 0 ! 2. Ini berarti, titik O(0, 0) berada pada daerah x  y ! 2. Daerah x  y ! 2 ini diarsir seperti pada gambar berikut.

36

36

Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

m

A. Sistem Pertidaksamaan Linear Dua Variabel

o

.c

C

m

o

.d o

w

w

w

w

w

C

lic

k

to

bu

y

N

O W

!

XC

er

O W

F-

w

PD

h a n g e Vi e

!

XC

er

PD

F-

c u -tr a c k

.c

h a n g e Vi e

N y bu k lic .d o

3 2 1 3 2 1 O 1

1

2

x

3

2 3

x  y t

Gambar 2.2 Daerah penyelesaian x  y t 2

Jika daerah tersebut dibatasi untuk nilai-nilai x, y d 0, maka diperoleh gambar seperti berikut. y

3 2 1 3 2 1 O 1 yd0 2 3

HP 1

2

x

3

x  y !

xd0

Gambar 2.3 Himpunan penyelesaian sistem pertidaksamaan x  y ! 2, x d 0, dan y d 0

Daerah yang diarsir berupa daerah segitiga. Tampak bahwa daerah ini merupakan himpunan penyelesaian sistem pertidaksamaan linear x  y t 2, x d 0, dan y d 0. Untuk selanjutnya, himpunan penyelesaian sistem pertidaksamaan linear ini disebut daerah penyelesaian.

Bab 2 Program Linear

37

m

w

o

m

o

.c

C

k

y

lic C c u -tr a c k

w

w

.d o

w

w

w

w

to

to

bu

y

N

O W

!

XC

er

O W

F-

w

PD

h a n g e Vi e

!

XC

er

PD

F-

c u -tr a c k

.c

h a n g e Vi e

w

N y bu k

to

Tentukanlah daerah penyelesaian dari pertidaksamaan dengan x  y d 3, x  3y  3 d 0, dan x t 0. Jawab: Daerah yang diarsir berikut merupakan daerah penyelesaian dari sistem pertidaksamaan linear x  yd 3, x  3y  3 d 0, dan xt0. y 4 3 HP

2 1 4 3 2 1 O 1

1

2

3

1

3 4

x x+y d3

2 x  3y  3 d 0

4

xt0 daerah kanan

ASAH KEMAMPUAN

Waktu : 60 menit 1. Gambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk x, y  R. a. x  5y t 10, x t 5 b. 2 d x  3, 0 d y d 4 c. 0  x  2, 2  y d 2 d. 8x  4y d 56 x t 0, y t 0 e. y d x  3, x d 1  y, x ! 3 f. 4x  2y d 10, x  6y d 12, x t 0, y t 4 g. 7x  14y  21 t 0, x  9y  27 t 0, x d0, y t 0 h. 6x  9yd 3, y  2x d 6, 2x  8y  6 d 0, xd 8, x t 4, y d0 2. Gambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk x, y  R. x  8y d 80 2x  yt 4 2x  4y t 5 x t 0, yt 0 2x  y t 12 Tentukanlah luas daerah penyelesaian tersebut. Kesimpulan apa yang diperoleh?

Bobot soal: 80

Bobot soal: 20

38

38

Matematika Aplikasi SMA dan MA Kelas XII Program Studi Ilmu Alam

.d o

m

w

o

m

o

.c

lic

Contoh

lic C c u -tr a c k

w

w

.d o

w

w

w

C

k

to

bu

y

N

O W

!

XC

er

O W

F-

w

PD

h a n g e Vi e

!

XC

er

PD

F-

c u -tr a c k

.c