and Biological Effects of Coastal Ocean Sediment Transport ... - Wiley

3 downloads 0 Views 811KB Size Report
Woodward, L. A., Rate of crustal extension across the Rio ...... Boesch and N. Rabelais (Louisiana Universi .... 1986-1987 Richard Montgomery Field. Fellow.
Eos, Vol. 68, No. 35, September 1, 1987

Searle, R. C , E v i d e n c e f r o m gravity a n o m a ­ lies f o r t h i n n i n g o f t h e l i t h o s p h e r e b e n e a t h t h e rift valley in K e n y a , Geophys. J., 21,\ 3 , 1 9 7 0 . S e a r l e , R . C , a n d P. G o u i n , A n analysis o f s o m e local earthquake phases originating n e a r t h e A f a r triple j u n c t i o n , Seismol. Soc. Am. Bull., 61, 1 0 6 1 , 1 9 7 1 . S e a r l e , R . C , a n d P. G o u i n , A g r a v i t y s u r v e y o f t h e c e n t r a l p a r t o f t h e E t h i o p i a n rift val­ ley, Tectonophysics, 15, 4 1 , 1 9 7 2 .

Suess, E., D i e B r i i c h e d e s o s t l i c h e n A f r i k a , Denkschr. Akad. Wiss. Wien, 58, 5 5 5 , 1 8 9 1 . T a r a n t o l a , A . , J. C . R u e g g , a n d J. C . L e p i n e , G e o d e t i c e v i d e n c e f o r rifting in A f a r : A brittle-elastic m o d e l o f t h e b e h a v i o u r o f t h e l i t h o s p h e r e , Earth Planet. Sci. Lett., 45, 4 3 5 , 1979. Wernicke, B., Uniform-sense normal simple s h e a r o f t h e c o n t i n e n t a l l i t h o s p h e r e , Can. J. Earth. Sci., 22, 1 0 8 , 1 9 8 5 .

W o o d w a r d , L . A . , R a t e o f crustal e x t e n s i o n a c r o s s t h e R i o G r a n d e rift n e a r A l b u q u e r ­ q u e , N e w M e x i c o , Geology, 5, 2 6 9 , 1 9 7 7 . Z o r i n , Y . A . , T h e B a i k a l rift: A n e x a m p l e o f the intrusion o f a s t h e n o s p h e r i c material i n t o t h e l i t h o s p h e r e as t h e c a u s e o f d i s r u p ­ t i o n o f l i t h o s p h e r i c plates, Tectonophysics, 73, 9 1 , 1 9 8 1 .

The Oreannqraphv Report we d o a b o u t the effects o f e p i s o d i c events o n continental shelf stratigraphy. W e lack k n o w l ­ e d g e t o d a y partially b e c a u s e , until r e c e n t l y , we lacked theoretical m o d e l s to g u i d e the d e ­ s i g n a n d i n t e r p r e t a t i o n o f a m a j o r field s t u d y .

The Oceanography Report: physical, chemical, geological, phers

The focal point for

and biological

oceanogra-

Editor: David A. Brooks, Department of Ocean­ ography, Texas A&M University, College Station, T X 77843 (telephone: 409-845-5527).

Sediment Transport Events on Shelves and Slopes (STRESS) and Biological Effects of Coastal Ocean Sediment Transport (BECOST) Arthur R. M. Now ell, Peter A. Jumars, and Joseph H. Kravitz PAGES 722-724

Introduction D e s p i t e m u c h p r a c t i c a l i n t e r e s t in t h e p r o b ­ l e m o f s e d i m e n t t r a n s p o r t o n t h e shelf, it is g e r m a n e t o n o t e that w e h a v e m o r e i n f o r m a ­ t i o n o n s t o r m s in t h e d e e p sea a n d t h e i r ef­ fects o n s u s p e n d e d s e d i m e n t t r a n s p o r t t h a n

0096-3941/87/6835-722$ 1.00 Copyright 1987 by the American Geophysical Union

T h e small-scale f a b r i c o f s h e l f s e d i m e n t s a n d t h e fine t e x t u r e o f s t r a t i g r a p h y o f shal­ low water sediments have held fascination f o r m a r i n e g e o l o g i s t s a n d s t r a t i g r a p h e r s alike: C o u l d a n y o f t h e small-scale f a b r i c b e u n ­ equivocally related to the f o r c i n g function? M a j o r a d v a n c e s in b o u n d a r y l a y e r t h e o r y a n d in i n s t r u m e n t a t i o n o v e r t h e past d e c a d e , c o u ­ p l e d with t r e m e n d o u s a d v a n c e s in k n o w l e d g e a b o u t c o a s t a l c i r c u l a t i o n , a l l o w us t o d a y t o at­ t e m p t to u n d e r t a k e such a c o m p l e x question. Issues s u c h as w h i c h p h y s i c a l , g e o l o g i c a l , a n d biological processes determine b o t t o m r o u g h ­ ness at a site a n d w h a t rates o f t r a n s p o r t p r e ­ vail in e p i s o d i c p r o c e s s e s ( e . g . , s t o r m s , s u r f a c e a n d i n t e r n a l w a v e s ) that d o m i n a t e s e d i m e n t m o v e m e n t o n the shelf are o n l y n o w a m e n a ­ b l e t o field t e s t i n g that is b a s e d o n r e c e n t l y d e v e l o p e d theories. Similarly, f o r reasons b o t h o f logistics a n d o f insufficient theoretical attention to date, continental shelf benthic ecosystems are p o o r ­ ly k n o w n in c o m p a r i s o n t o o t h e r m a r i n e e c o ­ systems. T h e limited investigations o f conti­ nental shelf b e n t h o s have b e e n mainly d e ­ scriptive a n d usually h a v e f o c u s e d o n defining assemblages o f organisms retained o n relatively c o a r s e - m e s h e d sieves ( 0 . 5 t o 2 m m ) a n d r e l a t i n g t h e m t o e n v i r o n m e n t a l var­ iables s u c h as d e p t h , t e m p e r a t u r e , a n d s e d i ­ m e n t p r o p e r t i e s . T h e f e w s e d i m e n t variables m e a s u r e d h a v e b e e n static, s u c h as g r a i n size and bulk organic content, and have led only s o far as t h e p e r e n n i a l c o n c l u s i o n f o r b e n t h o s at all d e p t h s that s e d i m e n t a r y p a r a m e t e r s a n d benthic c o m m u n i t y c o m p o s i t i o n are correlat­ e d . D i s t r e s s i n g l y little a d d i t i o n a l i n s i g h t i n t o t h e p r o c e s s e s that g o v e r n c o m m u n i t y struc­ t u r e a n d d y n a m i c s has b e e n ( o r c a n b e ) g a i n e d f r o m this a p p r o a c h o f m e a s u r i n g stat­ ic v a r i a b l e s a n d c o m i n g u p w i t h p o s t h o c e x ­ planations f o r the patterns o b s e r v e d . W h i l e i n t r o d u c t o r y texts still p r e a c h that s e d i m e n t type determines c o m m u n i t y c o m p o s i t i o n , re­ c e n t l a b o r a t o r y a n d field s t u d i e s a n d t h e o r i e s s u g g e s t that fluid d y n a m i c s m a y w e l l e x e r t the c o n t r o l l i n g i n f l u e n c e o v e r b o t h . E v e n if fluid d y n a m i c s d o m i n a t e s , h o w e v e r , s t r o n g feedbacks are to b e e x p e c t e d a m o n g the c o m ­ p o n e n t s o f t h e o r g a n i s m - s e d i m e n t - f l o w sys­ tem, a n d b r o a d - s c a l e correlative studies with­ o u t t i m e series a r e e s p e c i a l l y ill s u i t e d t o r e ­ s o l v e c a u s e f r o m e f f e c t in t h e p r e s e n c e o f such feedbacks. T h e interdisciplinary Sedi­ m e n t T r a n s p o r t Events o n Shelves a n d Slopes ( S T R E S S ) p r o g r a m presents to biologists an u n p a r a l l e l e d o p p o r t u n i t y t o d e v e l o p a n d test

the a priori h y p o t h e s e s n e e d e d to dissect o r ­ ganism-sediment relations to a m u c h m o r e m e a n i n g f u l level.

Objectives of STRESS S T R E S S , w h i c h is f u n d e d b y t h e O f f i c e o f N a v a l R e s e a r c h ( O N R , in c o l l a b o r a t i o n w i t h the U . S . G e o l o g i c a l S u r v e y ( U S G S ) a n d re­ s e a r c h e r s at t h e N a v a l O c e a n R e s e a r c h a n d D e v e l o p m e n t A c t i v i t y , o r N O R D A ) , will b e t h e first c o u p l e d s t u d y o f s t o r m - i n d u c e d c o a s t a l flows a n d t h e a s s o c i a t e d s e d i m e n t transport o n the shelf a n d u p p e r slope. M o r e specifically, t h e p r o g r a m will d e v e l o p a t e s t e d c a p a b i l i t y t o p r e d i c t s e d i m e n t e r o s i o n , trans­ p o r t , a n d d e p o s i t i o n o n t h e shelf, s h e l f e d g e , u p p e r s l o p e , a n d i n n e r shelf—beach f a c e r e ­ gions. T o d e v e l o p such a capability requires that l o c a l b o u n d a r y l a y e r s t r u c t u r e , i n c l u d i n g surface- and b o t t o m - i n d u c e d m i x i n g f o r strong wind forcing, be appropriately m o d ­ e l e d a n d that s u c h m o d e l s b e a d e q u a t e l y test­ ed. Further, b o t t o m b o u n d a r y layer m o d e l i n g r e q u i r e s that w e c a n m e a s u r e a n d e v e n t u a l l y b e able to p r e d i c t the b o t t o m r o u g h n e s s p r o ­ d u c e d b y flows a n d o r g a n i s m s o v e r a realistic range o f wave a n d c u r r e n t c o n d i t i o n s , sedi­ m e n t m i x t u r e s , a n d b i o t a . It will n o l o n g e r d o t o i n v o k e u n s e e n u p s t r e a m r o u g h n e s s varia­ t i o n s in e x p l a i n i n g a w a y a n o m a l i e s . T h e p r o ­ g r a m i n v o l v e s e n s u r i n g that t h e c i r c l e o f b o u n d a r y layer f o r c i n g affecting the b e d , c a u s i n g t r a n s p o r t , a n d r e s u l t i n g in a l t e r a t i o n o f t h e fluid r e s i s t a n c e , w h i c h in t u r n affects the b o u n d a r y layer forcing, b e b r o k e n into w e l l - c o n s t r a i n e d p a r t s s o that p r e d i c t i o n o f relevant quantities m a y b e e n s u r e d . M o d e l s that a r e at last a v a i l a b l e h a v e n e v e r b e e n a d e q u a t e l y t e s t e d u n d e r field c o n d i t i o n s o f sediment transport. Limited data f r o m winter storms have never i n c l u d e d measure­ m e n t o f the s u s p e n d e d s e d i m e n t c o n c e n t r a ­ t i o n at m o r e t h a n o n e l e v e l a b o v e t h e b e d , a n d in n o c a s e h a s t h e b e d r e s p o n s e b e e n measured. A t present, m o d e l s a p p e a r to und e r p r e d i c t s u s p e n d e d l o a d a n d also to give v e r y s m a l l v a l u e s f o r d e p t h o f e r o s i o n in a n y t y p i c a l suite o f w i n t e r s t o r m s . T h e s e c o n c l u ­ s i o n s , h o w e v e r , m u s t b e t e m p e r e d b y t h e fact that t h e r e has n e v e r b e e n a c o m p r e h e n s i v e m e a s u r e m e n t p r o g r a m that has l o o k e d at m o r e than o n e m e a s u r e m e n t location and that t h e m e a s u r e m e n t s t h e m s e l v e s h a v e b e e n l i m i t e d in v e r t i c a l e x t e n t . I n a d d i t i o n t o t h e m o s t o b v i o u s issue o f p r o v i d i n g an a d e q u a t e test o f t h e a v a i l a b l e m o d e l s o f b e d l o a d a n d s u s p e n d e d l o a d trans­ p o r t , S T R E S S will a t t e m p t t o a n s w e r a suite o f other questions. Traditionally, sediment t r a n s p o r t m e c h a n i c s has b e e n d i v i d e d into a

Eos, Vol. 68, No. 35, September 1, 1987

c o n s i d e r a t i o n o f b e d l o a d t r a n s p o r t a n d sus­ p e n d e d load transport, with very different m o d e l s b e i n g used f o r calculating the two c o m p o n e n t s o f t h e total l o a d . R e c e n t w o r k b y Wiberg and Smith [ 1 9 8 5 ] h a s r e s u l t e d in a m o d e l that i n c o r p o r a t e s b o t h c o m p o n e n t s , d e p e n d i n g u p o n t h e t r a n s p o r t s t a g e (i.e., o n e x c e s s s h e a r stress, w h i c h is t h e f o r c e p e r u n i t area responsible f o r m o v i n g sediments). O u r k n o w l e d g e a b o u t t h e c h a r a c t e r i s t i c s o f sus­ p e n d e d m a t e r i a l s , h o w e v e r , is v e r y l i m i t e d . McCave [ 1 9 8 5 ] h a s s h o w n t h a t a g g r e g a t i o n m e c h a n i s m s s u c h as d i f f e r e n t i a l settling, s h e a r - i n d u c e d flocculation, a n d c o l l i s i o n s in­ d u c e d b y B r o w n i a n m o t i o n , as w e l l as gravita­ t i o n a l settling, m a y alter t h e size d i s t r i b u t i o n o f s e d i m e n t s in s u s p e n s i o n o v e r v e r y s h o r t time p e r i o d s ( o f the o r d e r o f hours, d e p e n d ­ i n g u p o n size, s e d i m e n t c o n c e n t r a t i o n , a n d fluid m e c h a n i c a l r e g i m e ) . I n S T R E S S , c o n s i d ­ e r a b l e e f f o r t is t o b e e x p e n d e d in l o o k i n g at s u s p e n d e d s e d i m e n t c o n c e n t r a t i o n s , in situ settling v e l o c i t i e s , a n d p a r t i c l e size d i s t r i b u ­ tions. T h e s e three measures have b e e n m a d e in t h e d e e p sea, a n d m a n y i n t e r e s t i n g a n d challenging hypotheses have been developed f r o m a v e r y l i m i t e d suite o f m e a s u r e m e n t s t h e r e . G i v e n h i g h e r s h e a r rates ( d u e t o m o r e i n t e n s e m i x i n g o n t h e s h e l f ) a n d g r e a t e r like­ l i h o o d o f b i o l o g i c a l a l t e r a t i o n o f p a r t i c l e s in s u s p e n s i o n ( b e c a u s e w e a r e in o r n e a r a p r o ­ ductive euphotic zone), measures o f suspend­ e d s e d i m e n t will p r o b a b l y p r o v e t o b e o f w i d e interest b e y o n d the specific n e e d to k n o w such values to calculate s e d i m e n t transport rates. T o p o g r a p h y o f the b e d b e f o r e , during, a n d after a s t o r m m u s t b e c h a r a c t e r i z e d b e c a u s e the r o u g h n e s s o f the b e d d e t e r m i n e s m u c h o f t h e flow r e s i s t a n c e . Grant et al. [ 1 9 8 3 ] , h a v e s h o w n that d i f f e r i n g w a v e r e g i m e s p r o d u c e d i f f e r i n g b e d r i p p l e w a v e l e n g t h s , w h i c h in t u r n alter t h e f r i c t i o n f a c t o r o f t h e b e d b y a f a c t o r o f ~ 5 . E v e n b e y o n d fluid m e c h a n i c a l i n t e r e s t in f r i c t i o n w i t h t h e b e d , h o w e v e r , c h a n g e s in b e d t o p o g r a p h y a r e t h e basis f o r characterizing the stratigraphic deposit and acoustic properties o f the sediment. W h i l e s o m e r o u g h n e s s scales a r e c l e a r l y set b y t h e fluid stress ( r i p p l e s a n d d u n e s , f o r e x a m p l e ) the d i s a p p e a r a n c e o f such features a n d the g e n e r a t i o n o f r o u g h n e s s o n c e n t i m e t e r scales is d o m i n a t e d b y f o r a g i n g activities o f t h e b e n ­ t h o s . V e r t i c a l a n d h o r i z o n t a l m i x i n g rates a r e clearly c o n t r o l l e d o v e r m u c h o f the year by animals, a n d the preservation o f s t o r m - g e n e r ­ a t e d m i c r o s t r a t i g r a p h y a r e c o n t r o l l e d by like activities. T h e c o n v e r s e o f this p r o b l e m is that s e l e c t i v e f e e d i n g activities b y m a c r o f a u n a c a n c a u s e small-scale vertical stratification o f t h e b e d b y g r a i n size, r e s u l t i n g in l o c a l b e d ar­ m o r i n g by a layer o f grins t o o coarse to be e r o d e d . T h i s a r m o r i n g m a y h a v e a v e r y sig­ nificant e f f e c t o n t h e abilities o f t h e flow to c o n t i n u e to e r o d e d o w n w a r d d u r i n g a storm. S u c h s i z e - s e l e c t i v e a n d t i m e - d e p e n d e n t alter­ a t i o n o f b e d f a b r i c will a l s o p r o b a b l y h a v e very m a j o r effects o n acoustic p e n e t r a t i o n a n d t h e variability o f s u c h p e n e t r a t i o n at h i g h frequencies. O n e o f the objectives o f S T R E S S is t o i n c o r p o r a t e b i o l o g i c a l a n d g e o t e c h n i c a l measurements into a c o m p r e h e n s i v e study o f t h e r e s p o n s e o f t h e b e d t o s e d i m e n t trans­ port. Effects o f s e d i m e n t t r a n s p o r t o n t h e a c o u s ­ tic p r o p e r t i e s o f a small r e g i o n o f t h e s h e l f are diverse a n d have w i d e - r a n g i n g implica­ tions. D e p e n d i n g o n the f r e q u e n c y o f inter­

Fig. 1. B a t h y m e t r y ( o b l i q u e t y p e ) a n d m e a n g r a i n size ( r e g u l a r t y p e , in urn) at t h e p r o ­ p o s e d S T R E S S a n d B E C O S T field site [ a d a p t e d f r o m Cacchione et al, 1 9 8 3 , F i g u r e 1 1 ] . C i r ­ cles r e p r e s e n t s e d i m e n t s a m p l e s , w h i l e t h e t r i a n g l e i n d i c a t e s C O D E station C 3 , t h e p r o ­ p o s e d 9 0 - m site o n w h i c h parts o f S T R E S S a n d B E C O S T w o u l d f o c u s . est, c h a n g e s in b e d r o u g h n e s s f r o m w a v e - i n ­ d u c e d r i p p l e s , a l t e r e d s t r a t i g r a p h y , a n d var­ ied thicknesses a n d shear strengths o f the b e d will e a c h alter s c a t t e r i n g a n d p e n e t r a t i o n o f a c o u s t i c e n e r g y . F r o m l i m i t e d d a t a in o t h e r s t o r m - d o m i n a t e d b o u n d a r y layers a n d f r o m c a r e f u l flume o b s e r v a t i o n s , w e s u s p e c t that c l o u d s o f s e d i m e n t w i t h distinct c h a n g e s in s u s p e n d e d c o n c e n t r a t i o n will o c c u r d u r i n g e n t r a i n m e n t . M a n y q u e s t i o n s r e m a i n as t o h o w l o n g s u c h c l o u d s retain t h e i r s h a r p c h a r ­ a c t e r a n d as t o w h e t h e r d u r i n g d e p o s i t i o n f r o m a storm o n the shelf the b e d b e c o m e s a fluid-sediment c o n t i n u u m r a t h e r t h a n retain­ ing a sharp division between overlying water and underlying b e d . Such p h e n o m e n a are o f c l e a r i n t e r e s t in o c e a n a c o u s t i c s a n d will b e i n v e s t i g a t e d o v e r s e v e r a l s t o r m c y c l e s at t h e S T R E S S sites. F l u i d m e c h a n i c a l q u e s t i o n s in S T R E S S r e ­ v o l v e n o t o n l y a r o u n d testing t h e w a v e - c u r ­ rent b o u n d a r y layer m o d e l s u n d e r c o n d i t i o n s o f s t r o n g w a v e f o r c i n g a n d in the p r e s e n c e o f a m o v a b l e b e d but also a r o u n d e x a m i n i n g the d e c a y o f t u r b u l e n c e in t h e b o u n d a r y l a y e r af­ ter s t o r m s . T h e w a v e p e a k in t h e k i n e t i c e n ­ e r g y s p e c t r u m at t h e S T R E S S site is e x a c t l y in t h e m i d d l e o f t h e t u r b u l e n t m a c r o s c a l e re­

gion, and many questions about wave-turbu­ l e n c e i n t e r a c t i o n s exist. F u r t h e r , d i s s i p a t i o n o f s u r f a c e w a v e e n e r g y in t h e b o t t o m b o u n d ­ ary l a y e r is a n e x c i t i n g a r e a o f r e s e a r c h . W h i l e Sanford and Grant [ 1 9 8 7 ] h a v e c l e a r l y s h o w n that t h e c h o i c e o f t h e a p p r o p r i a t e frict i o n a l p a r a m e t e r i z a t i o n is c r u c i a l f o r e s t i m a ­ t i o n o f i n t e r n a l w a v e d i s s i p a t i o n o n t h e shelf, little w o r k has b e e n c a r r i e d o u t o n s u r f a c e w a v e e n e r g y d i s s i p a t i o n in t h e b o t t o m b o u n d ­ ary. Davies [ 1 9 8 5 ] has s h o w n that flow s e p a r a ­ t i o n o v e r w a v e r i p p l e s is a v e r y p o t e n t m e t h ­ o d by which sediment transport may occur, b u t h e h a s also s h o w n that v o r t e x s h e d d i n g f r o m t h e r i p p l e s m a y g i v e rise t o v e r y h i g h e n e r g y d i s s i p a t i o n rates that w o u l d b e o f sig­ n i f i c a n c e in e x a m i n i n g e n e r g y t r a n s f e r f r o m w i n d - g e n e r a t e d w a v e s at t h e s u r f a c e to t h e resultant coastal circulation.

Information About the Russian River Site Because o f extensive collection o f geologi­ cal a n d p h y s i c a l o c e a n o g r a p h i c d a t a o n t h e shelf f o r C O D E (Coastal O c e a n D y n a m i c s Ex­ p e r i m e n t ) a n d b y U S G S as p a r t o f a s u r v e y o f t h e U . S . e x c l u s i v e e c o n o m i c z o n e , t h e r e is a n

Eos, Vol. 68, No. 35, September 1, 1987

e x c e l l e n t d a t a b a s e f r o m w h i c h t o start t h e S T R E S S p r o g r a m . A c c o r d i n g l y , S T R E S S will b e c a r r i e d o u t as a c o m b i n e d e f f o r t b e t w e e n O N R - f u n d e d scientists at s e v e r a l a c a d e m i c in­ stitutions a n d U S G S , i n c o l l a b o r a t i o n w i t h N O R D A , a n d will f o c u s o n t h e C O D E site n o r t h o f t h e R u s s i a n R i v e r in C a l i f o r n i a ( F i g ­ u r e 1). I n a d d i t i o n , d a t a o n t h e i n n e r b e a c h f a c e site in 6 0 m a n d less o f w a t e r h a v e b e e n c o l l e c t e d [Drake and Cacchione, 1985]. Exten­ sive d a t a o n s e d i m e n t o l o g y a r e a v a i l a b l e f r o m u n p u b l i s h e d theses at H u m b o l d t State U n i ­ versity ( A r e a t a , C a l i f . ) a n d f r o m U S G S . T h e o r i g i n o f t h e p r e s e n t m i d s h e l f silts is p r e d o m ­ i n a n t l y f r o m t h e R u s s i a n R i v e r , in w h i c h dis­ c h a r g e and sediment l o a d are d o m i n a t e d by rapid r u n o f f directly f o l l o w i n g winter storms (Figure 2), rather than b y snowmelt. S T R E S S will b e n e f i t f u r t h e r f r o m b e i n g p l a c e d in a general circulation a n d w h o l e water c o l u m n c o n t e x t by the c o n c u r r e n t a n d geographically coincident S M I L E (Shelf Mixed Layer Ex­ p e r i m e n t ) p r o g r a m t h a t is b e i n g c o o r d i n a t e d by R . B e a r d s l e y ( W o o d s H o l e O c e a n o g r a p h i c Institution, W o o d s H o l e , Mass.). In return, S T R E S S will p r o v i d e b o t t o m stress a n d dissi­ pation models and measurements. H y d r o g r a p h i c a n d circulation data about t h e r e g i o n a r e d e t a i l e d in t h e C O D E s p e c i a l issue o f t h e Journal of Geophysical Research ( v o l . 92, n o . C 2 , February 1987), but additional d a t a o n v e l o c i t i e s at t h e site o v e r a 2 - m o n t h p e r i o d in w i n t e r 1 9 8 1 a r e s h o w n in F i g u r e 3. T h e d a t a f r o m 7 5 m d e p t h ( t h e b o t t o m stick d i a g r a m ) s h o w h o w t h e tidal c u r r e n t s (evi­ d e n t in t h e r e c o r d f r o m N o v e m b e r 18 t o t h e e n d o f t h e m o n t h ) a r e totally s w a m p e d d u r ­ ing the p e r i o d o f strong surface waves f r o m N o v e m b e r 14 t h r o u g h 17. W h i l e m e a n stress­ es f r o m s u c h c u r r e n t s p r o b a b l y o n l y a c h i e v e a r o u n d 1 d y n c m " " , w a v e stresses a s s o c i a t e d w i t h t h e d o m i n a n t 13-s w a v e s at this site d u r ­ i n g this s t o r m p r o b a b l y r e s u l t e d in stresses o f o v e r 12 d y n c m . 2

- 2

Estimates o f the m a g n i t u d e o f b o u n d a r y

J U L I A N DAY i

i

i

0

N

I

Ol J

l

i

i

i

i

i

F

M

A

M

J

I

J

1 — i — i

A

S

O

C A L E N D A R DAY Fig. 2. Russian R i v e r h y d r o g r a p h s , s h o w i n g r a p i d r e s p o n s e t o w i n t e r rain­ s t o r m s [ a d a p t e d f r o m Cacchione et ai, 1983, F i g u r e 3 ] .

s h e a r stresses u n d e r s t o r m - g e n e r a t e d w a v e s o n t h e s h e l f h a v e b e e n g i v e n b y Drake and Cacchione [ 1 9 8 5 ] a n d b y Cacchione et al. [ 1 9 8 7 ] . B o u n d a r y s h e a r stress e x c e e d s critical v a l u e s by a b o u t a f a c t o r o f 10, m e a n i n g that f o r c o n ­ s i d e r a b l e p e r i o d s o f t i m e , silt will g o d i r e c t l y into suspension a n d thus b e transported large d i s t a n c e s a l o n g t h e shelf. Drake and Cacchione [ 1 9 8 5 ] give estimates f o r the s u s p e n d e d l o a d transport rate d u r i n g the s u m m e r a n d winter for an area i n s h o r e o f the p r o p o s e d S T R E S S site. T h e m e a n t r a n s p o r t r a t e d u r i n g s t o r m s is as h i g h as 1 0 0 0 k g m ~ d a n d appears to be 5 0 t i m e s that d u r i n g p e r i o d s o f u p w e l l i n g in t h e s u m m e r . D r a k e a n d C a c c h i o n e p r o v i d e no estimates o f b e d l o a d . Clearly, the signal f r o m w i n t e r s t o r m s is v e r y s t r o n g . 2

_ 1

STRESS Program Outline T h e S T R E S S field p r o g r a m has t w o p r i n c i ­ pal c o m p o n e n t s , o n e a t t e m p t i n g t o test a n d refine s e d i m e n t transport m o d e l s a n d the o t h e r to e x t e n d the m o d e l predictions to re­ gions o f c o m p l e x sedimentary structure. T h e f o r m e r will b e c a r r i e d o u t at t h e 9 0 - m m i d s h e l f silt site, w h i l e t h e latter will b e a t t e m p t ­ e d at 6 0 m a n d less j u s t i n s h o r e , w h e r e silts a n d s a n d i n t e r d i g i t a t e . B o t t o m - m o u n t e d tri­ p o d s will b e d e p l o y e d at b o t h sites, u s i n g B e n t h i c A c o u s t i c Stress S e n s o r s ( B A S S ) a n d electromagnetic current meters to m e a s u r e t h e fluid v e l o c i t y a n d stress field's. P r e s s u r e s e n s o r s will b e m o u n t e d o n all t r i p o d s f o r w a v e m e a s u r e m e n t . C a l i b r a t i o n o f t h e s e sys­ t e m s has b e e n d i s c u s s e d b y Cacchione and Drake [ 1 9 7 9 ] f o r t h e G e o p r o b e s y s t e m a n d b y Williams [ 1 9 8 5 ] f o r B A S S . W i t h i n a 2 - k m b a n d a l o n g t h e m i d s h e l f silts, t h e p l a n is t o h a v e at least t h r e e B A S S t r i p o d s , e a c h m a k ­ i n g v e l o c i t y a n d stress m e a s u r e m e n t s o v e r t h e l o w e s t 4 m o f t h e w a t e r c o l u m n at six e l e v a ­ t i o n s . S u s p e n d e d s e d i m e n t c o n c e n t r a t i o n s will be m e a s u r e d f r o m the s a m e t r i p o d s by using transmissometers, acoustic backscatter instru­ ments, and optical backscatter sensors (de­ s c r i b e d b y Bartz et al. [ 1 9 8 5 ] , Hess and Bedford [ 1 9 8 5 ] , a n d Downing et al. [ 1 9 8 1 ] , r e s p e c t i v e ­ ly). T h e s e i n s t r u m e n t s will p r o v i d e i n d e p e n ­ dent measures o f suspended sediment con­ centration f r o m 5 c m a b o v e the b e d u p w a r d to 4 m . I n situ settling v e l o c i t y is a c e n t r a l t e r m in t h e s e d i m e n t d i f f u s i o n e q u a t i o n a n d will b e m e a s u r e d u s i n g t h e R e m o t e O p t i c a l S e t t l i n g T u b e ( R O S T ) d e s c r i b e d b y Bartz et al. [ 1 9 8 5 ] a n d u s e d b y McCave and Gross [ 1 9 8 7 ] . I n situ p a r t i c l e s i z i n g has a l w a y s p r o v e d a c h a l l e n g e , a n d size a n d d e n s i t y o f m a r i n e sus p e n s a t e s h a v e p r o v e d difficult p a r a m e t e r s t o m e a s u r e . It is h o p e d that in S T R E S S a laserb a s e d p a r t i c l e sizer will b e m a d e o p e r a t i o n a l at sea s o that settling v e l o c i t y , size, a n d d e n s i ­ ty c a n all b e d e t e r m i n e d . B e d l o a d t r a n s p o r t will b e m e a s u r e d f r o m a d o w n w a r d - l o o k i n g acoustic backscatter system, and b e f o r e - a n d after e f f e c t s o f t r a n s p o r t will b e q u a n t i f i e d f r o m s t e r e o p h o t o g r a p h s o f t h e b e d . I n situ g e o t e c h n i c a l m e a s u r e m e n t s at t h e site in t h e u p p e r part o f the b e d are b e i n g carried o u t by N O R D A scientists. A u n i q u e feature o f the S T R E S S p r o g r a m will b e t h e t e l e m e t e r i n g o f d a t a d i r e c t l y a s h o r e . T h e h i g h d a t a rates f r o m t h e a c o u s t i c a n d optical sensors, c o u p l e d with the h i g h frequency o f p h e n o m e n a under consider­ a t i o n , m e a n that r a p i d d a t a a c q u i s i t i o n is c r u ­ cial. C o n d i t i o n a l s a m p l i n g a n d in situ p r o c e s s ­ ing have been accomplished for b o u n d a r y

l a y e r m e a s u r e m e n t s [Williams, 1 9 8 5 ] , b u t t h e r e is a loss o f i n f o r m a t i o n a b o u t t h e in­ s t a n t a n e o u s stresses, w h i c h u n d e r w a v e s a r e o f crucial i m p o r t a n c e . C o n d i t i o n a l s a m p l i n g may b e u s e d , h o w e v e r , in t h e first field s t u d y at t h e site in fall 1 9 8 8 . Extensive theoretical and laboratory efforts a r e a l s o b e i n g c a r r i e d o n as p a r t o f S T R E S S . L a b o r a t o r y e f f o r t s will c e n t e r o n r e s o l v i n g s m a l l - s c a l e p r o c e s s e s n o t easily m e a s u r e d in t h e field. T h e s e s t u d i e s i n c l u d e r e l a t i n g m i c r o t o p o g r a p h y to h y d r o d y n a m i c r o u g h n e s s e x p e r i e n c e d b y t h e flow, r e s o l v i n g fluid d y ­ namical characteristics o f the wave b o u n d a r y layer, a n d relating these d y n a m i c s to sedi­ m e n t t r a n s p o r t rates. R h e o l o g i c a l p r o p e r t i e s o f silts as m o d i f i e d b y b e n t h o s will b e s t u d i e d in t h e l a b o r a t o r y in o r d e r t o c o u p l e s e d i m e n t d y n a m i c s with b u l k s e d i m e n t p r o p e r t i e s , if possible, and theoretical and laboratory w o r k o n p a r t i c l e a g g r e g a t i o n is b e i n g c a r r i e d o u t . Theoretical models o f sediment transport w i t h m i x e d g r a i n sizes a r e b e i n g r e f i n e d , a n d advanced surface wave m o d e l s are b e i n g in­ c o r p o r a t e d i n t o t h e p r e d i c t i o n s c h e m e s o that the c o u p l i n g b e t w e e n w i n d f o r c i n g a n d b e d response may be m o r e adequately character­ ized.

Probable Biological Effects of Sediment Transport D u r i n g t h e last d e c a d e it h a s b e e n s h o w n that t h e e g g s , cysts, o r s p o r e s o f m a n y z o o plankton (for example, copepods, cladocerans, tintinnids) a n d p h y t o p l a n k t o n species ( i n c l u d i n g , f o r e x a m p l e , t h o s e s p e c i e s that c a u s e t o x i c r e d t i d e s ) o c c u r in t h e b o t t o m sediments o f coastal r e g i o n s a n d are c a p a b l e , u n d e r g i v e n c o n d i t i o n s o f light, t e m p e r a t u r e , and o x y g e n tension, o f hatching into the wa­ ter c o l u m n . S i n c e r e s t i n g stages a c c u m u l a t e in s e d i m e n t s o f h i g h silt-clay c o n t e n t , d e t a i l s o f erosion, transport, and deposition to b e gar­ n e r e d w i t h i n S T R E S S a r e likely t o p r o v i d e m a j o r n e w insights into the p o p u l a t i o n d y n a m i c s o f plankters with b e n t h i c resting stages. T h e r e is c i r c u m s t a n t i a l e v i d e n c e , in the f o r m o f e x t e n s i v e r e d tide o u t b r e a k s after m a j o r East C o a s t h u r r i c a n e s a n d W e s t C o a s t w i n d s t o r m s , that e r o s i o n e v e n t s c a n l e a d t o b l o o m s , b u t t h e r e a r e n o field d a t a o n n u m ­ b e r s o r t e m p o r a l p a t t e r n s o f r e s t i n g s t a g e s in­ j e c t e d into the water c o l u m n by erosion. Ero­ sion d e p t h a n d interactions b e t w e e n s e d i m e n t chemistry (e.g., concentration o f dissolved o x ­ y g e n ) a n d s e d i m e n t t r a n s p o r t events are like­ ly t o b e k e y p a r a m e t e r s in d e t e r m i n i n g h a t c h ­ i n g s u c c e s s , as is s e a s o n a l t i m i n g o f e r o s i o n events with respect to annual p l a n k t o n cycles. S e d i m e n t t r a n s p o r t affects t h o s e p o p u l a ­ tions w h o s e adults are restricted to the b e n ­ t h o s in m a n y w a y s a n d o v e r m a n y t i m e scales. A n o b v i o u s p o s s i b i l i t y is m o r t a l i t y i n d u c e d b y e r o s i o n o r burial. A l o n g a n d h e t e r o g e n e o u s list o f s t u d i e s finds t h e e f f e c t s o f s e d i m e n t transport to b e minimal o r undetectable o n m o r t a l i t y , w h i l e o t h e r s t u d i e s find e v e n m o d ­ est d e p o s i t i o n t o b e lethal. A l t h o u g h e f f e c t s o f e x t r e m e transport events are indisputable, f o r m o s t s t u d i e d sites t h e r e a r e n o l o n g t i m e series o f s e d i m e n t t r a n s p o r t w h e r e b y r e ­ searchers m i g h t place effects o f particular e v e n t s i n t o a realistic c o n t e x t o f s e l e c t i v e pressures. A tested m o d e l o f t r a n s p o r t f o r t h e S T R E S S site, in m a r k e d c o n t r a s t , will al­ l o w h i n d c a s t i n g o f t r a n s p o r t o n t h e basis o f climatological records o f winds and waves.

Eos, Vol. 68, No. 35, September 1, 1987

50250-25-50-1 '

75n 50E 253 0>, - 2 5 •5 -50-1 o CO

CD

> c

0

35m

75-1

5025-

55m

o-

§ -25-

d

-so-" 7550i 250-25-50

75m

J

I

1

1

1

r-

1 5 November 1981

i

10

15

-|—r

"1

20

r -

25

i

I

I

I

30

Fig. 3. C u r r e n t m e t e r d a t a f r o m t h e 9 0 - m ( C O D E C 3 ) station ( W . D . G r a n t , d e c e a s e d , f o r m e r l y at W o o d s H o l e O c e a n o g r a p h i c Institu­ t i o n , W o o d s H o l e , M a s s . ; p e r s o n a l c o m m u n i c a t i o n , 1 9 8 4 ) , s h o w i n g r e s p o n s e to a m a j o r s t o r m . D e p t h s a r e in m e t e r s b e l o w t h e s u r f a c e , with n o r t h w a r d flows u p w a r d f r o m t h e abscissas.

T h e critical p a r a m e t e r s will b e e r o s i o n a n d d e p o s i t i o n d e p t h s relative t o t h e d e p t h - f r e ­ q u e n c y distributions o f respective benthic c o m m u n i t y m e m b e r s (one possible measure o f t h e intensity o f d i s t u r b a n c e ) , t h e f r e q u e n c y o f s e d i m e n t t r a n s p o r t e v e n t s , t h e i r spatial e x ­ tents, a n d t h e i r t i m i n g w i t h r e s p e c t t o t h e phenology o f benthic populations. If orga­ n i s m s a r e t r a n s p o r t e d alive, " s e d i m e n t " trans­ p o r t also b e c o m e s a n i m m i g r a t i o n a n d e m i ­ gration term, making transport directions and distances o f additional ecological i m p o r ­ tance. S i n c e m a n y l a r v a e d o a p p e a r t o b e h a v e like passively settling p a r t i c l e s o n scales as small as a d e c i m e t e r [Butman, 1 9 8 7 ] , t h e y s h o u l d track s e d i m e n t p a r t i c l e s w i t h similar settling v e l o c i ­ ties. W h a t is e x c i t i n g a b o u t S T R E S S is that m a n y o f t h e p a r a m e t e r s that a r e s o c l e a r l y i m p o r t a n t t o issues o f d i s t u r b a n c e (i.e., spatial e x t e n t , intensity, a n d f r e q u e n c y ) a n d r e c o v ­ ery (e.g., dispersal and settlement routes o f l a r v a e ) will b e m o d e l e d a n d m e a s u r e d . A key f a c t o r in e v a l u a t i n g t h e e f f e c t o f a d i s t u r ­ b a n c e is t h e n o n d i m e n s i o n a l r a t i o o f t i m e b e ­ t w e e n d i s t u r b a n c e s relative t o t h e p o p u l a t i o n g e n e r a t i o n t i m e . T h u s t h e fitnesses o f v a r i o u s p o p u l a t i o n tactics a r e likely t o v a r y g r e a t l y a c r o s s t h e m e g a f a u n a t o m i c r o b e size a n d g e n e r a t i o n t i m e scale, a n d d i s t u r b a n c e fre­ q u e n c y will c o v a r y i n v e r s e l y w i t h b u r r o w i n g d e p t h o f t h e o r g a n i s m . T h u s it is n o t s u r p r i s ­ i n g that m e i o f a u n a l c o m m u n i t i e s r e c o v e r m o r e r a p i d l y f r o m c o m p a r a b l e s e d i m e n t dis­ turbances than d o macrofaunal c o m p o n e n t s [Thistle, 1 9 8 1 ; Boesch and Rosenberg, 1 9 8 1 ] . It takes c o m p a r a t i v e l y little d i s t u r b a n c e t o elicit a d e t e c t a b l e m i c r o b i a l r e s p o n s e [Findlay et ai, 1 9 8 5 ] . S o m e t h i n g that is a p o p u l a t i o n d i s t u r ­ b a n c e f o r m i c r o b e s t h u s m a y well r e p r e s e n t a trivial e v e n t o r a f o o d i n p u t f o r d e p o s i t f e e d ­ ers. Even if transport events cause n o mortality, t h e y a r e likely t o b e i m p o r t a n t in d e t e r m i n i n g

f o o d supply to b o t h suspension and deposit feeders. Suspension feeders d e p e n d obviously u p o n particulate transport, but s o m e obligate suspension feeders are negatively affected by high seston concentrations. T h e m a g n i t u d e o f sediment transport can determine whether o r g a n i s m s that a r e c o m p e t e n t to d o b o t h will e i t h e r s u s p e n s i o n o r d e p o s i t f e e d , w h i l e its vertical p a t t e r n c a n affect t h e h e i g h t a b o v e t h e b e d at w h i c h it is p r o f i t a b l e t o d e p l o y sus­ p e n s i o n f e e d i n g a p p e n d a g e s . T h e relative m a g n i t u d e o f in situ m i c r o b i a l g r o w t h ( v e r s u s i m p o r t o f f o o d t o a f o r a g i n g a r e a via s e d i ­ m e n t t r a n s p o r t ) d e t e r m i n e s , a little less d i ­ rectly b u t d e m o n s t r a b l y via d i m e n s i o n a l anal­ ysis a n d s c a l i n g a r g u m e n t s , t h e i m p o r t a n c e o f s e d i m e n t t r a n s p o r t in d e p o s i t f e e d e r n u t r i ­ t i o n . P u r e l y o s c i l l a t o r y m o t i o n s o f surficial s e d i m e n t s , as p r o d u c e d b y s u r f a c e w a v e s in the absence o f steady currents, may b e o f n o i m p o r t a n c e in n e t s e d i m e n t t r a n s p o r t , b u t t h e y act e f f e c t i v e l y t o i n c r e a s e t h e f o r a g i n g area o f sedentary surface deposit feeders a n d t o r e m o v e a n d d i s a g g r e g a t e fecal d e p o s i t s . V a r i o u s t e c h n i q u e s ( f r o m analysis o f l i p i d re­ s e r v e s t o m e a s u r e m e n t o f m i c r o s c o p i c shell g r o w t h i n c r e m e n t s ) a r e n o w available t o e x ­ a m i n e h o w o r g a n i s m s r e s p o n d o n an array o f t i m e scales t o s e d i m e n t t r a n s p o r t rates a n d frequencies. A n issue w o r t h a i r i n g is that o f p o t e n t i a l r e s o u r c e limitation in suspension feeders. D e ­ pletion o f s u s p e n d e d resources by feeding has b e e n i m p l i c a t e d several t i m e s , a n d it would be tempting to begin thinking about s u c h a r e s o u r c e r e d u c t i o n as t h e r u l e . T h e f a c t o r s that c h a r a c t e r i z e t h e s y s t e m s s o f a r s t u d i e d , h o w e v e r , a r e l i m i t e d flow d e p t h a n d l i m i t e d a d v e c t i v e fluxes. N e a r - b o t t o m p a r t i c u ­ late c o n c e n t r a t i o n s at t h e C O D E site a r e h i g h b o t h d u r i n g w i n t e r s t o r m s [Cacchione et al., 1 9 8 7 ] a n d d u r i n g t h e u p w e l l i n g s e a s o n [Drake and Cacchione, 1 9 8 7 ] . It is n o t c l e a r that b e n ­ thic s u s p e n s i o n f e e d e r s c o u l d significantly d e ­

p l e t e t h e s u s p e n d e d r e s o u r c e s at this site; clearly, they c o u l d n o t d u r i n g those winter s t o r m s in w h i c h t h e m i x e d l a y e r e x t e n d s f r o m s e a b e d t o sea s u r f a c e . T h e c o m b i n a t i o n o f physical b o u n d a r y layer studies within S T R E S S a n d b i o l o g i c a l studies d i r e c t e d at s u s p e n s i o n f e e d e r s within the interdisciplin­ ary B i o l o g i c a l Effects o f C o a s t a l O c e a n S e d i ­ ment Transport ( B E C O S T ) program (spon­ sored by the National Science F o u n d a t i o n ) s h o u l d y i e l d a n i n f o r m a t i v e c o u p l i n g in p r o ­ d u c i n g a first v i e w o f t h e i m p o r t a n t i n t e r a c ­ t i o n s at s h e l f d e p t h s a l o n g e x p o s e d c o a s t l i n e s . A n especially intriguing observation f r o m time-lapse p h o t o g r a p h s taken o f the b o t t o m d u r i n g t h e C O D E p r o g r a m is that t h e i r r e g u ­ lar u r c h i n Brisaster latifrons, w h i c h n o r m a l l y f e e d s o n d e p o s i t s a n d b u r r o w s s l u g g i s h l y sev­ eral c e n t i m e t e r s b e l o w t h e s e d i m e n t s u r f a c e , e m e r g e s f r o m the s e d i m e n t f o l l o w i n g distur­ b a n c e e v e n t s c h a r a c t e r i z e d b y i n c r e a s e d tur­ b i d i t y a n d c u r r e n t d i r e c t i o n c h a n g e s [Cac­ chione et al. 1 9 8 3 ] O n t h e s e o c c a s i o n s , t h e ur­ chins t h o r o u g h l y p l o w e d the surface d u r i n g the c o u r s e o f a few h o u r s to several days, t h e n r e b u r r o w e d . It is n o t yet c l e a r w h e t h e r the turbidity e p i s o d e s w e r e d u e to local sedi­ m e n t resuspension o r to advection o f turbid water f r o m upstream events. W h a t e v e r the s t i m u l u s f o r e m e r g e n c e , b e it r e s p i r a t o r y stress f r o m o c c l u s i o n o f b u r r o w v e n t s o r m i ­ c r o b i a l g r o w t h ( u r c h i n f o o d ) e n h a n c e m e n t in t r a n s p o r t e d surficial s e d i m e n t s , this u r c h i n p r e s e n c e a n d activity at t h e s u r f a c e d r a m a t i ­ cally i n c r e a s e s b e d r o u g h n e s s ( c o v e r p h o t o ) a n d the likelihood o f subsequent resuspen­ sion. Sediment transport parameters o f probable s i g n i f i c a n c e in eliciting b e h a v i o r a l r e s p o n s e s by m i c r o p h a g e s (suspension and deposit feeders) a n d their predators i n c l u d e near-bed s e s t o n c o n c e n t r a t i o n s as a f u n c t i o n o f t i m e , q u a n t i t a t i v e rates o f s e d i m e n t t r a n s p o r t i n t o a n d o u t o f d e p o s i t f e e d e r f o r a g i n g areas, a n d

Eos, Vol. 68, No. 35, September 1, 1987

t h e t i m e rates o f c h a n g e o f t h e s e p a r a m e t e r s . It is a g a i n w o r t h w h i l e t o n o t e that i m p o r t a n t t r a n s p o r t e v e n t s with r e s p e c t t o s u s p e n s i o n a n d d e p o s i t f e e d i n g m a y b e trivial t o a sedim e n t o l o g i s t i n t e r e s t e d in e s t i m a t i n g n e t trans­ p o r t . I n a d d i t i o n to t h e c a s e o f p u r e l y oscilla­ tory m o t i o n (important to b o t h deposit and s u s p e n s i o n f e e d e r s b u t n o t t o a net s e d i m e n t transport budget), sediment transport work­ ers m a y c h o o s e t o i g n o r e t h e m o v e m e n t o f flocculent o r g a n i c m a t e r i a l that t r a n s p o r t s r e a d i l y b u t n e v e r b e c o m e s a quantitatively i m ­ portant part o f the g e o l o g i c r e c o r d . T o a g e ­ o l o g i s t , this " g u n k " m a y b e n o i s e in a transm i s s o m e t e r r e c o r d , w h i l e it is a signal o f i m ­ p o r t a n c e in f e e d i n g b i o l o g y . B E C O S T , t h r o u g h an initial w o r k s h o p a n d c o n t i n u i n g c o o r d i n a t i o n , has a l r e a d y e s t a b l i s h e d a dia­ l o g u e with S T R E S S p a r t i c i p a n t s o n this issue a n d o n o t h e r s f o r w h i c h c o o p e r a t i o n in m e a ­ s u r e m e n t a n d i n t e r p r e t a t i o n will b e w o r t h ­ while.

High-Priority Research Areas for BECOST Resting Stages of Plankton

Reproduction and Recruitment

Theory: Predictions o f geophysical t r a n s p o r t t r a j e c t o r i e s o f r e s t i n g stages; p r e d i c t i o n s o f n u m b e r s o f r e s t i n g stages resuspended and redeposited; predictions o f likely h a t c h i n g c u e s f r o m C O D E d a t a . Laboratory Studies:—Determination of e f f e c t i v e settling v e l o c i t y o f r e s t i n g stages ( d e p e n d s o n w h e t h e r t h e y stick t o p a r t i c u ­ lar p a r t i c l e t y p e s o r in p a r t i c u l a r k i n d s o f aggregates); examination o f effectiveness o f p o t e n t i a l h a t c h i n g stimuli.

Theory: M o d e l larval t r a n s p o r t u s i n g realistic larval h y d r o d y n a m i c c h a r a c t e r i s ­ tics a n d S T R E S S a d v e c t i o n - d i f f u s i o n m o d ­ els; p r e d i c t larval t r a j e c t o r i e s ; f o r m u l a t e r i s k - b e n e f i t m o d e l s t o p r e d i c t larval b e ­ h a v i o r u n d e r realistic t r a n s p o r t c o n d i ­ t i o n s ; p r e d i c t s p a w n i n g t i m e s as f u n c t i o n s o f transport conditions. Laboratory Studies: Iterate with the t h e o r e t i c a l d e v e l o p m e n t t o i n s u r e that r e ­ alistic larval b e h a v i o r is i n c l u d e d ( w e k n o w that l a r v a e d o h a v e b e h a v i o r s that m a k e t h e m deviate f r o m the null m o d e l o f a passive particle, b u t direct observations o f l a r v a e in realistic flows a r e n e e d e d t o quantify those b e h a v i o r s a n d their effects o n transport). Field Studies: Examine animal n u m ­ b e r s a n d size f r e q u e n c i e s a n d assess g o ­ n a d a l c o n d i t i o n s b e f o r e a n d after t h e s t o r m s e a s o n ; s a m p l e f o r l a r v a e t o assess predictions o f their transport paths.

Field Studies: S e a s o n a l vertical o f r e s t i n g stages in t h e s e d i m e n t s , cially j u s t b e f o r e a n d j u s t after t h e storm season and major individual

profiles espe­ major storms.

Feeding Responses

STRESS as an Opportunity for Biological and Chemical Oceanographers A l o g i c a l p l a c e to a t t e m p t a n u n r a v e l i n g o f continental shelf benthic c o m m u n i t y d y n a m ­ ics is t h u s in the c o n t e x t o f t h e S T R E S S p r o ­ g r a m . T o see w h a t m i g h t b e m a d e o f this o p ­ p o r t u n i t y , a small g r o u p o f i n v e s t i g a t o r s (list­ e d at t h e e n d o f this r e p o r t ) c o l l a b o r a t e d t o produce a proposal for a workshop whose p u r p o s e was b o t h t o o u t l i n e p o t e n t i a l l y inter­ e s t i n g r e s e a r c h t o p i c s that c o u l d b e a d d r e s s e d u n d e r t h e h e a d i n g o f B E C O S T a n d t o initi­ ate c o o r d i n a t i o n with S T R E S S . (Part o f t h e a b o v e text is, in fact, a n e x t r a c t f r o m that multiauthored proposal.) T h e reasoning for this e a r l y e x c h a n g e , w h i c h o c c u r r e d in J u n e 1 9 8 6 at t h e W o o d s H o l e O c e a n o g r a p h i c Insti­ t u t i o n , was t o i n f l u e n c e S T R E S S field d e s i g n t o t h e e x t e n t that it c o u l d aid B E C O S T g o a l s w i t h o u t c o m p r o m i s i n g S T R E S S o b j e c t i v e s . It also s e r v e d as t h e first c o o r d i n a t i o n w i t h t h e S M I L E p r o g r a m . O u r e x p e r i e n c e with m a n y past a t t e m p t s at m u l t i d i s c i p l i n a r y o r i n t e r d i s ­ ciplinary w o r k (which w e tried n o t to dupli­ c a t e ) is that m e m b e r s o f o n e d i s c i p l i n e a r e o f ­ t e n i n v i t e d t o p a r t i c i p a t e after e x p e r i m e n t a l designs are immutable and n o time remains to a c c o m p l i s h prerequisite studies. O n t h e basis o f l i t e r a t u r e r e v i e w s s h a r e d b e f o r e the w o r k s h o p a n d o n w o r k s h o p dis­ c u s s i o n s , b i o l o g i c a l o c e a n o g r a p h i c issues m e r ­ iting h i g h p r i o r i t y f o r s t u d y w i t h i n B E C O S T w e r e i d e n t i f i e d (see b o x e n t i t l e d " H i g h - P r i o r ­ ity R e s e a r c h A r e a s f o r B E C O S T " ) . T h e list was i n t e n d e d to b e n e i t h e r e x c l u s i v e n o r e x ­ h a u s t i v e , o n l y t o i n d i c a t e that issues o f h i g h i n t e r e s t a n d tractability c o u l d b e i d e n t i f i e d . S o m e o f t h e s e issues r e q u i r e m o r e b a c k ­ g r o u n d w o r k t h a n o t h e r s t o b e well p o s e d a n d well p o i s e d t o m a k e u s e o f t h e p r i n c i p a l S T R E S S m e a s u r e m e n t s in 1 9 9 0 - 1 9 9 1 , a n d thus proposals to a c c o m p l i s h necessary back­ g r o u n d w o r k a r e initially b e i n g s u b m i t t e d in­ d i v i d u a l l y r a t h e r t h a n as a " b i g - s c i e n c e " p a c k ­ age. W h e n submitted, they are a c c o m p a n i e d b y a B E C O S T o v e r v i e w d o c u m e n t that e x ­ p a n d s t h e issues r a i s e d h e r e a n d is u p d a t e d p e r i o d i c a l l y (available f r o m P. J u m a r s , U n i ­ versity o f W a s h i n g t o n , Seattle, W A 9 8 1 9 5 ) . T h e r e a r e s o m e n a t u r a l limits, h o w e v e r , t o a b i o l o g i c a l o c e a n o g r a p h i c p r o g r a m that f o ­ c u s e s o n s e d i m e n t t r a n s p o r t effects. S T R E S S ,

Theory: C o m b i n e extant foraging and digestion theory to predict the b e h a v i o r o f m o b i l e ( o r potentially mobile) species. Laboratory Studies: Study responses to v a r i o u s s e d i m e n t t r a n s p o r t stimuli o n vari­ o u s t i m e scales; d e t e r m i n e r e s p o n s e t i m e s o f v a r i o u s l i p i d s t o r a g e p o o l s t o a l l o w in­ t e r p r e t a t i o n o f l i p i d p r o f i l e s f r o m field specimens. Field Studies: U p d a t e list o f t a r g e t s p e ­ cies (iterative p r o c e s s b a s e d o n C O D E site s a m p l e s t a k e n b y F. N i c h o l s ( U S G S , M e n l o P a r k , C a l i f . ) , s u b s e q u e n t b o x c o r e s in A p r i l 1 9 8 6 b y P. J u m a r s ( U n i v e r s i t y o f W a s h i n g t o n , Seattle), a n d a n y o n g o i n g B E C O S T s t u d i e s ; s a m p l e field i n d i v i d u a l s f o r l i p i d s t o r a g e p r o d u c t s as a f u n c t i o n o f storm history.

u p o n w h i c h B E C O S T is p r e d i c a t e d , is d e ­ s i g n e d e x p r e s s l y t o test s e d i m e n t t r a n s p o r t t h e o r y a g a i n s t field o b s e r v a t i o n s . T h e s a m ­ p l i n g p l a n is E u l e r i a n a n d is b a s e d u p o n m a s s b a l a n c e w i t h i n a small (tens o f k i l o m e t e r s l e n g t h scales) c o n t r o l v o l u m e . T h u s t h e basic S T R E S S d e s i g n is a p o o r o n e f o r m a n y i m ­ p o r t a n t b i o l o g i c a l o c e a n o g r a p h i c issues, s u c h as e x p a t r i a t i o n o f h o l o p l a n k t o n o r o f p l a n k t o n i c larval stages o f b e n t h o s f r o m t h e i r e n v i ­ r o n m e n t a l tolerance regions. W h i l e largerscale e f f o r t s ( e . g . , S M I L E a n d p o t e n t i a l p i l o t p r o g r a m s f o r U . S . initiatives in c o a s t a l o c e a n d y n a m i c s a n d fluxes) a r e b e i n g d i s c u s s e d f o r t h e r e g i o n , initial B E C O S T t h i n k i n g d o e s n o t include or d e p e n d u p o n them. B E C O S T fo­ cuses o n e x c h a n g e across the sediment-water i n t e r f a c e a n d r a n g e s h o r i z o n t a l l y o n l y s o far as typical g r a i n t r a n s p o r t d i s t a n c e s d u r i n g in­ d i v i d u a l t r a n s p o r t e v e n t s (—101 k m ) . S i n c e B E C O S T d e p e n d s so closely u p o n S T R E S S , c e r t a i n t i m i n g limits a l s o a r e i m p o s e d o n B E ­ C O S T field e f f o r t s a n d o n t h e l a b o r a t o r y a n d t h e o r e t i c a l w o r k that m u s t p r e c e d e t h e m ( s e e b o x entitled " T i m e t a b l e f o r B E C O S T and STRESS"). M a n y issues that a r e c o m p a t i b l e w i t h t h e S T R E S S s a m p l i n g d e s i g n arise w i t h i n g e o ­ chemistry. Sediment transport events can be i m p o r t a n t in r e l e a s i n g s e d i m e n t - a d s o r b e d chemicals a n d p o r e waters to the water col­ u m n [Smethie et al., 1 9 8 1 ; Fanning et al., 1 9 8 2 ] as well as in t h e m o r e o b v i o u s i f m o r e c o n t r o ­ versial r o l e o f d e t e r m i n i n g p a r t i c u l a t e c a r b o n

Microbiology and Geochemistry Theory: Develop time-dependent mod­ els ( b a s e d o n p e r t u r b a t i o n s d u e t o s e d i ­ m e n t transport) o f microbial growth and c o m m u n i t y c o m p o s i t i o n in t h e s e a b e d . Laboratory Studies: Examine microbial a n d g e o c h e m i c a l r e s p o n s e t o v a r y i n g in­ tensity a n d f r e q u e n c y o f s e d i m e n t trans­ p o r t to t u n e the m o d e l s . Field Studies: Test m o d e l predictions against p r e s t o r m a n d p o s t s t o r m profiles.

t r a n s p o r t p a t h s a n d b u r i a l sites [ e . g . , Walsh andMcRoy, 1986]. T h e STRESS p r o g r a m w o u l d p r o v i d e an i d e a l c o n t e x t in w h i c h t o test t h e s e i d e a s in a n e w e n v i r o n m e n t a n d t o test t h e m q u a n t i t a t i v e l y . M o r e o v e r , S T R E S S itself will p r o v i d e e s t i m a t e s o f s u c h p a r a m e ­ ters as e r o s i o n d e p t h s o r p h y s i c a l r e w o r k i n g d e p t h s . It is also a r g u a b l e that t h e c o n f l u e n c e o f S T R E S S a n d B E C O S T , t o g e t h e r with the O N R - s p o n s o r e d C o a s t a l T r a n s i t i o n s (alias "Squirts a n d J e t s " ) P r o g r a m a n d S M I L E , w o u l d m a k e a n i d e a l setting f o r s o m e initial G l o b a l O c e a n F l u x S t u d y ( G O F S ) c o a s t a l ef­ f o r t s , p a r t i c u l a r l y b e c a u s e o f t h e siting o f G O F S Pacific p i l o t stations. O r g a n i c c a r b o n transformations a n d releases d u r i n g early d i a g e n e s i s , b u r i a l rates o f o r g a n i c c a r b o n , and formation and destruction o f biogenic c a r b o n a t e s ( p r i m a r i l y shells a n d tests) c o u l d b e i n t e r e s t i n g issues in a G O F S c o n t e x t . W h i l e B E C O S T investigators w o u l d w e l c o m e collaborative c h e m i c a l studies a l o n g these lines, s u c h i n v e s t i g a t i o n s a r e n o t r e q u i r e d to achieve explicit B E C O S T goals. T h e g e o ­ chemical parameters m o s t relevant to B E ­ C O S T are those p o r e water characteristics that a f f e c t r e s t i n g stage viability a n d h a t c h i n g a n d t h o s e c h a r a c t e r i s t i c s o f p a r t i c l e s that d e ­ t e r m i n e f o o d quality f o r b e n t h o s . Additional information concerning S T R E S S may be obtained f r o m A . R. M . Nowell (School o f Oceanography, WB-10, U n i v e r s i t y o f W a s h i n g t o n , Seattle, W A 9 8 1 9 5 ) o r J. K r a v i t z ( C o d e 1 4 2 5 G G , O f f i c e o f

Eos, Vol. 68, No. 35, September 1, 1987

Naval Research, 8 0 0 N . Q u i n c y Street, A r ­ lington, V A 2 2 2 1 7 ) , but inquiries regarding potential participation should b e directed to Kravitz. A d d i t i o n a l i n f o r m a t i o n o n B E C O S T c a n b e o b t a i n e d f r o m a n y o f its w o r k s h o p p a r t i c i p a n t s : R . A l l e r (State U n i v e r s i t y o f N e w York, Stony B r o o k ) ; D . A n d e r s o n , C. A . B u t m a n , a n d S. L e n t z ( W o o d s H o l e O c e a n o ­ graphic Institution, W o o d s H o l e , Mass.); D . B o e s c h a n d N . Rabelais (Louisiana Universi­ ties M a r i n e C o n s o r t i u m , C h a u v i n , L a . ) ; R . C a r n e y ( L o u i s i a n a State U n i v e r s i t y , B a t o n R o u g e ) ; P. J u m a r s a n d A . R . M . N o w e l l ( U n i ­ versity o f W a s h i n g t o n ) ; L . M a y e r ( U n i v e r s i t y o f Maine, Walpole); N. Marcus and D . This­ tle ( F l o r i d a State U n i v e r s i t y , T a l l a h a s s e e ) ; F. Nichols ( U S G S , M e n l o Park, Calif.); D . R h o a d s (Racing B e a c h Associates, Falmouth, M a s s . ) ; G . T a g h o n ( O r e g o n State U n i v e r s i t y , Corvallis); o r D . C. W h i t e (University o f K e n ­ tucky, Knoxville).

References B a r t z , R . , et al., R O S T A n d B E A S T : D e v i c e s f o r in situ m e a s u r e m e n t o f p a r t i c l e settling v e l o c i t y , Mar. Geol, 66, 3 8 1 , 1 9 8 5 . B o e s c h , D . F., a n d R . R o s e n b e r g , R e s p o n s e t o stress in m a r i n e c o m m u n i t i e s , in Stress Ef­ fects on Natural Ecosystems, e d i t e d b y G . W . Barrett and R. R o s e n b e r g , p p . 1 7 9 - 2 0 0 , J o h n Wiley, N e w York, 1981. B u t m a n , C . A . , Larval settlement o f soft-sedi­ m e n t i n v e r t e b r a t e s : T h e spatial scales o f p a t t e r n e x p l a i n e d b y active h a b i t a t s e l e c t i o n and the e m e r g i n g role o f h y d r o d y n a m i c a l p r o c e s s e s , Oceanogr. Mar. Biol. Ann. Rev.,

Timetable for BECOST and STRESS P r e d i c t i o n s f o r t h e f u t u r e h a v e skill in­ dices c o m p a r a b l e to those o f the weather service. September 1984. B E C O S T workshop proposal submitted. June 1986. B E C O S T workshop held (delayed ~ 1 year f r o m originally p r o ­ p o s e d date by delay o f S T R E S S planning). October 1986. STRESS planning pro­ posal f u n d e d to W . D . Grant (deceased; f o r m e r l y at W o o d s H o l e O c e a n o g r a p h i c Institution, W o o d s H o l e , Mass.) a n d A . R. M . N o w e l l (University o f W a s h i n g t o n , Se­ attle). May 1986. First B E C O S T p r o p o s a l s (requiring l o n g lead times a n d e x t e n d e d t i m e series s a m p l i n g ) s u b m i t t e d . October 1987. First S T R E S S p r o p o s a l s (primarily e q u i p m e n t d e v e l o p m e n t ) fund­ ed. November 1988, February and April 1989. S h i p t i m e o n R V Thompson, Wecoma, o r e q u i v a l e n t f o r S T R E S S a n d S M I L E d e p l o y m e n t s a n d retrievals o f equipment; relevant B E C O S T proposals w o u l d r e q u e s t a d d e d s h i p d a y s as n e e d e d . October 1990. B E C O S T p r o j e c t s slated f o r field i m p l e m e n t a t i o n o r t e s t i n g d u r i n g S T R E S S w i n t e r m e a s u r e m e n t series r e a d y to g o (any necessary theory, laboratory tests, o r field p r e t r i a l s c o m p l e t e d ) . November 1990, February and May 1991. S h i p t i m e o n R V Thompson, Wecoma, o r e q u i v a l e n t f o r S T R E S S a n d S M I L E d e p l o y m e n t s a n d retrievals o f e q u i p m e n t ; relevant B E C O S T proposals w o u l d r e q u e s t a d d e d s h i p d a y s as n e e d e d .

25, in p r e s s , 1 9 8 7 . C a c c h i o n e , D . A . , a n d D . E. D r a k e , A n e w in­ s t r u m e n t s y s t e m t o investigate s e d i m e n t d y n a m i c s o n c o n t i n e n t a l s h e l v e s , Mar. Geol, 30, 2 9 9 , 1 9 7 9 . C a c c h i o n e , D . A . , D . E. D r a k e , W . D . G r a n t , A . J . Williams III, and G. B. Tate, Variabil­ ity o f s e a - f l o o r r o u g h n e s s w i t h i n t h e C o a s t ­ al O c e a n D y n a m i c s E x p e r i m e n t ( C O D E ) r e ­ g i o n , Tech. Rep. WHOI-83-25, Woods Hole O c e a n o g r . Inst., W o o d s H o l e , M a s s . , 1 9 8 3 . C a c c h i o n e , D . A . , W . D . G r a n t , D . E. D r a k e a n d S. M . G l e n n , S t o r m - d o m i n a t e d b o t t o m b o u n d a r y layer d y n a m i c s o n the n o r t h e r n C a l i f o r n i a shelf: M e a s u r e m e n t s a n d p r e d i c ­ t i o n s , / . Geophys. Res., 92, 1 8 1 7 , 1 9 8 7 . Davies, A . G , Field observations o f the threshold o f s e d i m e n t m o t i o n by wave ac­ t i o n , Sedimentology, 32, 6 8 5 , 1 9 8 5 . D o w n i n g , J. P., R . W . S t e r n b e r g , a n d C . R . B . Lister, N e w i n s t r u m e n t a t i o n f o r t h e investi­ g a t i o n o f s e d i m e n t s u s p e n s i o n p r o c e s s e s in t h e s h a l l o w m a r i n e e n v i r o n m e n t , Mar. Geol, 42, 1 9 , 1 9 8 1 . D r a k e , D . E., a n d D . A . C a c c h i o n e , S e a s o n a l v a r i a t i o n s in s e d i m e n t t r a n s p o r t o n t h e R u s s i a n R i v e r shelf, C a l i f o r n i a , Continent. Shelf Res., 4, 4 9 5 , 1 9 8 5 . D r a k e , D . E., a n d D . A . C a c c h i o n e , S u s p e n d ­ e d particulate m a t t e r a l o n g the Coastal O c e a n D y n a m i c s E x p e r i m e n t central line d u r i n g upwelling a n d relaxation events, / . Geophys. Res., 92, 1 6 9 9 , 1 9 8 7 . F a n n i n g , K. A . , C . L . C a r d e r , a n d P. R . Betzer, S e d i m e n t r e s u s p e n s i o n by coastal waters: A potential m e c h a n i s m f o r nutrient r e - c y c l i n g o n t h e o c e a n ' s m a r g i n s , Deep Sea Res., 29, 9 5 3 , 1 9 8 2 . F i n d l a y , R . H . , P. C . P o l l a r d , D . J . W . M o r iarty, a n d D . C . W h i t e , Q u a n t i t a t i v e d e t e r ­ m i n a t i o n o f m i c r o b i a l activity a n d c o m m u ­ nity n u t r i t i o n a l status in e s t u a r i n e s e d i ­ m e n t : E v i d e n c e f o r a d i s t u r b a n c e artifact, Can. J. Microbiol, 31, 4 9 3 , 1 9 8 5 . G r a n t , W . D . , A . J. W i l l i a m s I I I , S. M . G l e n n , D. A . Cacchione, and D. A. Drake, High f r e q u e n c y b o t t o m stress variability a n d its p r e d i c t i o n in t h e C O D E r e g i o n , Tech. Rep. 83-19, W o o d s H o l e O c e a n o g r . Inst., W o o d s H o l e , Mass., 1983. H e s s , F. R . , a n d K . W . B e d f o r d , A c o u s t i c backscatter system ( A B S S ) : T h e instrument a n d s o m e p r e l i m i n a r y results, Mar. Geol, 66, 3 5 7 , 1 9 8 5 . M c C a v e , I. N.j, P r o p e r t i e s o f s u s p e n d e d s e d i ­ m e n t o v e r the H E B B L E area o n the N o v a S c o t i a n rise, Mar. Geol, 66, 1 6 9 , 1 9 8 5 . M c C a v e , I. N . , a n d T . F. G r o s s , C a l c u l a t i o n s o f in situ settling v e l o c i t y , Deep Sea Res., in press, 1987. S a n f o r d , L . P., a n d W . D . G r a n t , D i s s i p a t i o n o f i n t e r n a l w a v e e n e r g y in t h e b o t t o m b o u n d a r y l a y e r o n t h e c o n t i n e n t a l shelf, / . Geophys. Res., 92, 1 8 2 8 , 1 9 8 7 . S m e t h i e , W . M . , Jr., C . A . N i t t r o u e r , a n d R . F. L . Self, T h e u s e o f r a d o n - 2 2 2 as a t r a c e r o f sediment irrigation and m i x i n g o n the W a s h i n g t o n c o n t i n e n t a l shelf, Mar. Geol, 42, 1 7 3 , 1 9 8 1 . Thistle, D . , Natural physical disturbance a n d c o m m u n i t i e s o f m a r i n e soft b o t t o m s , Mar. Ecol. Progr. Ser., 6, 2 2 3 , 1 9 8 1 . W a l s h , J. J., a n d C . P. M c R o y , E c o s y s t e m analysis in t h e s o u t h e a s t e r n B e r i n g Sea, Continent. Shelf Res., 5, 2 5 9 , 1 9 8 6 . W i b e r g , P. L . , a n d J. D . S m i t h , A t h e o r e t i c a l m o d e l f o r saltating g r a i n s in w a t e r , / . Geophys. Res., 90, 7 3 4 1 , 1 9 8 5 .

W i l l i a m s , A . J., I l l , B A S S , a n a c o u s t i c c u r r e n t m e t e r a r r a y f o r b e n t h i c flow-field m e a s u r e ­ m e n t s , Mar. Geol, 66, 3 4 5 , 1 9 8 5 . A r t h u r R . M . N o w e l l and P e t e r A . J u m a r s are with the School of Oceanography, University of Washington, Seattle. J o s e p h H . K r a v i t z is with the Office of Naval Research, Arlington, Va.

Information Report Ocean Sciences Section Objectives PAGES 724, 731 E a r l i e r this y e a r , I set u p a n a d h o c O b j e c ­ tives C o m m i t t e e f o r t h e A G U O c e a n S c i e n c e s Section ( O S S ) . T h i s c o m m i t t e e m e t a n d dis­ cussed two topics o f g r o w i n g c o n c e r n to U.S. o c e a n o g r a p h e r s : the s c h e d u l e o f A G U / O S S national meetings, and the future o f T h e O c e a n o g r a p h y R e p o r t ( T O R ) in Eos. T h e committee m e m b e r s present for the discussion w e r e the c u r r e n t O S S sec­ tion officers, President A r n o l d G o r d o n , President-Elect Barbara Hickey, and Sec­ r e t a r y R a n a F i n e ; past O S S p r e s i d e n t s C h r i s M o o e r s a n d W o r t h N o w l i n , Jr.; T O R Editor David Brooks; American So­ ciety o f L i m n o l o g y a n d O c e a n o g r a p h y ( A S L O ) P r e s i d e n t R i c h a r d B a r b e r ; a n d in­ vited m e m b e r s M e l b o u r n e Briscoe a n d C o n s t a n c e S a n c e t t a . Past O S S p r e s i d e n t s Joe Reid and James O'Brien were unable to attend the meeting. A G U headquarters ( W a s h i n g t o n , D . C . ) was r e p r e s e n t e d at t h e m e e t i n g b y W i l l i a m Sackett, w h o w a s t h e 1 9 8 6 - 1 9 8 7 R i c h a r d M o n t g o m e r y Field Fellow. T h e p u r p o s e o f this r e p o r t is t o s u m m a r i z e t h e issues as w e u n d e r s t a n d t h e m a n d t o p o s e s e v e r a l o p t i o n s f o r c o n s i d e r a t i o n b y o c e a n sci­ entists. T h e c o m m i t t e e k e e n l y d e s i r e s t o k n o w the wishes o f the o c e a n c o m m u n i t y c o n c e r n ­ i n g t h e s e i m p o r t a n t issues. A l s o f e e l f r e e t o contact m e ( A r n o l d G o r d o n , Lamont-Doherty G e o l o g i c a l O b s e r v a t o r y , Palisades, N Y 10964), Barbara H i c k e y (University o f W a s h ­ i n g t o n , W B - 1 0 , Seattle, W A 9 8 1 9 5 ) , o r R a n a Fine (Rosenstiel S c h o o l o f Marine and A t m o ­ spheric Sciences, University o f Miami, 4 6 0 0 Rickenbacker Causeway, Miami, FL 33149) a b o u t a n y o t h e r issues that y o u w i s h t h e c o m ­ mittee to c o n s i d e r . T o obtain a w i d e sample o f o p i n i o n s , w e intend to poll the O S S m e m ­ b e r s h i p in S e p t e m b e r 1 9 8 7 with a s p e c i f i c set o f questions about m e e t i n g schedules. Later, t h e r e will b e q u e s t i o n s a b o u t T O R .

The Oceanography Report: History and Current Status B e f o r e I g e t i n t o t h e m e e t i n g s c h e d u l e is­ s u e , I w o u l d like t o m e n t i o n a f e w w o r d s a b o u t T O R . T h e i n a u g u r a l issue o f T h e O c e a n o g r a p h y R e p o r t ( T O R ) was p u b l i s h e d in Eos o n S e p t e m b e r 1, 1 9 8 1 , a u s p i c i o u s l y d u r i n g t h e p l a n n i n g stages o f t h e first " O c e a n S c i e n c e s " m e e t i n g , h e l d in S a n A n t o ­ nio, T e x . Since then, with the e x p e r t m a n a g e ­ m e n t o f A G U ' s p u b l i s h i n g staff, T O R h a s n o t m i s s e d a n issue, a p p e a r i n g r e g u l a r l y in Eos o n t h e first T u e s d a y o f e a c h m o n t h . F r o m the b e g i n n i n g , T O R ' s b r o a d editorial policy