to make systems more reliable [15][18]. Liberato et al. proposed a feasibility-check algorithm for fault-tolerant scheduling [16]. The well- known Rate-Monotonic ...
An Efficient Fault-tolerant SchedulingAlgorithm for Real-time Tasks with Precedence Constraintsin HeterogeneousSystem s*
XiaoQin,
Hong Jiang andDavidRSwanson .
DepartmentofComputerScienceandEngineering UniversityoNebraska-Lincoln f {xqin,jiang,dswanson}@cse.unl.edu
TechnicalReportNo. TR-UNL-CSE2002-0501 February2002 yoNebraska-Lincoln f Lincoln,NE68588-0115
T * hisworkwassupported bayN n SF grant(EPS-0091900)and Nebra a grant(26-0511-0019). A shortversion othis f paperwasaccepte of the2002International ConferenceoP n arallel Processing Vancouver,British Columbia,Canada 1
skaUniversity Foundation dforpublicationitnheproceedings (ICPP-02), August18-21,2002,
An Efficient
Fault-tolerantSchedulingAlgorithmfor Real-time Taskswith PrecedenceConstraintsin HeterogeneousSystems XiaoQin Hong David Jiang RSwanson . DepartmentofComputerScienceand Engineering UniversityoNebraska-Lincoln f Lincoln,NE68588-0115,{xqin,jiang,dswanson}@cse.unl.edu
Abstract Inthispaper,weinvestigateanefficientoff-lineschedulingalgorithm
inwhichreal-timetasks
withprecedenceconstraintsinaheterogeneousenvironment.Itprovidesm
orefeaturesand
capabilitiesthanexistingalgorithmsthatscheduleonlyindependenttasksinr
eal-timehomogeneous
systems. In addition, the proposed algorithm takes the heterogeneities of communicationandreliabilityintoaccount,therebyimprovingthereliabili tolerantcapability,thealgorithmemploysaprimary-backupcopyschemethat toleratepermanentfailuresinanysingleprocessor.Inthisscheme, overlapwithotherbackupcopiesonthesameprocessor,aslongastheir copiesareallocatedtodifferentprocessors.Tasksarejudiciouslyall reducetheschedulelengthaswellasthereliabilitycost,defined failurerateandtaskexecutiontime.Inaddition,thetimefordetec faultisincorporatedintotheschedulingscheme,thusmakingthealgorithmmor
computation, ty.Toprovidefaultenablesthesystemto abackupcopyisallowedto correspondingprimary ocatedtoprocessorssoasto
tobetheproductopf rocessor tingandhandlingoapf ermanent epractical.To
quantifythecombinedperformanceofault-tolerance f andschedulability,thepe
rformabilitymeasure
isintroduced.Simulationresultsshowthattheproposedschedulingalgorithmsi
gnificantlyimproves
theschedulability,thereliability,andperformabilityoverexist
ing,comparablealgorithmsinthe
literature.
Keywords: Real-timetasks,off-linescheduling,fault-tolerance,he precedenceconstraints,reliability cost, performability
2
terogeneousdistributedsystem,
1.INTRODUCTION Heterogeneousdistributedsystemshavebeenincreasingly applications,includingreal-timesafety-criticalapplic
usedforscientificandcommercial
ations,inwhichthesystem dependsnotonlyon
theresultsoacomputation, f butalsoonthetimeinsta
ntsaw t hichtheseresultsbecomeavailable.
Examplesosuch f applicationsincludeaircraftcontrol,
transportationsystemsandmedical electronics.
Toobtainhighperformanceforreal-timeheterogeneoussy importantrole.While
stems,schedulingalgorithmsplayan
aschedulingalgorithmmapsreal-timetaskstoprocessorsin
thatdeadlinesandresponsetimerequirementsaremet[29], functional andt imingcorrectnessevenitnhepresence
thesystemmustalsoguaranteeits of faults.
Theproposedalgorithm,referredtoaseFRCD
(efficientFault-tolerantReliabilityCostDriven
Algorithm), endeavorstocomprehensivelyaddresstheissuesofaultf taskprecedenceconstraints,andheterogeneity.
thesystemsuch
tolerance,reliability,real-time,
Totolerateanyoneprocessor’spermanentfailure,the
algorithm uses P a rimary/Backuptechniquetoallocate twocopie Tofurtherimprovethequality othe f schedule, baackupcop copiesonthesameprocessor,aslongatsheircorrespo
of seach task todifferentprocessors. iyallowed s toverlapwith otherbackup ndingprimarycopiesareallocatedtodifferent
processors.Asanaddedmeasureoffault-tolerance,the
proposedalgorithmalsoconsidersthe
heterogeneitiesofcomputationandreliability,therebyi
mprovingthereliabilitywithoutextra
hardwarecost.Moreprecisely,tasksarejudiciouslyall schedulelengthaw s ellasthereliabilitycost,define taskexecutiontime.Inaddition,thetimefordetectin
ocatedtoprocessorssoastoreducethe dtobteheproductofprocessorfailurerateand gandhandlingofapermanentfaultis
incorporatedintotheschedulingscheme,thusmakingthealgor
ithm morepractical.
algorithmsstudiedin[1-11,13-29]shareoneotwo r features
witheFRCD,intermsotfheassumed
operationalconditions,asexplainedinSection2,the
3
Whilethevarious
latterisarguablythemostcomprehensive,in
termsothe f numberofdifferentschedulingissuesaddress
ed,andoutperformsseveralquantitatively
comparablealgorithmsintheliterature.Extensivesimula algorithm significantly outperformsallthreerelevantan
tionstudiesshowedthattheeFRCD dquantitativelycomparablealgorithmsfound
in theliterature. Inthesectionthatfollows,relatedworkintheliter
atureisbrieflyreviewedtopresenta
backgroundfortheproposedalgorithmandtocontrasteFRCD
withotheralgorithmstoshowits
relevance,similarity anduniqueness.Therestof thepape
is rorganizedafsollows.Section3presents
theworkloadandthesystemcharacteristics.Section4
describestheeFRCDalgorithmandthemain
principlesbehindit,includingtheoremsusedforpresentingt giveniS n ection 5Section . 6concludesthepaperby summa
healgorithm.Performanceevaluationis rizingthemaincontributionsof thispaper.
Finally,theappendixcontains saimpleexampletoelucida
te theproposedalgorithm.
2.RELATED WORK Theissueofschedulingonheterogeneoussystemshasbeen years.Aschedulingscheme,STDP,forheterogeneoussyst
studiedintheliteratureinrecent emswasdevelopedin[25].In[8,28],
reliabilitycostwasincorporatedintoschedulingalgori
thmsfortaskswithprecedenceconstraints.
However,thesealgorithmsneitherprovidefault-tolerance
norsupportreal-timeapplications.
Previousworkhasbeendonetofacilitatereal-timecom
putinginheterogeneoussystems.In[13],a
solutionforthedynamicresourcemanagementproblemin proposed.Aprobabilisticmodelforaclient/serverhete
real-timeheterogeneoussystemswas rogeneousmultimediasystemwaspresented
in[26].Thesealgorithms,however,cannottolerateanypro
cessorfailure.Fault-toleranceis
consideredinthedesignoreal-time f schedulingalgorithms
tomakesystemsmorereliable[15][18].
Liberatoetal.proposedafeasibility-checkalgorithmfor
fault-tolerantscheduling[16].Thewell-
knownRate-MonotonicFirst-Fitassignment
4
algorithmwasextendedin[5].Adelayedscheduling
algorithm using passive a replicamethodwasdevelopedi[n2].[ hybridtasksetsconsistingoffirmandhardperiodictasks. assumethattheunderlyingsystem eitherishomogeneousor Thealgorithmin[1]is real-time a schedulingalgorithmfo doesnotsupportfault-tolerance.Dimaeal. tdevisedanof algorithm usingreplicationooperations f anddatacommunicat execute thebackupcopy otafasksimultaneously withits Manimaranetal.[17]andMosseeat l.[9]haveproposed timetaskswithfault-tolerancerequirementsonmulti theiralgorithmsareindependentoof neanotherandares algorithm onthesamesystem andtaskmodel asthatin[9].Ohan tolerantschedulingalgorithmthatstaticallyschedules featuresamongthesealgorithms[9,16,18,20,21]arethat(1)tas and(2)theyaredesignedonlyforhomogeneoussystems.Al consideredinboth[28]and
6]presentedaanlgorithm toschedule However,bothotfheabovealgorithms consistsof saingleprocessor. tasks r withprecedenceconstraint,butit flinereal-timeandfault-tolerantscheduling ions[7].However,thisalgorithmmust primary copy. dynamicalgorithmstoschedulerealprocessorsystems,butthetasksscheduledin cheduledon-line.Martin[19]devisedan dSonstudied real-time a andfaultasetofindependenttasks[21].Twocommon ksareindependentfromoneanother thoughheterogeneoussystemsare
eFRCDthe , latterconsidersfault-toleranceandreal-time
taskswhilethe
formerdoesnotconsidereither. Veryrecently,Giraultetal.[10,11]proposedareal-tim systemsthatconsidersfault-toleranceandtaskswithpr closesttoeFRCDthattheauthorshavefoundinthelite andeFRCDarefour-fold:(a).theformerdoesnotconside does;(b).eFRCDconsidersheterogeneitiesincomputatio
eschedulingalgorithmforheterogeneous ecedenceconstraints.Thisstudyibs yfarthe rature.Themaindifferencebetween[10,11] traskdeadlinesexplicitly,whileeFRCD n,communicationandreliabilitywhilethe
formeronlyconsiderscomputationalheterogeneity;(c).t
heformerdoesnottakereliabilitycostinto
consideration,whereaseFRCDisreliability-costdrive
n;and(d).theformerallowstheconcurrent
5
executionoprimary f andbackupcopiesotafaskwhileeFRC
Dallowsbackupcopiesotasks f whose
primary copiesarescheduledodnifferentprocessors to Intheauthors’previouswork,
overlaponeanother.
both static[23,24]anddynamic[22]real-timeschedulingschemes
forheterogeneoussystemsweredeveloped.Onesimilarity ReliabilityCostDrivenScheme
amongthesealgorithmsisthatthe
isapplied.WiththeexceptionoftheFRCDalgorithm[24],
algorithmsproposedin[22,23]cannottolerateanyfailure.
other
Inthispaper,theFRCDalgorithm[24]is
extended by relaxingtherequirementthatbackupcopiesof tasksbenot
allowedtoboeverlapped.
3.WORKLOAD ANDSYSTEMCHARACTERISTICS Areal-timejobwithdependenttaskscanbm e odelledby E},where
V={v
amongtasks.
1v,
DirectedAcyclicGraph(DAG),T={V,
as ofreal-timetasks,andset a ofedges 2,...,vni}set
Erepresentscommunication
viv, j) ∈ Eindicatesamessagetransmittedfromtask
e=ij(
volumeodata f beingsent.Totolerantpermanentfaults
vto i
vand j,
|eijdenotes | the
inoneprocessor, parimary-backuptechnique P vand
isapplied.Thus,eachtaskhastwocopies,namely, processors.Withoutlossogf enerality,iitsassumedt
vBexecuted , sequentiallyontwodifferent
hatprimaryandbackupcopiesoaftaskare
identical.Theproposedapproachcanalsobaeppliedwhentw
ocopiesoeach f taskaredifferent.Fig.
13inAppendix(F)showsan exampleDAG. Theheterogeneoussystemconsistsofaset
P={p
connectedbyanetwork.Aprocessorcommunicateswitho andthecommunication t imebetween twotasksassignedt Ameasureof
m}ofheterogeneousprocessors
therprocessorsthroughmessagepassing, othesameprocessorisassumedtobzeero.
von i processor
pA of j.measure
essor.Thus,
C:V ×P→Z
ferom
+
,which
cj(vid) enotestheexecutiont ime
communicationalheterogeneity
E×P×P →Z +Communication . timeforsendingmessage a
6
2,...,p
computationalheterogeneity ismodeledbyafunction,
representstheexecutiont imeoeach f taskoneachproc oftask
1,p
von s
ismodeledbyafunction ptoi
vr on pisdj eterminedby
M:
wij*|e|,where
|e|isthecommunicationcostand
wijistheweightontheedgebetween
representingthedelayinvolveditnransmitting message a o Givenatask
v ∈V , d(v),s(v)
if forall
v∈ V,
and i(v)
itsatisfiesboth f(v
pj,
unit f lengthbetween thetwoprocessors.
andf(v) denotethedeadline,scheduledstarttime,andfinisht
respectively. p(v)denotestheprocessortowhich constraints: f(v)=s(v)+c
pand i
ime,
visallocated.Theseparametersaresubjectto
≤ f(v)d(v)
where ,
)d(v) ≤
P
p(v)=p A jobhasa i.real-time
feasibleschedule
f(vB) ≤d(v).
and ,
A k-timely-fault-tolerant (k-TFT)schedule[21]isdefinedasthescheduleinwhichnotask deadlinesaremissed,despiteof
karbitraryprocessorfailures.ThegoalofeFRCDistoa
TFT.Iitsassumedthatprocessorfailures, whichare
duringthetimeinterval
independentwithoneanother,followinga
λThus, .
PoissonProcesswithanarrivalrate τ[12].Let
where λi (1 ≤i
≤m) is
t.Therefore,
pi'sfailurerateinavector
X=(i1
(1)
λ1, λ2…, ,
R=(
λm).Thestateotfhesystemis
{0,1,2, …,m}
≤i
≤m)
More . precisely,
signifiesthat
X=0
pencounters permanent i p ( v P ) =i
pi
mary copies of tasks assignedto
m
m
i =1
i =1
∏ NLi (τ i ) =∏ e −λiτ i
= x0 (2)
(1 − NLi (τ i )) ∏ NF j (τ j ) = (1 − e −λ τ ) ∏ e −λ τ m
j j
i i
j =1, j ≠ i
means
τ i = MAX { f (v )} istheschedule
m
7
nd NFi(t) be
e − λit
Xisdeterminedbyequation(2),where
length of pwhich ithe s latestof finish times amongall pri i,
Pr[X= x]
nevents
NFi(t) isbexpressedbtyheequationbelow,
X which takes valuein
thatnoprocessorpermanentlyfails,and
for
e − λτ (λτ ) n givestheprobabilityof n!
=Pr[K=0] = i(t)
representedbrandom ay variable
failures.Theprobabilityfor
Prn (τ ) =
Kbetherandomvariableforthenumberoffaults,a
theprobability that pwill failby t ime i not NF
chieve1-
j =1, j ≠ i
for = xi,(1
≤i ≤m)
Thereliabilitycostof task
von i processor
on pjIt.shouldbenotedthat heterogeneityin
vi'sexecutiont ime λand j
pj isdefinedatsheproductof
reliabilityheterogeneity isimpliedinthereliabilitycostbyvirtueof RC(R, Ψ)bethereliability costof gaivenschedule λLet j.
cj(viand )
Ψfor gaiven
R.
m
Undertheassumptionthatnomorethanoneprocesso
∑ Pr( X = i) = 1,
pr ermanentlyfails,thatis,
i =0
theexpectedvalueof
itcanbexpressedas, m
(3)
E (RC ( R, Ψ )) = ∑ (RCi ( R, Ψ ) × Pr[ X = i]) i =0
d RCi(R,Ψ) (1 ≤i
where RC0 (R, Ψ)isthereliabilitycostwhennoprocessorfailsan reliabilitycostwhen
pfails. i
schedule Ψ. RCand 0
RCare beyquation (4) and(5), respective i determined
RC
0
RCand 0
RCisti hesummationoveralltasks'reliabilitycosts
m
∑
(R,Ψ ) =
∑
i =1
RC i ( R , Ψ ) = =
p (v
m
∑
P
j =1, j ≠ i
∑
ly. (4)
)=i
j =1, j ≠ i p ( v P ) = j m
basedon
λ ic i (v )
∑
∑
≤m) isthe
λ j c j (v ) +
λ j c j (v ) +
p (v P )= j
m
∑
∑
∑
(5)
λ j c j ( v )
p ( v P ) = i , p ( v B )= j
In equation (5), thefirstsummation term on theri
λ c (v )
j j j =1, j ≠ i p ( v P ) = i , p ( v B ) = j
ghthandsiderepresents thereliability costdue t
taskswhoseprimarycopiesresideinfault-freepro
o
cessors,whilethesecondsummationterm
expressesthereliability costdue tothebackupco
piesothe f taskswhoseprimary copiesresideotnh
failedprocessor.Usingequations (3)-(5), we obtai
tnheexpectedvalueoreliability f costas follows
e ,
m m m −λ τ E (RC ( R, Ψ )) = RC 0 ( R, Ψ ) × ∏ e −λiτ i + ∑ RCi ( R, Ψ ) × (1 − e −λiτ i ) (6) e j j ∏ i =1 i =0 j =1, j ≠ i
Reliability,giveninthefollowingexpression,cap parallel jobs
in thepresenceosafingleprocessor failure. RL( R, Ψ ) = e − RC ( R ,Ψ )
8
turestheabilityofthesystemtocomplete
(7)
Obviously,reliabilityincreasesasthesystem’sre
liabilitycostdecreases.Thissuggeststhat
schedulingtaskstoprocessorsinawaywhichgives
risetoaminimumsystemreliabilitycostwill
resultin high a system reliability. 4. SCHEDULING ALGORITHMS
Inthissection,wepresenteFRCD,anefficientalg
orithmthatschedulesreal-timejobswith
dependenttasksact ompiletime.Theobjectivesof schedulelengthisreduced
thealgorithmaremultiple,namely,(1)Total
sothatmoretaskscancompletebeforetheirdeadli
failuresinoneprocessorcanbteolerated;and(3)
nes;(2)Permanent
Thesystemreliabilityiesnhancedbyreducingthe
overall reliability costof theschedule. 4.1 An Outline
Thekeyfortoleratingasingleprocessorfailurei
tsoallocatetheprimaryandbackupcopiesoaf
tasktotwodifferentprocessorssuchthattheback
upcopysubsequentlyexecutesiaf ndonlyitfhe
primarycopyfailstocompleteduetoitsprocessor
failure.Notallbackupcopiesneedtoexecute,
eveninthepresenceoasingle f processorfailure.
Sinceonlytasksallocatedtothefailedprocessor
areaffectedandneedtheirbackupcopiestobexe overlapwithoneanother.
Moreprecisely,a
cuted,certainbackupcopiescanbescheduledto B vis allowedto verlapwithotherbackupcopieson
sameprocessor,if thecorrespondingprimary copies vi
areallocatedtothedifferentprocessors towhich P the vis notallocated.Thus,in feasible a schedule,
P
p1
the
time vjB
theprimarycopiesoaf nytwo
vjB
tasksmustnotbe
p2
vjP p3
allocatedtothesameprocessoriftheirbackup overlap
Fig.1Primarycopiesofv and v are to i j allocated p1andp 3r, espectively,andbackupcopiesofv andv are allocatedtop . twobackup j both 2These copiescanbeoverlappedwitheachother.
copiesareonthesameprocessorandthereisan i
overlapbetweentwothebackupcopies.This statementisformally describedabselow.
9
Proposition 1.
(
) ((
) (
p3respectively, , andbackupcopiesof
vand i
))
∀vi , v j ∈ V : p (viB ) = p (v Bj ) ∧ s(viB ) ≤ s(v Bj ) < f (viB ) ∨ s(v Bj ) ≤ s(v iB ) < f (viB ) → p(v iP ) ≠ p (v Pj ) Fig.1showsanexampleillustratingthiscase.In thisexample,primarycopiesof vand vare i j allocatedto
pand 1
backupcopies canboeverlappedwith each otherbec
vare allocatedto j both
auseamost t one
p2These . two
of them will everexecuteitnhe
single-processorfailuremodel. Thealgorithmschedulestasksinthefollowingthre by theirdeadlinesinon-decreasingorder,such th Second,theprimarycopiesarescheduledtosatisfy schedulelengthandtheoverallreliabilitycost.F mannerastheprimarycopies,exceptthattheymay reduceschedulelength. Morespecifically,inthe mustsatisfy thefollowingthreeconditions:(1)it
emainsteps.First,real-timetasksareordered attasks with tighterdeadlineshavehigherpriorit theprecedenceconstraintsandtoreducethe inally,thebackupcopiesarescheduledinasimila
condition(1);and(3)ishould t beabletoreceive
secondandthirdsteps,theschedulingoeach f task
abilitycostamongallprocessorssatisfying messagesfromallitspredecessors.Inadditionto
theseconditions,eachbackupcopyhastwoextraco theprocessorthatisdifferentthantheoneassign
nditionstosatisfy,namely,(i)iis tallocatedon edforitsprimarycopy,and(ii)iitsallowedto
overlapwithotherbackupcopiesonthesameproces differentprocessors. Proposition2.
soriftheirprimarycopiesareallocatedto
Condition (i)and(ii)canbfeormally describedby
Aschedulei1-TFT s
thefollowingproposition.
→ ∀v ∈ V : ( p (v P ) ≠ p (v B ) ) ∧ (s(v B ) ≥ f (v P ) + dt ) .
Inthesubsectionthatfollows,theeFRCDalgorithm of andrelationshipsbetween tasks andtheirprimar
ispresented,alongwithsomekeyproperties ayndbackupcopies.
4.2 TheeFRCD Algorithm
Tofacilitatethepresentationothe f algorithm,so 10
r
beoverlappedonthesameprocessorstofurther
deadline s shouldbm e et; (2) theprocessor allocat
shouldleadtotheminimumincreaseinoverallreli
ies.
meothe f conditionslistedabove,(1)-(3)and(i)-
ion
(ii),andothernecessary notations andproperties NOTATION D(v) S(v) F(v)
B(v) VQi VQi’(v)
Table1Definitions . oNotation f DEFINITION ∈E} The setof predecessorsof task v. D(v) ={v (v | i v) i, The setof successorsof task v, S(v) ={v (v, |vi E} i) ∈ B The setof feasible processorsto which vcan baellocated,determinedinpart by Theorem2. The setof predecessorsof v’s backupcopy,determinedbE y xpression(11). , f(v0= 0) The queue inwhichall tasks are scheduled to pi,s(v q+1=) ∞and The queue inwhichall tasks are scheduled to pand overlap withthe backupcopy of i, cannot task v,where s(vq+1=) ∞and , f(v0= 0) vi is schedule-preceding v if , only if s(v j) ≥f(v i ). jand vi is message-preceding v j, if andonly if v i sends m a essage to v j. Note that vi ⇒ v j implies vi f v but notinversely . v execution-preceding v and only iboth f tasksexecute and vi ⇒ v Note vi a v implies i j, if j that j v and v f v vi ⇒ j i j The earliest available time forthe primary obackup r copy otask f ivmessage f seentfrom vj∈ D(v) representsthe only precedence constraint.
vi f v j vi ⇒ v j vi a v
arelisteditnhefollowingtable.
j
EATi (v,v j) EATi P(v)
j
MIN v P∈D ( v P ) {EATi (v P , v Pj )} j
B
EATi (v)
MIN v ∈D ( v B ) {EATi ( v B , v j )} j
P
ESTi (v) ESTi B(v) ESTP(v)
The earlieststart time forthe primary copy of The earlieststart time forthe backupcopy of
ESTB(v)
MIN Pi∈P {ESTi (v B )}
InTable1,
ovnprocessor ovnprocessor
pi . pi .
MIN Pi∈P {ESTi (v P )}
EATiP(v)itshe
earliestavailabletime
timeforitoreceivemessagesfromallitspredec availablet imeonprocessor
pfor i
pfor i
essors.Similarly,
ESTiB(v) overall p
i
∈P.
system aregiven amongexpressions (8)through (13) accompaniedbyexplanations,ispresentedbelow.
ESTB(v)itsheearlieststarttimefor
vPtaking , intoaccountthe
EATiB(v) denotesthe
vB. ESTP(v),determinedbytheminimalvalueo f
∈P , isthe earlieststarttime for vPLikewise, . theminimalvalueof
onprocessor
earliest
ESTiP(v) forall
pi
vBand , iesqualto
Theseessentialvaluesforagivenheterogeneous .A detailedpseudocode othe f eFRCDalgorithm, Anexampletoillustratehowtheproposed
algorithm works is giveninAppendix (F). The eFRCDAlgorithm: Input: T={V,E} , P,C,M,R /*DAG,DistributedSystem,Computational,Communicatio nalandReliability Heterogeneity */ Output: Schedule feasibility of T,and vaiable schedule Ψif it is feasible . 1.Sort tasks by the deadlinesin non-decreasing order,subj ectto precedence constraints, and generate anordered list OL; P 2. for eachtask v in OL, following the order schedule , the primary copy vdo /* Schedule primary copiesof tasks*/
11
s(vP) ← ∞rc ; ← ∞VQ ; =i ∅; for eachprocessor pdo /* Determine whethertask v should allocated be tporocessor p*/i i * Calculate ESTPi (v),where VQ= {i v 1v, 2…, , vi}the inwhichall */ qs queue , f(v0= 0) */ ks are scheduledto pi,s(v q+1=) ∞and 2.2.1 for ( = t0j+ qo1 /* Compute ) do the earlieststarttime of ovn p*/i if s(vj+1 ) MAX{f(v EAT i P(v)}c≥ i (v) then/*checkithe f unoccupiedtime intervals,interspersed*/ j), P ESTPi (v) /* bcyurrently scheduled tasks,canaccommodate *v/ = MAX{f(vj),EAT i (v)}; endfor P executing at ESTPi (v) the earliest EST*/i andcan be completedbefore d(v) then /*Determine 2.2.2 if vstarts P Determine reliability costof von pi; /* basedon Equation(10) */ if (( rci