a virtual test lab for unidirectional composite coupons

65 downloads 0 Views 5MB Size Report
Robust/realistic simulation of coupon tests: • Plain tension/compression. • Open-hole tension/compression. • Filled-hole tension. • Bolt bearing. • Drop-weight ...
A VIRTUAL TEST LAB FOR UNIDIRECTIONAL COMPOSITE COUPONS Olben Falcó1, Bas Tijs2, Brendan Romano2, Cláudio S. Lopes1 1IMDEA 2GKN

Materials Institute, Getafe, Madrid, Spain Aerospace: Fokker, Papendrecht, The Netherlands

THE CASE FOR VIRTUAL TESTING

Building block certification

VIRTUAL TESTING

C.S. Lopes, C. González, O. Falcó, F. Naya, J. Llorca, B. Tijs, Multiscale virtual testing: the roadmap to efficient design of composites for damage resistance and tolerance, CEAS Aeronautical Journal (2016) 7: 607-619.

THE CASE FOR VIRTUAL TESTING Challenge: towards simulation-based material certification Robust/realistic simulation of coupon tests: • Plain tension/compression • Open-hole tension/compression • Filled-hole tension • Bolt bearing • Drop-weight impact • Compression after impact • Etc….

Approach: Virtual Test Lab Framework: • Commercially-available explicit FE solver (ABAQUS/Explicit) • 3D damage model for FRP plies enforcing crackband erosion (user subroutine) • Surface-based cohesive-frictional model for ply interfaces (ABAQUS native) • Purpose-built automated ABAQUS plug-in (Python scrip + GUI), to model laminated coupons using regularized meshes

FRP PLY FAILURE Ply Properties:  

Unidirectional characterization tests Computational micromechanics 

Constituents characterized by means of micromechanical testing (nanoindentation, push-in, single fibre, etc.)

F. Naya et al., Composites: Part A 92 (2017)

FRP PLY FAILURE 3D Failure Criteria Transversely-dominated modes Mixed-mode transverse crack opening: 𝝓𝑴𝑻 =

𝑡𝑁 𝑆𝑇𝑖𝑠

2

+

2

𝑡𝐿

+

𝑆𝐿𝑖𝑠

2

𝑡𝑇

+𝜆

𝑆𝑇𝑖𝑠

2

𝑡𝑁 𝑆𝑇𝑖𝑠

𝑡𝐿 𝑆𝐿𝑖𝑠

2

+𝜅

𝑡𝑁

2

𝑆𝑇𝑖𝑠 2

𝜅=

Transverse compressive shear banding: 𝝓𝑴𝑪 =

2

𝑡𝐿

+

𝑆𝐿𝑖𝑠 − 𝜂𝐿 𝑡𝑁

𝑆𝑇𝑖𝑠 − 𝑌𝑇𝑖𝑠 𝑆𝑇𝑖𝑠 𝑌𝑇𝑖𝑠

2

𝜆=

2𝜂𝐿 𝑆𝑇𝑖𝑠 𝑆𝑇𝑖𝑠

−𝜅

2

𝑡𝑇 𝑆𝑇𝑖𝑠 − 𝜂𝑇 𝑡𝑁

Longitudinally-dominated modes Brittle longitudinal failure: 𝝓𝑳𝑻 =

𝜀11 𝜀1𝑇

Fibre kinking (under compression and shear): (𝜑) 2

𝝓𝑲𝑴𝑻 =

𝑡𝑁

(𝜑) 2

𝑡𝐿

+

𝑆𝑇𝑖𝑠

𝝓𝑲𝑴𝑪 =

+

𝑆𝐿𝑖𝑠 2

(𝜑)

𝑡𝐿

(𝜑)

𝑆𝐿𝑖𝑠 − 𝜂𝐿 𝑡𝑁

(𝜑) 2

𝑡𝑇

𝑆𝑇𝑖𝑠

(𝜑) 2

+𝜆

+

𝑆𝑇𝑖𝑠

(𝜑) 2

𝑡𝐿

𝑆𝐿𝑖𝑠

+𝜅

𝑡𝑁

2

𝑆𝑇𝑖𝑠

2

(𝜑)

𝑡𝑇

𝑡𝑁

(𝜑)

𝑆𝑇𝑖𝑠 − 𝜂 𝑇 𝑡𝑁

Catalanotti et al. Composite Structures 95 (2013) 63–79

FRP PLY FAILURE 3D Continuum Damage Behavior 1   1  d     E 1 1  1     12   E1  1        2   13 E1  3       23   0  31       12   0    0  



 21

 31



 32

0

0

0

1 1  d3   3   E3

0

0

0

0

1 1  d 4   23   G23

0

0

0

0

1 1  d5   13   G31

0

0

0

0

1 1  d 2   2   E2 



0

E2

 23 E2

Longitudinal tension/compression:

E3 E3

    0   1      2  0   3      23  0   31      12  0    1  1  d 6   12   G12  0

Transverse tension/compression:

FRP PLY FAILURE 3D Continuum Damage Behavior 1   1  d     E 1 1  1     12   E1  1        2   13 E1  3       23   0  31       12   0    0  

In-plane shear (12):

d6



 21

 31



 32

0

0

0

1 1  d3   3   E3

0

0

0

0

1 1  d 4   23   G23

0

0

0

0

1 1  d5   13   G31

0

0

0

0

1 1  d 2   2   E2 



0

E2

 23 E2

E3 E3

Out-of-plane shear (23)

    0   1      2  0   3      23  0   31      12  0    1  1  d 6   12   G12  0

Out-of-plane shear (13)

d4

Non-linear shear laws, type Ramberg-Osgood : Out-of-plane tension/compression: Linear elastic behaviour, d3=0 - all out-of-plane softening lumped at the interface

d5

MESH ALIGNEMENT, BIASING AND EROSION

van de Meer and Sluys, 2009

 The microstructure constraint to the crack path is lost in the ply-level homogenization

 Mesh-alignment and mesh biasing reintroduce the constraint Material-aligned biased mesh:

l*trans

Non-aligned mesh:

 E G  l *  min 2 M 2 M  , M  1, 2,6  XM  Bažant and Oh, 1983

* l long 2

l*long

  E1G1 *  E2G2 G12G6  l  min 2 ,2 2 X T2 trans is 2  YT   SLis  

* * ltrans  f  llong

MESH ALIGNEMENT, BIASING AND EROSION 10o Tensile Test P

q10o

P

Non-aligned mesh: • Non-physical crack paths • Crack bifurcation • Wrong energy dissipation

Material-aligned mesh: • Physical crack paths • Crack bifurcation • Wrong energy dissipation

Mesh-alignment and biasing: • Physical crack paths • No crack bifurcation • Correct energy dissipation

PLY INTERFACE FAILURE Frictional-Cohesive Surface Contact

Damage initiation

Damage evolution (Benzeggah-Kenane criterion)

MODELLING STRATEGY DEMONSTRATION In-Plane Shear (IPS) Test [+-45]2s

X-Ray Tomography

Matrix Cracking

Delamination

Matrix Cracking

Simulation (incl. residual thermal stresses)

NOTCHED/UN-NOTCHED TENSION/COMPRESSION

Material: AS4/8552 Ply elastic and strength properties characterized by GKN Fokker Ply fracture energies characterized by IMDEA (and from literature)

Configurations (limits of the design space): • ´Hard´ - (50/40/10) - [0/45/0/90/0/-45/0/45/0/-45]s • Quasi-isotropic – (25/50/25) - [-45/0/45/90]2s • ´Soft (10/80/10) - [45/-45/0/45/-45/90/45/-45/45/-45]s Tests: • Unnotched tension/compression • Open-hole tension/compression Correlation with two databases: • GKN Fokker • NCAMP (National Center for Advanced Materials Performance, 2011)

O. Falcó, R. L. Ávila, B. Tijs, C.S. Lopes, Modelling and simulation methodology for unidirectional composite laminates in a Virtual Test Lab framework, Composite Structures, 190 (2018) 137–159

NOTCHED/UN-NOTCHED TENSION/COMPRESSION

• • •

Strength results within experimental scatter (in general) Batter match to Fokker results in tension tests (properties from Fokker material batches) Better match to NCAMP results in compression tests (different test methods)

OPEN-HOLE TENSION ´Hard´ (50/40/10) laminates Simulation

Experimental

BRITTLE FAILURE

Strength correlation

OPEN-HOLE TENSION Quasi-isotropic (25/50/25) laminates

Strength correlation

‘SEMI’- BRITTLE FAILURE

OPEN-HOLE TENSION ´Soft´ (10/80/10) laminates

Strength correlation

‘DUCTILE’ FAILURE

OPEN-HOLE COMPRESSION

e.g. quasi-isotropic (25/50/25)

Strength correlation

BOLT BEARING Test stand.: AITM 1-0009 Mat: AS4/8552 Lam: [±45/0/90/0/±45/90]s

simulation

Empirical Torque – Clamping Pressure relationship:

modelling

experimental

* not same material

BOLT BEARING Bearing load behavior

Hole deformation

Critical delamination size (wider than washer) fibre damage

matrix damage

delamination

Qualitative Experimental (X-ray)

Influence of clamping pressure Bearing hole deformation 0.005D (0.5%) 0.02D (2%) 0.04D (4%) 0.06D (6%) Ultimate stress

Test result [MPa] 747.0 894.0 975.0 989.0 1006.0

Simulation result [MPa] Bolt torque: 1.3Nm 594.7 734.6 821.0 883.8 >20% 964.4 error

Simulation result [MPa] Bolt torque: 5.4Nm 727.2 885.1 952.2