Active GLR detector for resilient LQG controller in ...

10 downloads 12606 Views 2MB Size Report
Linear Quadratic Gaussian (LQG) controller subject to zero dynamic attack. Perspectives ... “Secure control: Towards survivable cyber-physical systems”.
Active GLR detector for resilient LQG controller in networked control systems T. Rhouma** , J.Y. Keller*, D. Sauter*, K. Chabir**, M.N. Abdelkrim** **Gabès University, ENIG, Tunisie *Lorraine University, France

Presented by

 Jean-Yves   Keller

[email protected]

Outlines Safety of Cyber Physical System (CPS) Description of malicious actions in CPS   Linear Quadratic Gaussian (LQG) controller subject to zero dynamic attack   Resilient LQG controller from active Fault Detection and Isolation (FDI) scheme Perspectives

Safety of Cyber Physical System (CPS)

Natural actions Disturbances

Faults

Malicious actions Cyber attacks

Malwares

CPS

Physical system

Network

Cyber system

A CPS may be subject to natural or malicious actions

Natural actions Disturbances

Malicious actions

Faults

Cyber attacks

Malwares

CPS

Physical system

Network

Cyber system

Intrusion Detection Systems (IDS)

Control Law Goals Stability, Robustness, Tolerance (Control theory)

Goals Confidentiality, Integrity, Disponbility (Computer science)

Security of CPS The CPS safety must be studied from control theory view point for the safety of physical system and from computer science view point for the security of information

Natural actions Disturbances

Malicious actions

Faults

Cyber attacks

Malwares

CPS

Physical system

Network

Cyber system

Intrusion Detection Systems (IDS)

Control Law Goals Stability, Robustness, Tolerance (Control theory)

Goals Confidentiality, Integrity, Disponbility (Computer science) Resilience Security of CPS

Resilience is the ability of the IDS to quickly recover normal situation after the occurrence of malicious actions

Natural actions Disturbances

Malicious actions

Faults

Cyber attacks

Malwares

CPS

Physical system

Network

Cyber system

Intrusion Detection Systems (IDS)

Control Law Goals Stability, Robustness, Tolerance (Control theory) Resilience  

Goals Confidentiality, Integrity, Disponbility (Computer science) Resilience Security of CPS

Goal of this paper Design a resilient control law having the ability to quickly recover normal situation after the occurrence of malicious actions  

Description of malicious actions in CPS  

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

uk

Plant

yk

                                                         

Unreliable Network

A2  

Controller

A2 : Denial Of Service (DOS) attacks on measurements

A. Cardenas, S. Amin, S. Sastry “Secure control: Towards survivable cyber-physical systems” First International Workshop on Cyber-Physical System, Beijing, China, pp. 495-500, 2008

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

uk

Plant

yk

                                                         

Unreliable Network

A4  

Controller

A4 : Denial Of Service (DOS) attacks on control signal

A. Cardenas, S. Amin, S. Sastry “Secure control: Towards survivable cyber-physical systems” First International Workshop on Cyber-Physical System, Beijing, China, pp. 495-500, 2008

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

Plant

yk

                                                         

Unreliable Network

A1  

uk

Controller

A1 : Deception attacks on measurements (false data injection)

A. Cardenas, S. Amin, S. Sastry “Secure control: Towards survivable cyber-physical systems” First International Workshop on Cyber-Physical System, Beijing, China, pp. 495-500, 2008

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

uk

Plant

                                                         

Unreliable Network

A3  

Controller

yk

A3 : Deception attacks on control signal (false data injection)

A. Cardenas, S. Amin, S. Sastry “Secure control: Towards survivable cyber-physical systems” First International Workshop on Cyber-Physical System, Beijing, China, pp. 495-500, 2008

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

A5  

uk

Plant

                                                         

Unreliable Network

Controller

yk

A5 : Physical attacks on the plant (close to traditional actuator or sensor faults)

A. Cardenas, S. Amin, S. Sastry “Secure control: Towards survivable cyber-physical systems” First International Workshop on Cyber-Physical System, Beijing, China, pp. 495-500, 2008

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

uk

                                                         

Unreliable Network

A3  

Plant

Attacker

Controller

A1  

yk

Covert attack (two coordinated false data injections)  

R. Smith ”A decoupled feedback structure for covertly appopriating network control system” IFAC Wold Congress, Milan, 20011

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

uk

                                                         

Unreliable Network

A3  

Plant

yk

Attacker

Controller

yk−τ

Replay attack (False data injection coordinated with a delay on output)  

Y. Mo, B. Sinopoli “Secure control against replay attacks” Allerton Conf. on Communication, Control, and Computation, 2012

Malicious actions in NCS (Networked Control Systems) can be summarized as follows

Plant

yk

                                                         

Unreliable Network

uk

Controller A6  

A6 : Malware infecting the executable program of controllers (Stuxnet) Stuxnet can be viewed as a replay attack  

Y. Mo, B. Sinopoli “Secure control against replay attacks” Allerton Conf. on Communication, Control, and Computation, 2012

Standard LQG controller subject to zero dynamic attack  

Networked Control System (NCS) xk uk

Plant

yk

                                                         

Network

LQG controller

The plant Linear discrete-time stochastic system xk+1 = Axk + Buk + wk yk = Cxk + vk

affected by zero mean white gaussian state and measurement state noises of covariance ' ! $T + )! wk $# w j & ) ! W 0 $ & E (# , =# &δk, j # v )" k &%#" v j &% ) " 0 V % * -

W ≥0

V >0

Networked Control System (NCS) xk uk

Plant

yk

                                                         

Network

LQG controller

Without data loss induced by the network, the optimal LQG controller includes  

NCS with optimal Linear Quadratic Controller (LQG) xk uk

Plant

yk = xk

                                                         

Network

                                                         

uk = −Lxk

LQG controller

The LQ controller uk = −Lxk S = AT SA + Q − AT SB(BT SB + R)−1 BT SA L = (BT SB + R)−1 BT SA +- 1 %T −1 (/J = min lim E , ' ∑ xkT Qxk + ukT Ruk *0 T →∞ )-1 . T &k=0 Q≥0

R>0

NCS with optimal Linear Quadratic Controller (LQG) xk uk

Plant

yk

                                                         

Network

                                                         

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller

γk

The Kalman filter xˆk+1/k = Axˆk/k−1 + Buk + K k (yk − Cxˆk/k−1 ) Pk+1/k = (A − K k C)Pk /k−1 (A − K k C)T + K k VK kT + W

K k = APk/k−1C T (CPk/k−1C T +V )−1

where

γ k = yk − Cxˆk/k−1 is

of covariance

the innovation sequence

Qk = CPk/k−1C T +V

Monitoring of the NCS xk uk

yk

Plant

                                                         

Network

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller

γk

Threshold level λ

Decision test

Passive Chi-squared decision test H1 Tk = γ kT Qk−1γ k

where

λ

≥ < H0

H1

λ H0

: Fault hypothesis  

: No Fault hypothesis  

is a threshold level fixing the rate of false alarms  

NCS with optimal LQG controller xk uk

Plant

yk

                                                         

Network

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller

γk Decision test

Threshold level λ

Assumptions (A,C) (A, B)

detectable stabilisable

(A,W 1/2 ) (A,Q1/2 )

stabilisable detectable



The two Riccati equations are stable ⇒ lim xk The nominal NCS is stable   k→∞

→0

NCS subject to covert attack (two coordinated deception attack) xk Plant

yk

Attacker

νk

uk                                                          

+

Network

dk



+

dk ≠ 0 ∀k ≥ t                                                          

+

uk

ν k ≠ 0 ∀k ≥ t

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Assumption The attacker knows the state model of the plant   Goal of the attacker Destabilize the NCS while remaining undetectable from passive decision test

NCS subject to covert attack xk = xk + Δxka

uk                                                          

+

Network

yk = yk + Δyka

Plant

dk

+

νk

Attacker



+

dk ≠ 0 ∀k ≥ t                                                          

uk

ν k ≠ 0 ∀k ≥ t

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

How to reach this goal Freely choose

dk ≠ 0 ∀k ≥ t

from the additive consequence

and compute

(Δxka , Δyka )

of

dk ≠ 0

on

ν k ∀k ≥ t

(xk , yk )

a Δxk+1 = AΔxka + Bdk

ν k = Δyka = CΔxka

with

Δxta = 0

at the intrusion time

described by

Model of the plant viewed by the controller under covert attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

dk

yk = yk + Δyka

Plant

+

νk

Attacker



+

dk ≠ 0 ∀k ≥ t                                                          

uk

ν k ≠ 0 ∀k ≥ t

uk = −Lxˆk/k

xˆk/k

y!k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender Under

Δxta = 0 ,

the model of the plant under attack viewed by the controller xk+1 = Axk + B(uk + dk ) + wk y!k = Cxk + Δyka − ν k + vk

Model of the plant viewed by the controller under covert attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

dk

yk = yk + Δyka

Plant

+

νk

Attacker



+

dk ≠ 0 ∀k ≥ t                                                          

uk

ν k ≠ 0 ∀k ≥ t

uk = −Lxˆk/k

xˆk/k

y!k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender Under

Δxta = 0 ,

the model of the plant under attack viewed by the controller xk+1 = Axk + B(uk + dk ) + wk y!k = Cxk + Δyka − ν k + vk

coincides with the model of the nominal plant xk+1 = Axk + Buk + wk yk = Cxk + vk

Model of the plant viewed by the controller under covert attack                                                          

xk = xk + Δxka

uk

Plant

Plant viewed by the controller

yk

                                                         

Network

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller

γk Decision test

Threshold level λ

Point of view defender Under

Δxta = 0 ,

the model of the plant under attack viewed by the controller xk+1 = Axk + B(uk + dk ) + wk y!k = Cxk + Δyka − ν k + vk

coincides with the model of the nominal plant xk+1 = Axk + Buk + wk yk = Cxk + vk

NCS subject to covert attack xk

uk                                                          

+

Network

dk

Plant

yk

+

Attacker −

+

dk ≠ 0 ∀k ≥ t                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Simultaneous attack on inputs and outputs is not very realistic Question With   deception attack only applied to control signals, is it possible for an attacker to destabilize the NCS while remaining undetectable?

NCS subject to zero dynamic attack xk

uk                                                          

+

Network

Plant

dk

yk

Attacker

+

dk ≠ 0 ∀k ≥ t                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Answer Yes from a zero dynamic attack if the plant has at leat one unstable invariant zero when there exists λ > 1 " % so that the system matrix $ I λ − A −B ' losse its normal rank #

C

0 &

(Structural vulnerability of the plant) A. Teixiera, I. Shames, H. Sandberg, K.H. Johansson “Revealing stealthy attacks in control systems” th 50 Annual Allerton Conference on Communication, Control, and Computation, 2012

NCS subject to zero dynamic attack xk

uk                                                          

+

Network +

                                                         

yk

Plant

dk

Attacker

dk = α gλ k−t ∀k ≥ t

dk ≠ 0 ∀k ≥ t

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

How to reach this goal With a closed-loop deception attack described by a Δ!xk+1 = (A − BG)Δ!xka dk = −GΔ!xka

"

%" ξ %

I λ − A −B where state feedback gain G = g(ξ )+ and initial condition Δx!ta = αξ obtained from $# C 0 '&$$ g '' = 0 so that # & Δ!xka = αξλ k−t with dk = α gλ k−t where α is a scaling factor satisfies destabilizing goal lim Δ!xka → ∞ and stealthy goal Δ!yka = CΔ!xka = 0 ∀k ≥ t k→∞

NCS subject to zero dynamic attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

yk = yk + Δyka

Plant

dk

Attacker

dk = α gλ k−t ∀k ≥ t

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender a The solution Δ!xka = αξλ k−t to the autonomous system Δ!xk+1 = (A − BG)Δ!xka do not correspond to the additive consequence Δxka of the attack on the state variables of the plant A zero dynamic attack can be expressed from the additive consequence of the attack as follows a Δxk+1 = (A − BG)Δxka + ξαδt+1

dk = −GΔ!xka

where αδt+1 is a one step advanced pulse of unknown size α and occurrence time and δ the Kronecker symbol   t+1

 

NCS subject to zero dynamic attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

yk = yk + Δyka

Plant

dk

Attacker

dk = α gλ k−t ∀k ≥ t

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender Augmented state model of the plant viewed by the controller   " x $ k+1 $ Δx a # k+1

% " ' = $ A −BG ' # 0 A − BG &

%" xk '$ &$# Δxka

% " % " % " % ' + $ B ' u + $ 0 'αδ + $ I ' w k t+1 k ' # 0 & ξ '& 0& $ # # & ! x # k ' yk = !" C 0 #$& +v & Δx a ' k " k $

NCS subject to zero dynamic attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

dk

yk = yk + Δyka

Plant

Attacker

dk = α gλ k−t ∀k ≥ t

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender From the state transformation   " x! $ k $ Δx a # k

% " %" x % ' = $ I −I '$ k ' ' # 0 I &$ Δx a ' & # k &

NCS subject to zero dynamic attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

dk

yk = yk + Δyka

Plant

Attacker

dk = α gλ k−t ∀k ≥ t

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender we obtain the transformed augmented state model of the plant   " x! $ k+1 $ Δx a # k+1

% " 0 '=$ A ' # 0 A − BG &

%" x!k '$ &$# Δxka ! ! # yk = " C C $& & "

% " % ' + $ B 'u ' # 0 & k & x!k # '+ v k a ' Δxk $

" −ξ % " % 'αδt+1 + $ I ' wk +$ $# ξ '& #0&

NCS subject to zero dynamic attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

dk

+

Network

yk = yk + Δyka

Plant

Attacker

dk = α gλ k−t ∀k ≥ t

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender From CΔxka = 0

∀k ≥ t

signifying that

Δxka

is unobservable, we can derive the n-order model of the plant   x!k+1 = A!xk + Buk − ξαδt+1 + wk

yk = Cx!k + vk

showing that

Δyka = −CA k−tξα ∀k ≥ t

NCS subject to zero dynamic attack                                                          

Plant viewed by the controller

xk = xk + Δxka

uk                                                          

+

Network

dk

yk = yk − CA k−tξα

Plant

Attacker

dk = α gλ k−t ∀k ≥ t

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Point of view defender From Δyka = −CAk−tξα ∀k ≥ t we conclude that a zero dynamic attack may be quasi undetectable with α near to zero and ξ orthogonal to the left eigenevector of A associated to unstable eigenvalues   A. Teixiera, I. Shames, H. Sandberg, K.H. Johansson “Revealing stealthy attacks in control systems” th 50 Annual Allerton Conference on Communication, Control, and Computation, 2012

Illustrative example with Matlab Standard LQG controller subject to zero dynamic attack

Standard LQG controller under zero dynamic attack uk                                                          

+

Network

dk

Plant

dk = α gλ k−t ∀k ≥ t

Attacker

+

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

The plant   ⎡0.6 0 0.34 0.35⎤ ⎢ ⎥ 0 0.8 0 0.37⎥ A = ⎢ ⎢ 0 0 0.5 0 ⎥ ⎢ ⎥ 0 0 0.9 ⎥⎦ ⎢⎣ 0

⎡1 ⎢ 1 B = ⎢ ⎢0 ⎢ ⎣⎢0

0 0⎤ ⎥ 0 1⎥ 0 2⎥ ⎥ 1 1⎦⎥

⎡1 0 0 0⎤ ⎢ ⎥ C = ⎢0 1 0 0⎥ ⎢0 0 0 1⎥ ⎣ ⎦

has a real unstable invariant zero The matrix

A

is stable  

dim(ker(C)) = 1

λ = 1.18

Standard LQG controller under zero dynamic attack 100 80

.

60 40 20 0 -20 -40 -60 -80 -100

0

20

40

Zero dynamic attack

60 times

dk = α gλ

k−t

80

100

120

with α very close to zero

350 300 250 200 150 100

The unmeasured state xk3

50 0 -50

0

20

The state

40

[

xk = x1k

60 times

xk2

xk3

80

]

T xk4 of

100

120

the plant

14

Threshold level

H1

12

Tk = γ kT Qk−1γ k

10

8



µ

< H0

6

4

2

0

0

20

40

60 times

80

Detection variable of the passive defender

100

120

Resilient LQG controller from active FDI scheme

Active FDI scheme for covert attack detection

uk

yk

Plant

                                                         

Replay attack

Network

                                                         

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter

yk−τ

LQG controller γk

                                                         

ek

Data injection

Decision test

Threshold level λk

Active FDI scheme Active FDI schemes consist in adding a non destabilizing signal ek at the input of the plant, for example to reveal the presence of replay attack as in Y. Mo, B. Sinopoli “Secure control against replay attacks” Allerton Conf. on Communication, Control, and Computation, 2012

Active FDI scheme for zero dynamic attack

uk                                                          

+

Network

dk

Plant

yk

Attacker dk = α gλ k−t ∀k ≥ t

+                                                          

                                                         

uk

IDS uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Distributed active FDI scheme This paper proposes a dual version from the Intrusion Detection System (IDS) able to cancel the destabilizing signal d k before the occurrence of catastrophic damage on the plant (Resilience of the cyber system)

Active FDI scheme for zero dynamic attack

uk                                                          

+

Network

dk

Plant

yk

Attacker dk = α gλ k−t ∀k ≥ t

+                                                          

                                                         

uk

IDS uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Distributed active FDI scheme Assumption The decision test cannot receive information from IDS in real time

Active FDI scheme for zero dynamic attack Plant viewed by the controller

                                                         

uk                                                          

+

Network

dk

Plant

yk

Attacker dk = α gλ k−t ∀k ≥ t

+

IDS                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Design of the active FDI scheme When the IDS stops the attack at time r the model of the plant viewed by the controller switches from   x!k+1 = A!xk + Buk − ξαδt+1 + wk

yk = C!xk + vk

to   xk+1 = Axk + Bu   k − ξαδt+1 + ξνδr+1 + wk yk = Cxk + vk

where the pulse ν = αλ r−t is greater than

α

since  

λ >1

Active FDI scheme for zero dynamic attack Plant viewed by the controller

                                                         

uk                                                          

+

Network

Plant

dk

yk

Attacker dk = α gλ k−t ∀k ≥ t

+

IDS                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

Decision test

Threshold level λ

Design of the active FDI scheme or from the nominal state model model of the plant   xk+1 = Axk + Buk + wk yk = Cxk + vk

to   xk+1 = Axk +  Buk + ξνδr+1 + wk yk = Cxk + vk

when the attack is stealthy with

α

near to zero  

Active FDI scheme for zero dynamic attack

uk                                                          

+

Network

dk

yk

Plant

Attacker dk = α gλ k−t ∀k ≥ t

+

IDS                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter LQG controller γk

GLR detector

Threshold level λ

Active FDI scheme from the GLR detector From the model of the plant viewed by the controller xk+1 = Axk + Buk + ξνδr+1 + wk yk = Cxk + vk

the GLR test consists in detecting the pulse

νδr+1 ,

estimating its size and occurrence time

Resilient LQG controller from active FDI scheme uk                                                          

+

Network

dk

yk

Plant

Attacker dk = α gλ k−t ∀k ≥ t

+

IDS                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter Updating  

γk

GLR detector

Threshold level λ

Resilient LQG controller

Active FDI scheme from the GLR detector From the model of the plant viewed by the controller xk+1 = Axk + Buk + ξνδr+1 + wk yk = Cxk + vk

the GLR test consist in detecting the pulse νδr+1 , estimating its size and occurrence time and updating the Kalman filter to improve its tracking ability

Resilient LQG controller from active FDI scheme uk                                                          

Network

dk

+

yk

Plant

dk = α gλ k−t ∀k ≥ t

Attacker

+

IDS uk

uk = −Lxˆk/k

xˆk/k                                                          

Kalman filter Reinitialization  

γk

GLR detector

Threshold level

λ

Event-based AKF

The resilient LQG controller quickly recovering the nominal behaviour of the LQG controller leads to the following event-based adaptive Kalman filter   Pulse detection uk

yk

Nominal Kalman filter

Reinitialization of the Kalman filter   (Tracking ability)

H1

γk

T (k)

>

Pulse estimation

H0

ˆ = a(k, r) ˆ −1 b(k, r) ˆ νˆ (k, r)

H1

λ

≤ H0

ˆ = a(k, r) ˆ −1 Pν (k, r) rˆ = arg(

Kalman filter’s updating strategy   new xˆk/k−1 new Pk/k−1

new old ˆ νˆ (k, r) ˆ xˆk/k−1 = xˆk/k−1 + f (k, r)

Pknew /k−1

=

Pkold /k−1 +

ˆ ν (k, r) ˆ f (k, r) ˆT f (k, r)P

ˆ νˆ (k, r)

ˆ Pν (k, r)

# r∈% $

) + b(k, r)2 + * .) max &, a(k, r) + + / k−M k ('

Resilient LQG controller from active FDI scheme uk                                                          

Network

+

dk

yk

Plant Attacker

dk = α gλ k−t ∀k ≥ t

+

IDS uk

uk = −Lxˆk/k

xˆk/k                                                          

Kalman filter Reinitialization  

γk

GLR detector

Threshold level

λ=0

Unstable UIKF

When the threshold level is fixed at zero, the event-based adaptive Kalman filter   recovers the Unknown Input Kalman Filter (UIKF) designed on xk+1 = Axk + Buk + Bgdk + wk yk = Cxk + vk

but the UIKF is unstable for non minimum phase systems   The minimum value of

λ

so that the event-based Kalman filter remains stochasticaly stable is an open question for future work

Illustrative example Resilient LQG controller under zero dynamic attack

Resilient LQG controller under zero dynamic attack uk                                                          

Network

+

yk

Plant dk

Attacker

dk = α gλ k−t ∀k ≥ t

+

IDS                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter Resilient LQG controller

γk

Reinitialization  

Threshold level λ fixing a low rate of false alarms

GLR test

Zero dynamic attack signal 150

d k with α

very close to zero

input attack sequence

100

50

0

-50

-100

-150

0

10

20

30

40

50 times

60

70

80

Occurrence time of the zero dynamic attack: t = 40

90

100

Resilient LQG controller under zero dynamic attack uk                                                          

Network

+

yk

Plant dk

Attacker

dk = α gλ k−t ∀k ≥ t

+

IDS                                                          

uk

uk = −Lxˆk/k

xˆk/k

Kalman filter Resilient LQG controller

γk

Reinitialization   GLR test

Threshold level λ fixing a low rate of false alarms

First step of the active FDI

150

input attack sequence

100

50

0

-50

-100

-150

0

10

20

30

40

50 times

60

70

Stopped time of the attack: r = 70

80

90

100

Resilient LQG controller under zero dynamic attack Detection variable of the active defender

4

2

x 10

1.8 1.6

GLR detector

1.4

Abrutly detectable consequence of the attack

1.2 1 0.8 0.6 0.4

Stealthy attack

0.2 0

Threshold level 0

10

20

30

40

50 times

60

70

80

90

100

Resilient LQG control law

200

100

Control law

0

Adaptativity Resilience  

-100

-200

-300

-400

0

10

20

30

40

50 times

60

70

80

90

100

            States of the plant

600

400

System State

200

0

Adaptativity Resilience  

-200

-400

-600

0

10

20

30

40

50 times

60

70

80

90

100

Perspectives Transform stealthy attaks to virtual detectable faults by coding the control signal and sensor outputs uk

S −1

Plant

Decoding matrix

yk

Q

Encoding matrix

                                                         

Attacker

Network

S

Encoding matrix uk

Q−1

Decoding matrix

Controller

F. Miao Q. Zhu M. Pajic, G.J. Pappas “Coding sensor outputs for injection attacks detection” CDC, pp. 15-17, 2014