Argonne PowerPoint Presentation - Nuclear Energy Agency

0 downloads 0 Views 2MB Size Report
May 9, 2007 - Electrons and Deuterons for Driving Subcritical Assemblies ... Comparative analysis of these two options is presented and discussed.
Comparative Analysis of Neutron Sources Produced by Low-Energy Electrons and Deuterons for Driving Subcritical Assemblies

D. Naberezhnev, Y. Gohar, H. Belch, J. Duo Argonne National Laboratory, Department of Energy, USA

Igor Bolshinsky Idaho National Laboratory, Department of Energy, USA

Fifth International Workshop on the Utilization and Reliability of High Power Proton Accelerators Mol, Belgium May 6-9, 2007

Comparative Analysis of Neutron Sources Produced by Low-Energy Electrons and Deuterons for Driving Subcritical Assemblies Introduction „ A conceptual design of an accelerator driven subcritical assembly has been developed using the existing accelerators at Kharkov Institute of Physics and Technology (KIPT) in Ukraine. „ Two different external neutron source options were examined for driving the subcritical assembly. Electrons with energies below 200 MeV and deuterons with energies below 100 MeV were considered. „ Comparative analysis of these two options is presented and discussed.

Ukraine Accelerator Driven Subcritical Assembly Facility Mission „ Produce medical isotopes and provide neutron source for performing neutron therapy procedures. „ Provide capabilities for carrying basic and applied research utilizing the radial neutron beam ports around the subcritical assembly. „ Support the Ukraine nuclear power industry by providing the capabilities to perform reactor physics experiments and to train young specialists.

Facility Conceptual Design Overview

Vertical Cross Section Through the Facility

View Inside the Subcritical Assembly Showing Overall Arrangement

Comparative Analysis of Neutron Sources Produced by Low-Energy Electrons and Deuterons for Driving Subcritical Assemblies Study Objective: Maximize the neutron production from the available beam power and define the optimal beam parameters.

Study Parameters: „ Neutron source strength „ Neutron spatial and energy distributions „ Energy deposition in the target material „ Beam radius relative to the target radius „ Target geometrical configurations „ Thermal hydraulics results „ Thermal stress results „ Target Fabrication

Neutron Yields from Electron Interactions

W 0.10

Neutrons per second

Neutrons per electron

0.15

U

0.05

0.00 50

100 150 Electron energy, MeV

200

Neutron yield per electron from uranium and tungsten targets as a function of the electron energy

5.0 10

14

4.0 10

14

W U 3.0 10

14

2.0 10

14

1.0 10

14

50

100

150

200

Electron energy, MeV

Neutron source strength from tungsten and uranium targets as a function of the electron energy for 100 kW beam power

Neutron Spectrum from Electron Interactions 0.25

0.24 100 MeV 200 MeV

0.2

0.16

Neutron Fraction

Neutron Fraction

0.2

0.12

100 MeV 200 MeV

0.15

0.1

0.08

0.05

0.04

0

0

0.01

0.1

1

10

100

0.01

0.1

Energy, MeV

Neutron spectrum from tungsten target material for different electron beam energies

1

10

100

Energy, MeV

Neutron spectrum from uranium target material for different electron beam energies

Neutron Yields from Deuteron Interactions 0.4

2.5 10

15

2 10

15

1.5 10

15

1 10

15

5 10

14

0.35

Neutron intensity, n/s

Neutrons per deuteron

0.3

0.25

0.2

0.15

0.1

0.05

0

0 0

20

40 60 80 Deuteron energy, MeV

100

120

Neutron yields from deuteron interactions with beryllium as a function of the deuteron energy

0

20

40

60

80

100

120

Deuteron energy, MeV

Neutron source intensity from deuteron interactions with beryllium as a function of the deuteron beam energy normalized for 100 KW beam power

Neutron Spectra Generated from Deuteron-Beryllium Interactions for Different Deuteron Energies 0.2

Neutron fraction

0.15 20 MeV 50 MeV 100 MeV 0.1

0.05

0 0.01

0.1

1 Neutron energy, MeV

10

100

Spatial Energy Deposition in the Tungsten Target Material 120

2000

100

80

50 MeV 100 MeV 150 MeV 200 MeV

Heating rate, W/cm

3

50 MeV 100 MeV 150 MeV 200 MeV

60

3

MeV/cm per electron

1500

1000

40 500

20

0

0

0

2

4

6

8

10

0

2

4

6

8

10

Target Length, cm Target length, cm

Spatial energy deposition per electron in the tungsten target material for different electron energies

Spatial energy deposition in the tungsten target material normalized to 2 KW/cm2 on the beam window for different electron energies

Spatial Energy Deposition in the Uranium Target Material 120

2500

100

3

Heating rate, W/cm

80

60

3

MeV/cm per electron

1875 50 MeV 100 MeV 150 MeV 200 MeV

40

50 MeV 100 MeV 150 MeV 200 MeV

1250

625 20

0 0

2

4

6

8

10

Target length, cm

Spatial energy deposition per electron in uranium target material for different electron energies

0 0

2

4

6

8

10

Target length, cm

Spatial energy deposition in uranium target material normalized to 2 KW/cm2 on the beam window for different electron energies

0.0706

0.1430

0.0705

0.1425

0.0704

0.1420 Neutron per electron

Neutron per electron

Neutron Yields as a Function of the Target Length

0.0703 0.0702 0.0701

0.1415 0.1410 0.1405

0.0700

0.1400

0.0699

0.1395 0.1390

0.0698 5

6

7

8

9

10

Target Length, cm

Number of neutrons per electron from pure tungsten material as a function of the target length for the 200 MeV electron energy

5

6

7

8

9

10

Target Length, cm

Number of neutrons per electron from pure uranium material as a function of the target length for the 200 MeV electron energy

Spatial Energy Deposition in the Beryllium Target Material 300

3 10

4

250

2.5 10

4

2 10

4

1.5 10

4

100

1 10

4

50

5000

heating rate, W/cm

3

200

150

3

MeV/cm per deuteron

20 MeV 50 MeV 100 MeV

20 MeV 50 MeV 100 MeV

0

0 0

0.5

1

1.5

2

2.5

3

3.5

Target length, cm

Spatial energy deposition per deuteron in pure beryllium target material for different deuteron energies

0

0.5

1

1.5

2

2.5

3

3.5

Target length, cm

Spatial energy deposition in pure beryllium target material for different deuteron energies normalized to 2 KW/cm2 on the beam window

Neutron Yields as a Function of the Target Length 0.018 0.4

0.016 0.35

0.3 Neutrons per deuteron

Neutrons per deuteron

0.014

0.012

0.01

0.008

0.25

0.2

0.15

0.006

0.1

0.004 0

2

4

6 8 Target length, cm

10

12

Neutron yield as a function of pure beryllium target length from 23 MeV deuteron

0.05 0

2

4

6 8 Target length, cm

10

12

Neutron yield as a function of pure beryllium target length from 100 MeV deuteron

Comparison of different options for producing neutron source

Exploded Assembly View of the Updated Uranium Target Design

Spatial Energy Deposition Distribution in the Uranium Target Disks

W/cm3

Temperature Distribution in the Uranium Target Disks

Temperature, °C

Third Disk Midplane Temperature Distribution (The Highest Disk Temperature)

Temperature, °C

Third Disk Thermal Stress (The Disk with Highest Thermal Stress)

Conclusions The Comparative analysis of neutron sources produced by lowenergy electrons and deuterons show that: „ An electron accelerator with electron energy in the range of 150 to 200

MeV is preferred for producing neutron source. „ The uranium target material produces the highest neutron yield per

electron. „ The uranium target with 100 KW electron beam produces 3.3x1014 n/s. „ The thermal hydraulics analyses of the uranium target operating with the

100 KW electron requirements.

beam

power

satisfy

the

engineering

design

„ The peak thermal stresses (secondary stress) is less than the yield

strength of the uranium target material.