Assessment capability of rangeland plants for

1 downloads 0 Views 12MB Size Report
ﻣﻌﻤﺎري، ع.، اﮐﺒﺮي، غ.، ﻟﻄﻔﯽ ﻓﺮ، ا. 1390 . ﺗﺎﺛﯿﺮ ﮐﺎرﺑﺮد ﻣﻘﺎدﯾﺮ ﻣﺨﺘﻠﻒ ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي ﺑﺮ ..... plants grown on contaminated soil, paper presented at United Nations-ECE Symp.
University of Tehran Faculty of Natural Resources Department of Arid and Mountainous Regions Reclamation

Assessment capability of rangeland plants for remediation of contaminated soils to heavy metal of Pb and Zn (Case Study: National Iranian Lead & Zinc Company)

By: Mehdi Moameri Supervisors: Dr. Mohammad Jafari Dr. Ali Tavili Advisers: Dr. Babak Motesharezadeh Dr. Mohammad Ali Zare Chahuki

A thesis submitted to the Graduate Studies Office in partial fulfillment of the requirements for the degree of Ph.D In Rangeland Science January, 2016

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

Abstract So far, few studies about the role of rangeland plants in phytoremediation of contaminated soils in rangelands and the role of natural amendements for improving phytoremediation, have been done. The purpose of this study was investigation of soil contamination to lead, zinc and cadmium in the surrounding rangelands of National Iranian Lead & Zinc FactoryZanjan and identifying suitable native plants for phytoremediation, as well. To perform this part of the research, samples of soil and aerial and underground organs of plants were collected from 22 sites in the surrounding of National Iranian Lead & Zinc Factory-Zanjan. At each site, samples of plants within 1 m2 plots were collected from central, upper and lower and soil samples from root depth were collected from the same plot. Then, extraction of soil and plants samples was done by acid digestion and concentration of Pb, Zn and Cd extracted from plant and soil samples were determined using Inductively Coupled plasma Optical Emission Spectroscopy “ICP-OES”. To evaluate the potential of plants for phytoremediation; Translocation Factor (TF) and Bioconcentration Factor (BCF) were calculated. As a second step and after determining the appropriate species for phytoremediation, pot experiment was conducted. Then, the effects of municipal solid waste compost (MSWC) (0, 1 and 2%) and nano silica (NS) on absorption, transport and accumulation of Pb, Zn and Cd by Stipa hohenackeriana, Festuca arundinaceae and Medicago sativa were evaluated. To conduct this experiment soil was collected from the study area; it was transferred to the greenhouse and MSWC and NS was added to it. Then, the seed of these plants was planted in treated soil. At the end of the experiment, some of the plants morphological characteristics and soil properties were measured. In addition, the concentration of Pb, Zn and Cd in the soil and plants were determined using ICP-OES. The results of the first part showed, the concentration of Pb, Zn and Cd in aerial organs of S. hohenackeriana were higher underground organs and TF>1. Since it is also dominant in the study area and it constitute most of the plant composition of the rangelands area and have high biomass, so it selected as a proper native species for phytoremediation. The results of the greenhouse expriements showed remediation factor for Pb, Zn and Cd in MSWC 2% amended pots by S. hohenackeriana was 0.06, 0.61 and 0.95%, respectively and for F. arundinaceae was 0.11, 0.56 and 0.57%, respectively. NS 500 mg/kg led to absorption, transport and accumulation of the maximum amount of lead, zinc and cadmium by shoots and roots S. hohenackeriana and F. arundinacea, but due to excessive absorption of Pb, Zn and Cd the amount of biomass decreased and remediation factor reduced. In general, S. hohenackeriana and F. arundinaceae treated MSWC 2% have the highest efficiency for absorption, translocation and accumulation of Pb, Zn and Cd in their aerial organs and because they have good biomass, so they can be suitable candidates for phytoremediation of contaminated soils with lead, zinc and cadmium. Keywords: phytoremediation, heavy metals, rangeland plants, municipal solid waste compost, nano silica.

‫ﭘﺮدﯾﺲ ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ‬ ‫داﻧﺸﮑﺪه ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ‬ ‫ﮔﺮوه اﺣﯿﺎء ﻣﻨﺎﻃﻖ ﺧﺸﮏ و ﮐﻮﻫﺴﺘﺎﻧﯽ‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و‬ ‫روي )ﻣﻄﺎﻟﻌﻪ ﻣﻮردي‪ :‬ﺑﺨﺸﯽ از اراﺿﯽ اﻃﺮاف ﺷﺮﮐﺖ ﻣﻠﯽ ﺳﺮب و روي اﯾﺮان‪ -‬زﻧﺠﺎن(‬

‫ﻧﮕﺎرش‪:‬‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫اﺳﺘﺎدان راﻫﻨﻤﺎ‪:‬‬

‫دﮐﺘﺮ ﻣﺤﻤﺪ ﺟﻌﻔﺮي‬ ‫دﮐﺘﺮ ﻋﻠﯽ ﻃﻮﯾﻠﯽ‬

‫اﺳﺘﺎدان ﻣﺸﺎور‪:‬‬

‫دﮐﺘﺮ ﺑﺎﺑﮏ ﻣﺘﺸﺮعزاده‬ ‫دﮐﺘﺮ ﻣﺤﻤﺪﻋﻠﯽ زارع ﭼﺎﻫﻮﮐﯽ‬

‫رﺳﺎﻟﻪ ﺑﺮاي درﯾﺎﻓﺖ درﺟﮥ دﮐﺘﺮي )‪ (PhD‬در رﺷﺘﻪ ﻋﻠﻮم ﻣﺮﺗﻊ‬ ‫دي‪1394 ،‬‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ﭼﮑﯿﺪه‬ ‫ﺗﺎﮐﻨﻮن در ﻣﻮرد ﻧﻘﺶ ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺧﺎكﻫﺎي آﻟﻮده ﻣﺮاﺗﻊ و ﻧﻘﺶ ﻣﻮاد ﺑﻬﺴﺎز ﻃﺒﯿﻌـﯽ در ﺑﻬﺒـﻮد‬ ‫ﮔﯿﺎهﭘﺎﻻﯾﯽ اﯾﻦ ﮔﯿﺎﻫﺎن‪ ،‬ﻣﻄﺎﻟﻌﺎت اﻧﺪﮐﯽ اﻧﺠﺎم ﺷﺪه اﺳﺖ‪ .‬ﻫﺪف از اﻧﺠﺎم اﯾـﻦ ﭘـﮋوﻫﺶ در ﮔـﺎم اول ﺑﺮرﺳـﯽ ﻣﯿـﺰان‬ ‫آﻟﻮدﮔﯽ ﺧﺎك ﻫﺎي اﻃﺮاف ﺷﺮﮐﺖ ﻣﻠﯽ ﺳﺮب و روي زﻧﺠﺎن ﺑـﻪ ﻓﻠـﺰات ﺳـﺮب‪ ،‬روي‪ ،‬ﮐـﺎدﻣﯿﻢ و ﻫﻤﭽﻨـﯿﻦ ﺷﻨﺎﺳـﺎﯾﯽ‬ ‫ﮔﻮﻧﻪﻫﺎي ﺑﻮﻣﯽ ﻣﻨﺎﺳﺐ ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺑﻮد‪ .‬ﺑﺮاي اﻧﺠﺎم اﯾﻦ ﺑﺨﺶ از ﺗﺤﻘﯿـﻖ‪ ،‬ﻧﻤﻮﻧـﻪﻫـﺎي ﺧـﺎك‪ ،‬اﻧـﺪام ﻫـﻮاﯾﯽ و‬ ‫زﯾﺮزﻣﯿﻨﯽ ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ از ‪ 22‬ﺳﺎﯾﺖ اﻃﺮاف ﺷﺮﮐﺖ ﺳﺮب و روي زﻧﺠﺎن )‪ 11‬ﺳﺎﯾﺖ در ﺟﻬﺖ ﺷﻤﺎﻟﯽ و ‪ 11‬ﺳﺎﯾﺖ در‬ ‫ﺟﻬﺖ ﻏﺮﺑﯽ( ﺗﻬﯿﻪ و ﺟﻤﻊآوري ﺷﺪ‪ .‬ﻧﻤﻮﻧﻪﻫﺎي ﮔﯿﺎﻫﺎن در ﻫﺮ ﺳﺎﯾﺖ از ﺳﻪ ﻧﻘﻄﻪ ﻣﺮﮐﺰي‪ ،‬ﮔﻮﺷﻪ ﺑﺎﻻ و ﭘﺎﯾﯿﻦ‪ ،‬در داﺧﻞ‬ ‫ﭘﻼتﻫﺎي ﯾﮏ ﻣﺘﺮ ﻣﺮﺑﻌﯽ و ﻧﻤﻮﻧﻪﻫﺎي ﺧﺎك از داﺧﻞ ﻫﻤﯿﻦ ﭘﻼتﻫﺎ و از ﻋﻤﻖ رﯾﺸـﻪدواﻧﯽ ﺑﺮداﺷـﺖ ﺷـﺪﻧﺪ‪ .‬ﺳـﭙﺲ‬ ‫ﻧﻤﻮﻧﻪﻫﺎي ﺧﺎك و ﮔﯿﺎه ﺑﻪ روش اﮐﺴﯿﺪاﺳﯿﻮن ﺗﺮ ﻋﺼﺎرهﮔﯿﺮي ﺷﺪﻧﺪ و ﻏﻠﻈﺖ ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ ﺑﺎ‬

‫دﺳـﺘﮕﺎه ‪ICP-‬‬

‫‪ OES‬آﻧﺎﻟﯿﺰ ﺷﺪ‪ .‬ﺑﺮاي ﺗﻌﯿﯿﻦ ﭘﺘﺎﻧﺴﯿﻞ ﮔﯿﺎهﭘﺎﻻﯾﯽ ﮔﯿﺎﻫﺎن از ﻋﺎﻣﻞﻫﺎي اﻧﺘﻘﺎل و ﺗﺠﻤﻊ زﯾﺴﺘﯽ اﺳﺘﻔﺎده ﺷﺪ‪ .‬در ﮔﺎم دوم‬ ‫و ﺑﻌﺪ از اﻧﺘﺨﺎب ﮔﻮﻧﻪ ﺑﻮﻣﯽ‪ ،‬آزﻣﺎﯾﺶ ﮔﻠﺨﺎﻧﻪاي ﻃﺮاﺣﯽ ﺷﺪ و ﺗﺄﺛﯿﺮ ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي و ﻧﺎﻧﻮﺳـﯿﻠﯿﺲ ﺑـﺮ ﺗﻮاﻧـﺎﯾﯽ‬ ‫ﺟﺬب‪ ،‬اﻧﺘﻘﺎل و ﺗﺠﻤﻊ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺗﻮﺳـﻂ ﮔﻮﻧـﻪﻫـﺎي ‪ Festuca arundinaceae ،Stipa hohenackeriana‬و‬ ‫‪ Medicago sativa‬ﺑﺮرﺳﯽ ﺷﺪ‪ .‬ﺑﺮاي اﻧﺠﺎم اﯾﻦ آزﻣﺎﯾﺶ‪ ،‬ﺧﺎك آﻟﻮده ﻃﺒﯿﻌﯽ از ﻋﺮﺻﻪ ﻣﻮردﻣﻄﺎﻟﻌﻪ ﺟﻤﻊآوري و ﺑـﻪ‬ ‫ﮔﻠﺨﺎﻧﻪ ﻣﻨﺘﻘﻞ ﺷﺪه‪ ،‬ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي )در ﺳﻪ ﺳﻄﺢ ‪ 1 ،0‬و ‪ 2‬درﺻﺪ( و ﻧﺎﻧﻮﺳﯿﻠﯿﺲ )در ﺳﻪ ﺳﻄﺢ ‪ 250 ،0‬و ‪500‬‬ ‫ﻣﯿﻠﯽﮔﺮم ﺑﺮ ﮐﯿﻠﻮﮔﺮم( ﺑﻪ آن اﺿﺎﻓﻪ و ﺑﺬر ﮔﯿﺎﻫﺎن ﻣﺬﮐﻮر در آن ﮐﺸـﺖ ﺷـﺪ‪ .‬ﭘـﮋوﻫﺶ ﮔﻠﺨﺎﻧـﻪاي در ﻗﺎﻟـﺐ آزﻣـﺎﯾﺶ‬ ‫ﻓﺎﮐﺘﻮرﯾﻞ ﺑﺮ ﻃﺮح ﭘﺎﯾﻪ ﮐﺎﻣﻼً ﺗﺼﺎدﻓﯽ در ‪ 5‬ﺗﮑﺮار اﻧﺠﺎم ﺷﺪ‪ .‬در ﭘﺎﯾﺎن دوره آزﻣﺎﯾﺶ‪ ،‬ﺑﺮﺧﯽ از ﺧﺼﻮﺻﯿﺎت ﻣﻬﻢ ﺧﺎك و‬ ‫وﯾﮋﮔﯽﻫﺎي ﻣﻮرﻓﻮﻟﻮژﯾﮑﯽ ﮔﯿﺎﻫﺎن اﻧﺪازهﮔﯿﺮي ﺷﺪ‪ .‬ﻫﻤﭽﻨﯿﻦ ﻏﻠﻈﺖ ﺳﺮب‪ ،‬روي‪ ،‬ﮐﺎدﻣﯿﻢ در ﺧﺎك و ﮔﯿﺎﻫﺎن ﺑﺎ اﺳﺘﻔﺎده‬ ‫از دﺳﺘﮕﺎه ‪ ICP-OES‬ﺗﺠﺰﯾﻪ ﺷﺪ‪ .‬ﺑﺮاي ﺑﺮرﺳﯽ روﻧﺪ ﺗﻐﯿﯿﺮات ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺑﺎ ﻓﺎﺻﻠﻪ ﮔﺮﻓﺘﻦ از ﺷﺮﮐﺖ ﺳـﺮب و روي‪،‬‬ ‫از ﺗﺠﺰﯾﻪ روﻧﺪ اﺳﺘﻔﺎده ﺷﺪ‪ .‬ﺑﺮاي ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ داده ﻫﺎ از ﺗﺠﺰﯾﻪ وارﯾﺎﻧﺲ ﭼﻨﺪ ﻋﺎﻣﻠﯽ و ﺑﺮاي ﻣﻘﺎﯾﺴﻪ ﻣﯿـﺎﻧﮕﯿﻦﻫـﺎ از‬ ‫آزﻣﻮن ﺗﻮﮐﯽ اﺳﺘﻔﺎده ﺷﺪ‪ .‬ﻧﺘﺎﯾﺞ ﺑﺨﺶ ﺻﺤﺮاﯾﯽ اﯾﻦ ﺗﺤﻘﯿﻖ ﻧﺸﺎن داد ﮐﻪ از ﺑﯿﻦ ﮔﯿﺎﻫﺎن ﻣﻮردﻣﻄﺎﻟﻌﻪ‪ ،‬ﻏﻠﻈـﺖ ﺳـﺮب‪،‬‬ ‫روي و ﮐﺎدﻣﯿﻢ در اﻧﺪامﻫﺎي ﻫﻮاﯾﯽ ‪ S. hohenackeriana‬ﺑﯿﺸﺘﺮ از اﻧﺪامﻫﺎي زﯾﺮزﻣﯿﻨﯽ و ﻣﻘﺪار ﻋﺎﻣﻞ اﻧﺘﻘﺎل ﺑﺰرگﺗﺮ‬ ‫از ﯾﮏ ﺑﻮد‪ .‬ﻫﻤﭽﻨﯿﻦ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ آﻧﮑﻪ اﯾﻦ ﮔﻮﻧﻪ در ﻣﻨﻄﻘﻪ ﻣﻮردﻣﻄﺎﻟﻌﻪ‪ ،‬ﻏﺎﻟﺐ ﺑﻮده و ﺑﯿﺸﺘﺮﯾﻦ ﺑﺨـﺶ ﺗﺮﮐﯿـﺐ ﭘﻮﺷـﺶ‬ ‫أ‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ﮔﯿﺎﻫﯽ اراﺿﯽ ﻣﺮﺗﻌﯽ ﻣﻨﻄﻘﻪ را ﺑﻪ ﺧﻮد اﺧﺘﺼﺎص داده ﺑﻮد و زﯾﺴﺖﺗﻮده ﻗﺎﺑﻞ ﻗﺒـﻮﻟﯽ داﺷـﺖ‪ ،‬ﺑـﻪﻋﻨـﻮان ﮔﻮﻧـﻪ ﺑـﻮﻣﯽ‬ ‫ﻣﻨﺎﺳﺐ ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ اﻧﺘﺨﺎب ﺷﺪ‪ .‬ﻧﺘﺎﯾﺞ ﺑﺨﺶ ﮔﻠﺨﺎﻧﻪاي ﭘﮋوﻫﺶ ﻧﺸﺎن داد ﮐﻪ ﺷﺎﺧﺺ ﭘﺎﻻﯾﺶ )ﻣﻘﺪار اﺳـﺘﺨﺮاج(‬ ‫ﻓﻠﺰات ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ ﺗﺤﺖ ﺗﯿﻤﺎر ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷـﻬﺮي ‪ 2‬درﺻـﺪ ﺗﻮﺳـﻂ ‪ S. hohenackeriana‬ﺑـﻪﺗﺮﺗﯿﺐ‬ ‫‪ 0/61 ،0/06‬و ‪ 0/95‬درﺻﺪ و ‪ F. arundinacea‬ﺑﻪﺗﺮﺗﯿﺐ ‪ 0/56 ،0/11‬و ‪ 0/57‬ﺑﻮد‪ .‬ﻧﺎﻧﻮﺳﯿﻠﯿﺲ ‪ 500‬ﻣﯿﻠﯽﮔـﺮم ﺑـﺮ‬ ‫ﮐﯿﻠﻮﮔﺮم‪ ،‬ﺑﺎﻋﺚ ﺟﺬب‪ ،‬اﻧﺘﻘﺎل و ﺗﺠﻤﻊ ﺑﯿﺸﺘﺮﯾﻦ ﻣﻘﺪار ﺳﺮب‪ ،‬روي و ﮐـﺎدﻣﯿﻢ ﺗﻮﺳـﻂ ﺷﺎﺧﺴـﺎره و رﯾﺸـﻪ ﮔﯿﺎﻫـﺎن ‪S.‬‬

‫‪ hohenackeriana‬و ‪ F. arundinacea‬ﺷ ﺪ‪ ،‬وﻟﯽ ﺑﻪ دﻟﯿﻞ ﺟﺬب ﺑﯿﺶ از ﺣﺪ ﻓﻠﺰات‪ ،‬ﻣﻘﺪار زﯾﺴﺖﺗﻮده ﮔﯿﺎﻫﺎن و در‬ ‫ﻧﺘﯿﺠﻪ ﻣﻘﺪار اﺳﺘﺨﺮاج ﮐﺎﻫﺶ ﯾﺎﻓﺖ‪ .‬ﺑﻪﻃﻮرﮐﻠﯽ‪ ،‬ﮔﻮﻧﻪﻫﺎي ‪ S. hohenackeriana‬و ‪ F. arundinacea‬ﺗﺤﺖ ﺗﯿﻤـﺎر‬ ‫ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي ‪ 2‬درﺻﺪ داراي ﺑﺎﻻﺗﺮﯾﻦ ﮐﺎراﯾﯽ در ﺟﺬب‪ ،‬اﻧﺘﻘﺎل و ﺗﺠﻤﻊ ﺳﺮب‪ ،‬روي و ﮐـﺎدﻣﯿﻢ در اﻧـﺪامﻫﺎي‬ ‫ﻫﻮاﯾﯽ ﺧﻮد ﺑﻮدﻧﺪ و از آﻧﺠﺎﯾﯽ ﮐﻪ داراي زﯾﺴﺖﺗﻮده ﻣﻨﺎﺳﺒﯽ ﺑﻮدﻧﺪ‪ ،‬ﺑﻨﺎﺑﺮاﯾﻦ ﻣﯽﺗﻮاﻧﻨﺪ ﺑﻪﻋﻨﻮان ﮔﺰﯾﻨﻪﻫﺎي ﻣﻨﺎﺳﺒﯽ ﺑﺮاي‬ ‫ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ ﻣﻮرد ﺗﻮﺟﻪ ﻗﺮار ﮔﯿﺮﻧﺪ‪.‬‬ ‫ﮐﻠﻤﺎت ﮐﻠﯿﺪي‪ :‬ﮔﯿﺎه ﭘﺎﻻﯾﯽ‪ ،‬ﻓﻠﺰات ﺳﻨﮕﯿﻦ‪ ،‬ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ‪ ،‬ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي‪ ،‬ﻧﺎﻧﻮﺳﯿﻠﯿﺲ‬

‫ب‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ﻓﻬﺮﺳﺖ ﻣﻄﺎﻟﺐ‬ ‫ﺻﻔﺤﻪ‬

‫ﻋﻨﻮان‬

‫ﻓﺼﻞ اول ‪2 ............................ ................................ ................................‬‬

‫‪ -١‬ﻣﻘﺪﻣﻪ و ﮐﻠﯿﺎت‪2 ................................................... ................................‬‬

‫‪ -1 -1‬ﻣﻘﺪﻣﻪ و ﻫﺪف ‪2 ..................... ................................................................‬‬ ‫‪ -2 -1‬ﮐﻠﯿﺎت ‪9 ............................ ................................ ................................‬‬ ‫‪ -1-2 -1‬آﻟﻮدﮔﯽ ‪9 .........................................................................................‬‬ ‫‪ -2-2 -1‬اﺷﮑﺎل آﻟﻮدﮔﯽ ‪9 ....................................................................................‬‬ ‫‪ -3-2 -1‬ﻓﻠﺰات ﺳﻨﮕﯿﻦ ‪12 .................................................. ................................‬‬ ‫‪ -4-2 -1‬ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﻣﻮردﺑﺮرﺳﯽ در اﯾﻦ ﺗﺤﻘﯿﻖ ‪14 .............................. ................................‬‬ ‫‪ -4-2 -1‬ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪23 ...................................................... ................................‬‬ ‫‪ -1 -4-2 -1‬ﮔﯿﺎﻫﺎن ﺑﯿﺶاﻧﺪوز )اﺑﺮﺟﺎذب( ‪24 ...................................... ................................‬‬ ‫‪ -2 -4-2 -1‬ﻓﺮآﯾﻨﺪﻫﺎي ﮔﯿﺎهﭘﺎﻻﯾﯽ‪25 ........................................... ................................‬‬ ‫‪ -3 -4-2 -1‬ﻣﻮاد ﮐﻼتﮐﻨﻨﺪه )ﻣﻮاد ﺑﻬﺴﺎز(‪27 ..... ................................................................‬‬ ‫‪ -5-2 -1‬ﮐﺎرﺑﺮد ﺳﯿﻠﯿﺲ و ﻧﺎﻧﻮﺳﯿﻠﯿﺲ ﺑﻪﻋﻨﻮان ﻣﻮاد ﺑﻬﺴﺎز در ﮔﯿﺎهﭘﺎﻻﯾﯽ‪30 ..............................................‬‬ ‫‪ -6-2 -1‬ﮐﺎرﺑﺮد ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي ﺑﻪﻋﻨﻮان ﻣﻮاد ﺑﻬﺴﺎز در ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪32 .............................................‬‬ ‫‪ -7-2 -1‬ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪34 .................... ................................‬‬ ‫ﻓﺼﻞ دوم ‪38 .......................................................... ................................‬‬

‫‪ -2‬ﭘﯿﺸﯿﻨﻪ ﺗﺤﻘﯿﻖ ‪38 .................................................. ................................‬‬ ‫‪ -1 -2‬آﻟﻮدﮔﯽ ﺧﺎك ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ و اﺳﺘﻔﺎده از ﮔﯿﺎﻫﺎن ﺑﻮﻣﯽ ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ‪38 ........................................‬‬ ‫‪ -2 -2‬ﻣﺤﺪودهﻫﺎي ﻣﺠﺎز ﻓﻠﺰات ﺳﻨﮕﯿﻦ در ﺧﺎك و ﮔﯿﺎﻫﺎن ‪45 ........................................................‬‬ ‫‪ -3 -2‬ﻋﻮاﻣﻞ ﻣﺆﺛﺮ ﺑﺮ ﻓﺮاﻫﻤﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺑﺮاي ﮔﯿﺎﻫﺎن ‪48 ......................... ................................‬‬ ‫‪ -1-3 -2‬ﺗﺄﺛﯿﺮ اﺳﯿﺪﯾﺘﻪ ﺧﺎك ﺑﺮ ﻓﺮاﻫﻤﯽ زﯾﺴﺘﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ‪49 .....................................................‬‬ ‫‪ -2-3 -2‬ﺗﺄﺛﯿﺮ ﻣﺎده آﻟﯽ ﺧﺎك ﺑﺮ زﯾﺴﺖﻓﺮاﻫﻤﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ‪50 ......................................................‬‬ ‫‪ -3-3 -2‬ﺗﺄﺛﯿﺮ ﻇﺮﻓﯿﺖ ﺗﺒﺎدل ﮐﺎﺗﯿﻮﻧﯽ ﺧﺎك ﺑﺮ زﯾﺴﺖﻓﺮاﻫﻤﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ‪51 ...........................................‬‬ ‫‪ -4-3 -2‬ﺗﺄﺛﯿﺮ رﯾﺰﺳﺎزوارهﻫﺎي ﺧﺎك ﺑﺮ زﯾﺴﺖﻓﺮاﻫﻤﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ‪51 .................................................‬‬ ‫‪ -5-3 -2‬ﮐﺎرﺑﺮد ﻣﻬﻨﺪﺳﯽ ژﻧﺘﯿﮏ ﺑﺮاي اﻓﺰاﯾﺶ زﯾﺴﺖﻓﺮاﻫﻤﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ‪52 ...........................................‬‬ ‫‪ -4 -2‬ﮐﺎرﺑﺮد ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي در ﻣﺮﺗﻊ و در ﺑﻬﺒﻮد ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪53 ..................................................‬‬ ‫‪ -6 -2‬ﻧﻘﺶ ﻧﺎﻧﻮﺳﯿﻠﯿﺲ در ﻣﺮﺗﻊ و در ﺑﻬﺒﻮد ﮔﯿﺎهﭘﺎﻻﯾﯽ‪63 ............................................................‬‬ ‫‪ -7 -2‬ﺟﻤﻊﺑﻨﺪي ﻣﺮور ﻣﻨﺎﺑﻊ ‪70 ............... ................................................................‬‬ ‫ﻓﺼﻞ ﺳﻮم ‪72 .......................................................... ................................‬‬

‫‪ -3‬ﻣﻮاد و روشﻫﺎ‪72 .................................................. ................................‬‬ ‫‪ -1 -3‬ﺑﺨﺶ اول‪ :‬ﻣﻄﺎﻟﻌﺎت ﺻﺤﺮاﯾﯽ ‪72 .........................................................................‬‬ ‫‪ -1-1 -3‬ﻣﻨﻄﻘﻪ ﻣﻮردﻣﻄﺎﻟﻌﻪ‪72 ................................................ ................................‬‬ ‫‪ -2-1 -3‬ﻧﻤﻮﻧﻪﺑﺮداري از ﭘﻮﺷﺶ ﮔﯿﺎﻫﯽ و ﺧﺎك ﻣﻨﻄﻘﻪ ‪74 ...........................................................‬‬ ‫ت‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫‪ -3-1 -3‬ﺑﺮرﺳﯽ ﻧﻤﻮﻧﻪﻫﺎ در آزﻣﺎﯾﺸﮕﺎه ‪78 ....................................... ................................‬‬ ‫‪ -1 -3-1 -3‬ﺗﻌﯿﯿﻦ ﺑﺮﺧﯽ از ﺧﺼﻮﺻﯿﺎت ﻓﯿﺰﯾﮑﯽ و ﺷﯿﻤﯿﺎﯾﯽ ﺧﺎك ‪78 ...................................................‬‬ ‫‪ -2 -3-1 -3‬اﻧﺪازهﮔﯿﺮي ﻣﻘﺪار ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ در ﻧﻤﻮﻧﻪﻫﺎي ﺧﺎك و ﮔﯿﺎﻫﺎن ‪84 .......................................‬‬ ‫‪ -2 -3‬ﺑﺨﺶ دوم‪ :‬ﭘﮋوﻫﺶ ﮔﻠﺨﺎﻧﻪاي ‪86 .........................................................................‬‬ ‫‪ -1-2 -3‬ﻣﻌﺮﻓﯽ ﮔﻮﻧﻪﻫﺎي ﻣﻮردﻣﻄﺎﻟﻌﻪ‪89 ........................................ ................................‬‬ ‫‪ -2-2 -3‬ﻣﻮاد ﻣﻮرد اﺳﺘﻔﺎده ‪93 ................................................ ................................‬‬ ‫‪ -3-2 -3‬آﻣﺎدهﺳﺎزي ﮔﻠﺪانﻫﺎ‪96 ............... ................................................................‬‬ ‫‪ -1 -3-2 -3‬اﻓﺰودن ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي و ﻧﺎﻧﻮﺳﯿﻠﯿﺲ ﺑﻪ ﻣﺤﯿﻂ ﮐﺸﺖ ﮔﻠﺪانﻫﺎ ‪98 .......................................‬‬ ‫‪ -4-2 -3‬ﮐﺎﺷﺖ‪ ،‬داﺷﺖ و آﺑﯿﺎري ﮔﯿﺎﻫﺎن در ﮔﻠﺨﺎﻧﻪ ‪99 .............................. ................................‬‬ ‫‪ -5-2 -3‬ﺑﺮداﺷﺖ ﮔﯿﺎﻫﺎن‪100 ................. ................................ ................................‬‬ ‫‪ -1 -5-2 -3‬اﻧﺪازهﮔﯿﺮي ﺧﺼﻮﺻﯿﺎت رﯾﺨﺖﺷﻨﺎﺳﯽ ﮔﯿﺎﻫﺎن در ﭘﺎﯾﺎن آزﻣﺎﯾﺶ ‪102 ..........................................‬‬ ‫‪ -2 -5-2 -3‬ﺗﻌﯿﯿﻦ ﺧﺼﻮﺻﯿﺎت ﺧﺎك ﮔﻠﺪانﻫﺎ در ﭘﺎﯾﺎن آزﻣﺎﯾﺶ ‪103 ....................................................‬‬ ‫‪ -3 -5-2 -3‬ﺗﻌﯿﯿﻦ ﻏﻠﻈﺖ ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ در ﺧﺎك و ﮔﯿﺎﻫﺎن ‪103 ................. ................................‬‬ ‫‪ -4 -5-2 -3‬ﺗﻌﯿﯿﻦ ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﺗﻮاﻧﺎﯾﯽ ﮔﯿﺎﻫﺎن ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪104 .............................................‬‬ ‫‪ -6-2 -3‬ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ آﻣﺎري‪104 ............ ................................ ................................‬‬ ‫ﻓﺼﻞ ﭼﻬﺎرم ‪108 ....................... ................................................................‬‬

‫‪ -4‬ﻧﺘﺎﯾﺞ‪108 ........................... ................................ ................................‬‬ ‫‪ -1 -4‬ﻧﺘﺎﯾﺞ ﻣﻄﺎﻟﻌﺎت ﺻﺤﺮاﯾﯽ ‪108 .............................................................................‬‬ ‫‪ -1-1 -4‬ﻧﺘﺎﯾﺞ اﻧﺪازهﮔﯿﺮي ﺧﺼﻮﺻﯿﺎت ﺧﺎك در ﻣﻄﺎﻟﻌﻪ ﺻﺤﺮاﯾﯽ ‪108 .................. ................................‬‬ ‫‪ -2-1 -4‬ﺗﺄﺛﯿﺮ ﺟﻬﺖ و ﻓﻮاﺻﻞ ﻧﻤﻮﻧﻪﺑﺮداري ﺑﺮ ﻣﻘﺪار ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ ﺧﺎك‪109 ....... ................................‬‬ ‫‪ -3-1 -4‬ﻧﺘﺎﯾﺞ ﺗﺠﺰﯾﻪ روﻧﺪ ﺑﺮاي ﺑﺮرﺳﯽ ﺗﺄﺛﯿﺮ ﻓﺎﺻﻠﻪ از ﺷﺮﮐﺖ ﺑﺮ ﻏﻠﻈﺖ ﻓﻠﺰات ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ ‪115 .......................‬‬ ‫‪ -4-1 -4‬ﻣﻘﺎﯾﺴﻪ ﻏﻠﻈﺖ ﮐﻞ ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ ﺧﺎك ﺑﺎ ﺣﺪاﮐﺜﺮ ﻣﻘﺪار ﻣﺠﺎز آن ﺑﺮاي ﮐﺎرﺑﺮي ﻣﺮﺗﻊ و ﺣﻔﺎﻇﺖ ﻣﺤﯿﻄﺰﯾﺴﺖ‪121 .....‬‬ ‫‪ -5-1 -4‬ﻧﺘﺎﯾﺞ ﻣﻘﺎﯾﺴﻪ ﻏﻠﻈﺖ ﺳﺮب‪ ،‬روي و ﮐﺎدﻣﯿﻢ در ﮔﯿﺎﻫﺎن ﻣﻮﺟﻮد در ﻋﺮﺻﻪ ﻣﻮردﻣﻄﺎﻟﻌﻪ ‪121 .............................‬‬ ‫‪ -2 -4‬ﻧﺘﺎﯾﺞ ﻣﻄﺎﻟﻌﺎت ﮔﻠﺨﺎﻧﻪاي ‪126 ............ ................................ ................................‬‬ ‫‪ -1-2 -4‬ﺧﺼﻮﺻﯿﺎت ﺧﺎك ﻣﻮرداﺳﺘﻔﺎده ﺑﺮاي آزﻣﺎﯾﺶ ﮔﻠﺪاﻧﯽ ‪126 .....................................................‬‬ ‫‪ -2-2 -4‬ﺗﺄﺛﯿﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﺧﺼﻮﺻﯿﺎت ﻣﺮﻓﻮﻟﻮژﯾﮏ ﮔﻮﻧﻪﻫﺎي ﻣﺨﺘﻠﻒ ‪127 .....................................‬‬ ‫‪ -3-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﺑﺮﺧﯽ ﺧﺼﻮﺻﯿﺎت ﺧﺎك در ﭘﺎﯾﺎن دوره آزﻣﺎﯾﺶ ‪134 ...................................‬‬ ‫‪ -4-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﻏﻠﻈﺖ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﮔﯿﺎﻫﺎن و ﺧﺎك ‪141 ..........................................‬‬ ‫‪ -1 -4-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﻏﻠﻈﺖ ﺳﺮب ﮔﯿﺎه و ﺧﺎك ‪141 ................. ................................‬‬ ‫‪ -2 -4-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﻏﻠﻈﺖ روي ﮔﯿﺎه و ﺧﺎك‪146 .................. ................................‬‬ ‫‪ -3 -4-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﻏﻠﻈﺖ ﮐﺎدﻣﯿﻢ ﮔﯿﺎه و ﺧﺎك ‪150 ................................................‬‬ ‫‪ -5-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﺗﻮاﻧﺎﯾﯽ ﮔﯿﺎﻫﺎن ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪154 ...............................‬‬ ‫‪ -1 -5-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺑﺮاي ﺳﺮب‪154 ....................................‬‬ ‫‪ -2 -5-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺑﺮاي روي ‪159 ....................................‬‬ ‫‪ -3 -5-2 -4‬اﺛﺮ ﺗﯿﻤﺎرﻫﺎي ﻣﻮردﺑﺮرﺳﯽ ﺑﺮ ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺑﺮاي ﮐﺎدﻣﯿﻢ ‪163 .. ................................‬‬

‫ﻓﺼﻞ ﭘﻨﺠﻢ‬

‫‪168 ............................................... ................................‬‬ ‫ث‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫‪ -5‬ﺑﺤﺚ و ﻧﺘﯿﺠﻪﮔﯿﺮي‪168 ............ ................................ ................................‬‬ ‫‪ -1 -5‬ﺗﺄﺛﯿﺮ ﺗﯿﻤﺎرﻫﺎ ﺑﺮ ﺧﺼﻮﺻﯿﺎت ﻣﻮرﻓﻮﻟﻮژﯾﮑﯽ ﮔﯿﺎﻫﺎن در آزﻣﺎﯾﺶ ﮔﻠﺨﺎﻧﻪاي‪173 .........................................‬‬ ‫‪ -2 -5‬ﺗﺄﺛﯿﺮ ﺗﯿﻤﺎرﻫﺎ ﺑﺮ ﺧﺼﻮﺻﯿﺎت ﺧﺎك ﻣﺤﯿﻂ ﮐﺸﺖ ﮔﯿﺎﻫﺎن ‪177 .....................................................‬‬ ‫‪ -3 -5‬ﺗﺄﺛﯿﺮ ﺗﯿﻤﺎرﻫﺎ ﺑﺮ ﻏﻠﻈﺖ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﮔﯿﺎﻫﺎن و ﺧﺎك ‪181 ...................... ................................‬‬ ‫‪ -4 -5‬ﺗﺄﺛﯿﺮ ﺗﯿﻤﺎرﻫﺎ ﺑﺮ ﺷﺎﺧﺺﻫﺎي ارزﯾﺎﺑﯽ ﺗﻮاﻧﺎﯾﯽ ﮔﯿﺎﻫﺎن ﺑﺮاي ﮔﯿﺎهﭘﺎﻻﯾﯽ ‪188 ...........................................‬‬ ‫ﻧﺘﯿﺠﻪﮔﯿﺮي ﮐﻠﯽ ‪195 ........................................................................................‬‬ ‫ﭘﯿﺸﻨﻬﺎدﻫﺎ ‪198 .............................................................................................‬‬ ‫ﻣﻨﺎﺑﻊ ‪200 ................................ ................................ ................................‬‬ ‫ﭼﮑﯿﺪه اﻧﮕﻠﯿﺴﯽ ‪205 ........................................................................................‬‬

‫ج‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ﻣﻨﺎﺑﻊ‪:‬‬ ‫‪ .1‬آذرﻧﯿﻮﻧﺪ‪ ،‬ح و م‪.‬ع‪ .‬زارع ﭼﺎﻫﻮﮐﯽ‪ .1387 .‬اﺻﻼح ﻣﺮاﺗﻊ‪ 354 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .2‬اﺑﺮاﻫﯿﻤﯽ‪ ،‬م‪ ،.‬م‪ .‬ﺟﻌﻔﺮي‪ ،.‬غ‪.‬ر ‪ .‬ﺛﻮاﻗﺒﯽ‪ ،.‬ح‪ .‬آذرﻧﯿﻮﻧﺪ‪ ،.‬ع‪ .‬ﻃﻮﯾﻠﯽ و ف‪ .‬ﻣﺎدرﯾﺪ‪ .1391 .‬ﺑﺮرﺳﯽ ﮔﯿﺎهﭘﺎﻻﯾﯽ ﮔﻮﻧﻪ ‪Phragmites‬‬ ‫‪ australis‬در ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ )ﻣﻄﺎﻟﻌﻪ ﻣﻮردي‪ :‬ﻣﻨﻄﻘﻪ ﺻﻨﻌﺘﯽ ﻟﯿﺎ ‪ -‬ﻗﺰوﯾﻦ(‪ .‬ﻣﺮﺗﻊ‪.1 -9 :1 ،‬‬ ‫‪ .3‬اﺑﺮﯾﺸﻢ‪ ،‬ا‪.‬ا‪ ،.‬م‪ .‬ﺟﻌﻔﺮي و ع‪ .‬ﻃﻮﯾﻠﯽ‪ .1394 .‬اﺛﺮ ﺗﻨﺶ ﺧﺸﮑﯽ و ﮐﺎرﺑﺮد زﺋﻮﻟﯿﺖ ﺑﺮ ﺑﺮﺧﯽ ﺧﺼﻮﺻﯿﺎت ﺧﺎك و وﯾﮋﮔﯽﻫﺎي روﯾﺸﯽ ﮔﻮﻧﻪ‬ ‫‪ Halothamnus glaucus‬در ﻣﻨﺎﻃﻖ ﺧﺸﮏ‪ .‬ﻣﺮﺗﻊ‪.120 -128 :(2) 9 ،‬‬ ‫‪ .4‬اﺳﻤﻌﯿﻠﯽ‪ ،‬ف‪ ،.‬س‪ .‬ﮐﻼﺗه ﺟﺎري‪ ،.‬ز‪.‬ت‪ .‬ﻋﻠﯿﭙﻮر و و‪ .‬ﻋﺒﺪوﺳﯽ‪ .1392 .‬ﺑﺮرﺳﯽ اﻣﮑﺎن اﺳﺘﻔﺎده از زﺋﻮﻟﯿﺖ در ﺗﺮﮐﯿﺐ ﺑﺎ ﻣﻮاد آﻟﯽ ﻣﺨﺘﻠﻒ‬ ‫ﺑﻪﻋﻨﻮان ﺑﺴﺘﺮ ﮐﺎﺷﺖ ﮔﯿﺎه دراﺳﻨﺎ )‪ .(Dracaena marginata‬ﻧﺸﺮﯾﻪ ﻣﺪﯾﺮﯾﺖ ﺧﺎك و ﺗﻮﻟﯿﺪ ﭘﺎﯾﺪار‪.151-168 :(2)3 ،‬‬ ‫‪ .5‬ارزاﻧﯽ‪ ،‬ح ‪ .1392 .‬ﺟﺰوه درﺳﯽ ﻣﺮﺗﻌﺪاري ﭘﯿﺸﺮﻓﺘﻪ ﻣﻘﻄﻊ دﮐﺘﺮي‪ .‬داﻧﺸﮑﺪه ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ داﻧﺸﮕﺎه ﺗﻬﺮان‪ 100 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .6‬اﮐﺒﺮﭘﻮر ﺳﺮاﺳﮑﺎﻧﺮود‪ ،‬ف‪ ،.‬ف‪ .‬ﺻﺪري و د‪ .‬ﮔﻞ ﻋﻠﯿﺰاده‪ .1391 .‬ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﺑﺮﺧﯽ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺑﻪوﺳﯿﻠﻪ ﭼﻨﺪ ﮔﯿﺎه‬ ‫ﺑﻮﻣﯽ ﻣﻨﻄﻘﻪ ﺣﻔﺎﻇﺖﺷﺪه ارﺳﺒﺎران‪ .‬ﻧﺸﺮﯾﻪ ﺣﻔﺎﻇﺖ ﻣﻨﺎﺑﻊ آب و ﺧﺎك‪.53-66 :(4)1 .‬‬ ‫‪ .7‬اﻟﻪ دادي‪ ،‬ا‪ ،.‬ﻣﻌﻤﺎري‪ ،‬ع‪ ،.‬اﮐﺒﺮي‪ ،‬غ‪ ،.‬ﻟﻄﻔﯽ ﻓﺮ‪ ،‬ا‪ .1390 .‬ﺗﺎﺛﯿﺮ ﮐﺎرﺑﺮد ﻣﻘﺎدﯾﺮ ﻣﺨﺘﻠﻒ ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي ﺑﺮ ﺧﺼﻮﺻﯿﺎت و ﻏﻠﻈﺖ‬ ‫ﻋﻨﺎﺻﺮ ﻏﺬاﯾﯽ ﺧﺎك و رﺷﺪ و ﻋﻤﻠﮑﺮد ذرت ﻋﻠﻮﻓﻪاي‪ .‬ﻓﻦآوري ﺗﻮﻟﯿﺪات ﮔﯿﺎﻫﯽ‪.83 -97 .(1)11 ،‬‬ ‫‪ .8‬اﻣﯿﺮي‪ ،‬ف‪ ،.‬ح‪ .‬ارزاﻧﯽ و ا‪ .‬ﮔﻮﯾﻠﯽ‪ .1391 .‬ﺑﺮرﺳﯽ ﺗﻨﻮع ﮔﯿﺎﻫﺎن ﺷﻬﺪزا و ﮔﺮده زا در ﻣﺪﯾﺮﯾﺖ زﻧﺒﻮرداري از ﻣﺮﺗﻊ )ﻣﻄﺎﻟﻌﻪ ﻣﻮردي‪:‬‬ ‫ﺣﻮزه آﺑﺨﯿﺰ ﻗﺮه آﻗﺎچ(‪ .‬ﻣﺮﺗﻊ و اﺑﺨﯿﺰداري‪.460-449 :(4)65 .‬‬ ‫‪ .9‬ﺑﺸﺮي‪ ،‬ح‪ .1380 .‬ﻣﻄﺎﻟﻌﻪ آت اﮐﻮﻟﻮژي ﮔﻮﻧﻪﻫﺎي ‪ Stipa hohenackeriana ،Artemisia sieberi‬و‪ Ferula gumosa‬در‬ ‫زﯾﺴﺖﺑﻮم ﻫﺎي ﻣﺮﺗﻌﯽ‪ ،‬ﻃﺮح ﺗﺤﻘﯿﻘﺎﺗﯽ ﻣﺮﮐﺰ ﺗﺤﻘﯿﻘﺎت ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ و اﻣﻮر دام اﺳﺘﺎن ﻗﻢ‪.‬‬ ‫‪ .10‬ﭘﺮواﻧﻪ‪ ،‬و‪ .1371 .‬ﮐﻨﺘﺮل ﮐﯿﻔﯽ و آزﻣﺎﯾﺶ ﻫﺎي ﺷﯿﻤﯿﺎﯾﯽ ﻣﻮاد ﻏﺬاﯾﯽ‪ .‬اﻧﺘﺸﺎرات داﻧﺸﮕﺎه ﺗﻬﺮان‪ 325 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .11‬ﺑﻬﺎري ﺳﺎروي‪ ،‬س‪.‬ح‪ ،.‬ه‪ ،‬ﭘﯿﺮدﺳﺘﯽ و ي‪ .‬ﯾﻌﻘﻮﺑﯿﺎن‪ .1391 .‬اﺛﺮ ﻧﯿﺘﺮوژن و ﺳﯿﻠﯿﺴﯿﻢ ﺑﻪﻫﻤﺮاه ﮐﻮدﻫﺎي ﺑﯿﻮﻟﻮژﯾﮏ ﺑﺮ ﺑﯿﻤﺎري ﺳﻔﯿﺪك‬ ‫ﺳﻄﺤﯽ‪ ،‬ﺻﻔﺎت ﻓﯿﺰﯾﻮﻟﻮژﯾﮑﯽ و ﻋﻤﻠﮑﺮد ﮔﻨﺪم‪ .‬ﻣﺠﻠﻪ ﻣﺪﯾﺮﯾﺖ ﺧﺎك و ﺗﻮﻟﯿﺪ ﭘﺎﯾﺪار‪.27-44 :(1) 2 .‬‬ ‫‪ .12‬ﭘﺎرﺳﺎدوﺳﺖ‪ ،‬ف‪ ،.‬ب‪ .‬ﺑﺤﺮﯾﻨﯽ ﻧﮋاد‪ ،.‬ع‪.‬ا‪ .‬ﺻﻔﺮي ﺳﻨﺠﺎﻧﯽ و م‪.‬م‪ .‬ﮐﺎﺑﻠﯽ‪ .1386 .‬ﮔﯿﺎهﭘﺎﻻﯾﯽ ﻋﻨﺼﺮ ﺳﺮب ﺗﻮﺳﻂ ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ و ﺑﻮﻣﯽ‬ ‫در ﺧﺎكﻫﺎي آﻟﻮده ﻣﻨﻄﻘﻪ اﯾﺮاﻧﮑﻮه )اﺻﻔﻬﺎن(‪ .‬ﭘﮋوﻫﺶ و ﺳﺎزﻧﺪﮔﯽ‪.54-63 :75 ،‬‬ ‫‪ .13‬ﭘﯿﻤﺎﻧﯽ ﻓﺮد‪ ،‬ﺑ‪ ،.‬ب‪ .‬ﻣﻠﮏ ﭘﻮر و م‪ .‬ﻓﺎﺋﺰي ﭘﻮر‪ .1360 .‬ﻣﻌﺮﻓﯽ ﮔﯿﺎﻫﺎن ﻣﻬﻢ ﻣﺮﺗﻌﯽ و راﻫﻨﻤﺎي ﮐﺸﺖ آن ﺑﺮاي ﻣﻨﺎﻃﻖ ﻣﺨﺘﻠﻒ اﯾﺮان‪.‬‬ ‫اﻧﺘﺸﺎرات ﻣﻮﺳﺴﻪ ﺗﺤﻘﯿﻘﺎت ﺟﻨﮕﻠﻬﺎ‪ ،‬ﻣﺮاﺗﻊ و آﺑﺨﯿﺰداري ﮐﺸﻮر‪.‬‬ ‫‪ .14‬ﺟﻌﻔﺮي ﺣﻘﯿﻘﯽ‪ ،‬م‪ .1382 .‬روشﻫﺎي ﺗﺠﺰﯾﻪ ﺧﺎك‪ -‬ﻧﻤﻮﻧﻪﺑﺮداري و ﺗﺠﺰﯾﻪﻫﺎي ﻣﻬﻢ ﻓﯿﺰﯾﮑﯽ و ﺷﯿﻤﯿﺎﯾﯽ ﺑﺎ ﺗﺄﮐﯿﺪ ﺑﺮ اﺻﻮل ﺗﺌﻮري و‬ ‫ﮐﺎرﺑﺮدي‪ .‬اﻧﺘﺸﺎرات ﻧﺪاي ﺿﺤﯽ‪ 236 .‬ص‪.‬‬ ‫‪ .15‬ﺟﻌﻔﺮي‪ ،‬م و ع‪ .‬ﻃﻮﯾﻠﯽ‪ .1389 .‬اﺣﯿﺎي ﻣﻨﺎﻃﻖ ﺧﺸﮏ و ﺑﯿﺎﺑﺎﻧﯽ‪ .‬اﻧﺘﺸﺎرات داﻧﺸﮕﺎه ﺗﻬﺮان‪ 396 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .16‬ﭼﺮم‪ ،‬م و آ‪ .‬ﻋﻠﯿﺰاده‪ .1388 .‬ﺑﺮرﺳﯽ اﺛﺮات ﮐﻤﭙﻮﺳﺖ ﺑﻘﺎﯾﺎي ﻧﯿﺸﮑﺮ و ‪) EDTA‬اﺗﯿﻠﻦ دي اﻣﯿﻦ ﺗﺘﺮا اﺳﺘﯿﮏ اﺳﯿﺪ( در ﮐﺸﺖ ﮐﻠﺰا‬ ‫ﺟﻬﺖ ﭘﺎﻻﯾﺶ ﺧﺎﮐﻬﺎي آﻟﻮده ﺑﻪ ﮐﺎدﻣﯿﻢ‪ ،‬ﺳﺮب و ﻧﯿﮑﻞ‪ .‬ﻣﺠﻠﻪ آب و ﺧﺎك )ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﮐﺸﺎورزي(‪.20 -29 :(2)33 .‬‬ ‫‪ .17‬ﺣﻘﯿﻘﯽ‪ ،‬م و م‪ .‬ﻣﻈﻔﺮﯾﺎن‪ . 1393 .‬ﺑﺮرﺳﯽ ﺗﻐﯿﯿﺮات روﯾﺸﯽ‪ ،‬ﻣﻮرﻓﻮﻟﻮژﯾﮏ و ﻓﺘﻮﺳﻨﺘﺰي ﮔﻮﺟﻪﻓﺮﻧﮕﯽ در اﺛﺮ ﺳﯿﻠﯿﺴﯿﻢ و ﻧﺎﻧﻮﺳﯿﻠﯿﺴﯿﻢ‬ ‫اﻓﺰوده ﺷﺪه ﺑﻪ ﻣﺤﻠﻮل ﻏﺬاﯾﯽ‪ .‬ﻋﻠﻮم و ﻓﻨﻮن ﮐﺸﺘﻬﺎي ﮔﻠﺨﺎﻧﻪاي‪.37-47 :(19)5 .‬‬

‫‪200‬‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫‪ .18‬ﺧﺪﯾﻮي ﺑﺮوﺟﺮدي‪ ،‬ا‪ ،.‬ﻧﻮرﺑﺨﺶ‪ ،‬ف‪ ،.‬اﻓﯿﻮﻧﯽ‪ ،‬م‪ .‬و ﺷﺮﯾﻌﺘﻤﺪاري‪ ،‬ه‪ .1386 .‬اﺳﮑﺎل ﺷﯿﻤﯿﺎﯾﯽ ﺳﺮب‪ ،‬ﻧﯿﮑﻞ و ﮐﺎدﻣﯿﻢ در ﺧﺎﮐﻬﺎي آﻫﮑﯽ‬ ‫ﺗﯿﻤﺎر ﺷﺪه ﺑﺎ ﻓﺎﺿﻼب‪ .‬ﻣﺠﻠﻪ ﻋﻠﻮم و ﻓﻨﺎوري ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ‪.40 -53 :1 ،‬‬ ‫‪ .19‬ﺧﻮﺷﮕﻔﺘﺎرﻣﻨﺶ‪ ،‬ا‪.‬ح‪ .1389 .‬ﻣﺒﺎﺣﺚ ﭘﯿﺸﺮﻓﺘﻪ در ﺗﻐﺬﯾﻪ ﮔﯿﺎه‪ .‬ﻣﺮﮐﺰ ﻧﺸﺮ ﺻﻨﻌﺘﯽ اﺻﻔﻬﺎن‪.‬‬ ‫‪ .20‬ﺧﯿﺎم ﺑﺎﺷﯽ‪ ،‬ب و اﻓﯿﻮﻧﯽ‪ ،‬م‪ .1382 .‬اﺛﺮ اﺳﺘﻔﺎده از ﭘﺴﻤﺎﻧﺪﻫﺎي آﻟﯽ ﺑﻪﺟﺎي ﮐﻮد ﺷﯿﻤﯿﺎﯾﯽ در اراﺿﯽ ﮐﺸﺎورزي ﺑﺮ ﻏﻠﻈﺖ ﻋﻨﺎﺻـﺮ‬ ‫ﻣﯿﮑﺮو و ﻋﻤﻠﮑﺮد ﮔﯿﺎه‪ .‬ﻣﺠﻤﻮﻋﻪ ﻣﻘﺎﻻت ﺳﻮﻣﯿﻦ ﻫﻤﺎﯾﺶ ﻣﻠﯽ ﺗﻮﺳﻌﻪ ﮐـﺎرﺑﺮد ﻣﻮاد ﺑﯿﻮﻟﻮژﯾﮏ و اﺳﺘﻔﺎده ﺑﻬﯿﻨﻪ از ﺳﻢ و ﮐﻮد در‬ ‫ﮐﺸﺎورزي‪ 6 ،‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .21‬دوداﻧﮕﻪ‪ ،‬ه‪ ،.‬رﺣﯿﻤﯽ‪ ،‬ل‪ ،.‬ﻏﻼﻣﯽ‪ ،‬م‪ .‬و ﻣﻌﺮوﻓﯽ‪ ،‬س‪ .1391 .‬ﺗﺄﺛﯿﺮ ﮐﻮد و ﻣﻮاد آﻟﯽ ﺑﺮ ﻓﻠﺰ ﺳﺮب‪ .‬ﺷﺸﻤﯿﻦ ﮐﻨﻔﺮاﻧﺲ ﻇﻬﻮر ﻣﻬﻨﺪﺳﯽ‬ ‫ﻣﺤﯿﻂزﯾﺴﺖ‪ .‬داﻧﺸﮕﺎه ﺗﻬﺮان‪ 668 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .22‬رﺣﯿﻤﯽ‪ ،‬ز و م‪ .‬ﮐﺎﻓﯽ‪ .1389 .‬ﻣﻘﺎﯾﺴﻪ ﺗﺎﺛﯿﺮ ﺳﻄﻮح ﻣﺨﺘﻠﻒ ﺷﻮري و ﺳﯿﻠﯿﺴﯿﻢ در ﺗﻮﻟﯿﺪ زﯾﺴﺖ ﺗﻮده‪ ،‬ﻣﻘﺪار ﺳﺪﯾﻢ و ﭘﺘﺎﺳﯿﻢ ﺑﺮگ و‬ ‫رﯾﺸﻪ ﺧﺮﻓﻪ)‪ .(Portulaca oleracea L.‬ﻧﺸﺮﯾﻪ آب و ﺧﺎك )ﻋﻠﻮم و ﺻﻨﺎﯾﻊ ﮐﺸﺎورزي(‪.67 -74 :(2)24 .‬‬ ‫‪ .23‬رﺣﯿﻤﯽ‪ ،‬ق‪ ،.‬ه‪ .‬دوداﻧﮕﻪ‪ ،.‬ص‪ .‬ﻣﻌﺮوﻓﯽ و م‪ .‬ﻏﻼﻣﯽ‪ .1393 .‬اﺛﺮات ﮐﻮدﻫﺎي ﺷﯿﻤﯿﺎﯾﯽ و آﻟﯽ ﺑﺮ ﺗﺜﺒﯿﺖ ﺳﺮب و ﮐﺎدﻣﯿﻢ در ﺧﺎﮐﻬﺎي‬ ‫آﻟﻮده‪ .‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺣﻔﺎﻇﺖ آب و ﺧﺎك‪.71 -92 :(5)21 .‬‬ ‫‪ .24‬رﺿﺎﯾﯽﻧﮋاد‪ ،‬ي و اﻓﯿﻮﻧﯽ‪ ،‬م‪ . 1379 .‬اﺛﺮ ﻣﻮاد آﻟﯽ ﺑﺮ ﺧﻮاص ﺷﯿﻤﯿﺎﯾﯽ ﺧﺎك‪ ،‬ﺟﺬب ﻋﻨﺎﺻﺮ ﺑﻮﺳﯿﻠﻪي ذرت و ﻋﻤﻠﮑﺮد آن‪ .‬ﻋﻠﻮم و ﻓﻨﻮن‬ ‫ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ‪ .‬ﺟﻠﺪ ‪ .4‬ﺷﻤﺎره ‪ 19 -28 .4‬ص‪.‬‬ ‫‪ .25‬زارﻋﯽ‪ ،‬م‪ ،.‬ن‪ ،‬ﺻﺎﻟﺢ راﺳﺘﯿﻦ و غ‪.‬ر‪ ،‬ﺛﻮاﻗﺒﯽ‪ .1390 .‬ﮐﺎراﯾﯽ ﻗﺎرﭼﻬﺎي ﻣﯿﮑﻮرﯾﺰ آرﺑﻮﺳﮑﻮﻻر در ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺧﺎﮐﻬﺎي آﻟﻮده ﺑﻪ روي‬ ‫ﺑﻮﺳﯿﻠﻪ ﮔﯿﺎه ذرت‪ .‬ﻣﺠﻠﻪ ﻋﻠﻮم و ﻓﻨﻮن ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ‪ ،‬ﻋﻠﻮم آب و ﺧﺎك‪.151 -166 :(55) 15 .‬‬ ‫‪ .26‬ﺳﺎزﻣﺎن ﺣﻔﺎﻇﺖ ﻣﺤﯿﻂزﯾﺴﺖ‪ .1393 .‬اﺳﺘﺎﻧﺪاردﻫﺎي ﮐﯿﻔﯿﺖ ﻣﻨﺎﺑﻊ ﺧﺎك و راﻫﻨﻤﺎﻫﺎي آن‪ .‬ﻣﻌﺎوﻧﺖ ﻣﺤﯿﻂزﯾﺴﺖ اﻧﺴﺎﻧﯽ‪ ،‬دﻓﺘﺮ آب و‬ ‫ﺧﺎك‪ 166 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .27‬ﺷﺮﯾﻔﯽ‪ ،‬م‪ ،.‬م‪ .‬اﻓﯿﻮﻧﯽ‪ ،‬ا‪.‬ح‪ .‬ﺧﻮﺷﮕﻔﺘﺎرﻣﻨﺶ‪ . 1389 .‬ﺗﺄﺛﯿﺮ ﻟﺠﻦ ﻓﺎﺿﻼب‪ ،‬ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي و ﮐﻮد ﮔﺎوي ﺑﺮ رﺷﺪ و ﻋﻤﻠﮑﺮد و‬ ‫ﺟﺬب آﻫﻦ‪ ،‬روي‪ ،‬ﻣﻨﮕﻨﺰ و ﻧﯿﮑﻞ در ﮔﻞ ﺟﻌﻔﺮي ‪.‬ﻣﺠﻠﻪ ﻋﻠﻮم و ﻓﻨﻮن ﮐﺸﺖ ﻫﺎي ﮔﻠﺨﺎﻧﻪ اي‪.43 -54 :(2)1 .‬‬ ‫‪ .28‬ﻋﺮبزاده‪ ،‬ز‪ .1391 .‬ارزﺷﮕﺬاري اﻗﺘﺼﺎدي ﮐﺎرﮐﺮدﻫﺎي زﯾﺴﺖ ﻣﺤﯿﻄﯽ ﻣﺮاﺗﻊ اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي‪ .‬ﭘﺎﯾﺎنﻧﺎﻣﻪ ﮐﺎرﺷﻨﺎﺳﯽ ارﺷﺪ‬ ‫رﺷﺘﻪ اﻗﺘﺼﺎد ﮐﺸﺎورزي ‪ -‬ﻣﺪﯾﺮﯾﺖ و ﺗﻮﻟﯿﺪ ﮐﺸﺎورزي‪ 125 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .29‬ﻋﻠﯿﺰاده‪ ،‬ا‪ .1357 .‬راﺑﻄﻪ آب‪ ،‬ﺧﺎك و ﮔﯿﺎه‪ .‬اﻧﺘﺸﺎرات داﻧﺸﮕﺎه ﻓﺮدوﺳﯽ ﻣﺸﻬﺪ‪ 795 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .30‬ﻋﻠﯿﺰداه‪ ،‬س‪.‬م‪ ،.‬ق‪ .‬زاﻫﺪي اﻣﯿﺮي‪ ،.‬غ‪.‬ر‪ .‬ﺛﻮاﻗﺒﯽ و و‪ .‬اﻋﺘﻤﺎد‪ .1390 .‬ﺗﺄﺛﯿﺮ ﺑﻬﺒﻮد ﺷﺮاﯾﻂ ﺧﺎك ﺑﺮ ﭘﺎﺳﺦﻫﺎي اﻧﺒﺎﺷﺖ ﻓﻠﺰ ﮐﺎدﻣﯿﻢ در‬ ‫ﻧﻬﺎلﻫﺎي ﯾﮑﺴﺎﻟﻪ ﺻﻨﻮﺑﺮ ‪ .Populus alba‬ﻣﺠﻠﻪ ﺟﻨﮕﻞ اﯾﺮان‪.355-366 :(4) 3 .‬‬ ‫‪ .31‬ﻓﺘﻮت‪ ،‬ا و ا‪ .‬ﺣﻼجﻧﯿﺎ‪ .1392 .‬ﺗﺄﺛﯿﺮ ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي و ﻟﺠﻦ ﻓﺎﺿﻼب ﺑﺮ ﺗﻮزﯾﻊ ﻓﺮﻣﻬﺎي ﻣﺨﺘﻠﻒ ﻋﻨﺎﺻﺮ ﮐﺎدﻣﯿﻢ‪ ،‬ﺳﺮب و ﻧﯿﮑﻞ‬ ‫اﻓﺰوده ﺷﺪه ﺑﻪ دو ﺧﺎك آﻫﮑﯽ‪ .‬ﻧﺸﺮﯾﻪ ﻣﺪﯾﺮﯾﺖ ﺧﺎك و ﺗﻮﻟﯿﺪ ﭘﺎﯾﺪار‪.115-131 :(2)3 .‬‬ ‫‪ .32‬ﻓﺮاﻫﺎﻧﯽ‪ ،‬ا‪ ،.‬ﺷﺎﻫﻤﺮادي‪ ،‬ا‪.‬ع‪ ،.‬زارع ﮐﯿﺎ‪ ،‬ص‪ .‬و آژﯾﺮ‪ ،‬ف‪ .1387 .‬آت اﮐﻮﻟﻮژي ﮔﻮﻧﻪ ﻣﺮﺗﻌﯽ ‪ Stipa barbata‬در اﺳﺘﺎن ﺗﻬﺮان‪ .‬ﻓﺼﻠﻨﺎﻣﻪ‬ ‫ﺗﺤﻘﯿﻘﺎت ﻣﺮﺗﻊ و ﺑﯿﺎﺑﺎن اﯾﺮان‪.86-94 :(1) 15 .‬‬ ‫‪ .33‬ﻓﻼﺣﯽ ﻣﻄﻠﻖ‪ ،‬م و ع‪ .‬ﺑﺴﺘﺎﻧﯽ‪ .1393 .‬ﺗﺄﺛﯿﺮ ﮐﺎرﺑﺮد ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي ﺑﺮ ﻏﻠﻈﺖ آﻫﻦ و ﻣﻨﮕﻨﺰ در ﺧﺎك و ﮔﯿﺎه ذرت ‪(Zea‬‬ ‫)‪ .Mays L.‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺶﻫﺎي ﺧﺎك )ﻋﻠﻮم ﺧﺎك و آب(‪.313 -329 :(2)28 .‬‬ ‫‪ .34‬ﻗﻀﺎوي‪ ،‬ر‪ ،.‬ع‪ .‬وﻟﯽ و م‪.‬م‪ .‬اﺳﻤﻌﯿﻠﯽ‪ .1392 .‬ﺑﺮرﺳﯽ اﺛﺮات ﮐﺎرﺑﺮد زﺋﻮﻟﯿﺖ ﺑﺮ ﻣﺮاﺣﻞ اوﻟﯿﻪ رﺷﺪ ﮔﻮﻧﻪﻫﺎي ﻣﺮﺗﻌﯽ ﮐﻨﺎر )‬ ‫‪ (spinosa‬و آﮐﺎﺳﯿﺎ )‪ (Acacia salicina‬ﺗﺤﺖ ﺗﻨﺶ ﺧﺸﮑﯽ‪ .‬دوﻓﺼﻠﻨﺎﻣﻪ ﻋﻠﻤﯽ‪ -‬ﭘﮋوﻫﺸﯽ ﺧﺸﮑﺒﻮم‪.84-87 :(2)3 .‬‬ ‫‪201‬‬

‫‪Ziziphose‬‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫‪ .35‬ﮐﺎوﺳﯽ‪ ،‬م و رﺣﯿﻤﯽ‪ ،‬م‪ . 1382 .‬ﺑﺮرﺳﯽ ﺗﺄﺛﯿﺮ ﮐﺎرﺑﺮد زﺋﻮﻟﯿﺖ ﺑﺮ ﻋﻤﻠﮑﺮد ﺑﺮﻧﺞ در دو ﺧﺎك ﺳﺒﮏ و ﺳﻨﮕﯿﻦ‪ ،‬ﻣﻮﺳﺴﻪ ﺗﺤﻘﯿﻘﺎت ﺑﺮﻧﺞ‬ ‫ﮐﺸﻮر‪ ،‬ﮔﺰارش ﻧﻬﺎﯾﯽ‪25 ،‬ص‪.‬‬ ‫‪ .36‬ﮐﺮﻣﻼﭼﻌﺐ‪ ،‬ع‪ ،.‬م‪.‬ح‪ ،‬ﻗﺮﯾﻨﻪ‪ ،.‬ع‪ ،‬ﻗﺮﯾﻨﻪ‪ ،.‬م‪.‬ر‪ ،‬ﻣﺮادي و ق‪ ،‬ﻓﺘﺤﯽ‪ .1393 .‬ﺗﺄﺛﯿﺮ ﮐﺎرﺑﺮد ﺳﯿﻠﯿﺴﯿﻢ ﺑﺮ ﺻﻔﺎت ﻓﯿﺰﯾﻮﻟﻮژﯾﮑﯽ رﺷﺪ ﮔﻨﺪم‬ ‫)‪ (Triticum aestivum L.‬ﺗﺤﺖ ﺷﺮاﯾﻂ ﺗﻨﺶ ﺧﺸﮑﯽ آﺧﺮ ﻓﺼﻞ‪ .‬ﻧﺸﺮﯾﻪ ﺑﻮمﺷﻨﺎﺳﯽ ﮐﺸﺎورزي‪.433 -442 :(4) 5 ،‬‬ ‫‪ .37‬ﮐﺮﯾﻤﯽ‪ ،‬م‪ ،.‬غ‪.‬ر‪ .‬ﺛﻮاﻗﺒﯽ و ب‪ .‬ﻣﺘﺸﺮعزاده‪ . 1391 .‬ﺑﺮرﺳﯽ ﺗﻐﯿﯿﺮات ﻏﻠﻈﺖ ﻓﻠﺰات ﺳﻨﮕﯿﻦ )ﺳﺮب‪ ،‬روي‪ ،‬ﻣﻨﮕﻨﺰ و اﻫﻦ( در ﺧﺎك و‬ ‫ﺷﺎﺧﺴﺎرهﻫﺎي ﺷﺎﻫﯽ )‪ (Lepidium sativum‬ﺗﺤﺖ ﺗﯿﻤﺎرﻫﺎي اﻟﯽ و ﻣﻌﺪﻧﯽ‪ .‬ﻣﺠﻠﻪ ﻋﻠﻮم ﻣﺤﯿﻄﯽ‪.14-28 :(4)9 .‬‬ ‫‪ .38‬ﮔﻠﭽﯿﻦ‪ ،‬ا و س‪ .‬ﺷﻔﯿﻌﯽ‪ ،1385 ،‬ﺑﺮرﺳﯽ ﺗﺄﺛﯿﺮ ﮐﺎرﺧﺎﻧﻪ ﺳﺮب و روي زﻧﺠﺎن ﺑﺮ آﻟﻮدﮔﯽ ﺧﺎك ﺗﺎ ﺷﻌﺎع ‪ 10‬ﮐﯿﻠﻮﻣﺘﺮي ﮐﺎرﺧﺎﻧﻪ‪ ،‬ﻫﻤﺎﯾﺶ‬ ‫ﺧﺎك‪ ،‬ﻣﺤﯿﻂزﯾﺴﺖ و ﺗﻮﺳﻌﻪ ﭘﺎﯾﺪار‪ ،‬ﮐﺮج‪ ،‬ﭘﺮدﯾﺲ ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ داﻧﺸﮕﺎه ﺗﻬﺮان‪.‬‬ ‫‪ .39‬ﮔﻠﭽﯿﻦ‪ ،‬ا‪ .1382 .‬ﻓﻌﺎﻟﯿﺖﻫﺎي ﺻﻨﻌﺘﯽ و آﻟﻮدﮔﯽ ﺧﺎكﻫﺎي ﮐﺸﺎورزي ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ‪ .‬ﻣﺠﻤﻮﻋﻪ ﻣﻘﺎﻻت ﻫﺸﺘﻤﯿﻦ ﮐﻨﮕﺮه ﻋﻠﻮم‬ ‫ﺧﺎك اﯾﺮان‪ .‬رﺷﺖ‪ 776-779 :2 .‬ص‪.‬‬ ‫‪ .40‬ﻃﯿﻔﻮر‪ ،‬ش‪ ،.‬ص‪ .‬ﺧﻠﯿﻠﯿﺎن‪ ،.‬س‪.‬ا‪ .‬ﺟﻮادي و س‪.‬ح‪.‬ﻣﺘﯿﻦ ﺧﻮاه‪ .1388 .‬ﺗﺤﻠﯿﻞ ﺳﯿﺎﺳﺖ ﮔﺬاري اﺳﺘﻔﺎده ي ﭼﻨﺪ ﻣﻨﻈﻮره از ﻣﺮاﺗﻊ‬ ‫ﻓﺮﯾﺪوﻧﺸﻬﺮ اﺻﻔﻬﺎن و ﺗﻌﯿﯿﻦ ﻋﻮاﻣﻞ ﻣﻮﻓﻘﯿﺖ آن‪ .‬ﺷﺸﻤﯿﻦ ﮐﻨﻔﺮاﻧﺲ اﻗﺘﺼﺎد ﮐﺸﺎورزي اﯾﺮان‪.‬‬ ‫‪ .41‬ﻣﺘﺸﺮعزاده‪ ،‬ب و غ‪.‬ر‪ .‬ﺛﻮاﻗﺒﯽ‪ .1394 .‬ﮔﯿﺎهﭘﺎﻻﯾﯽ ﯾﺎ ﭘﺎﻻﯾﺶ ﺳﺒﺰ‪ .‬اﻧﺘﺸﺎرات داﻧﺸﮕﺎه ﺗﻬﺮان‪ 283 .‬ﺻﻔﺤﻪ‪.‬‬ ‫‪ .42‬ﻣﺘﺸﺮعزاده‪ ،‬ب‪ ،.‬غ‪.‬ر‪ .‬ﺛﻮاﻗﺒﯽ‪ ،.‬ح‪.‬ع‪ .‬ﻋﻠﯿﺨﺎﻧﯽ و ح‪.‬ﻣﯿﺮﺳﯿﺪﺣﺴﯿﻨﯽ‪ .1387 .‬ﺷﻨﺎﺳﺎﯾﯽ ﮔﯿﺎﻫﺎن ﺑﻮﻣﯽ و ﺑﺎﮐﺘﺮﯾﻬﺎي ﻣﻘﺎوم ﺑﻪ ﻓﻠﺰات‬ ‫ﺳﻨﮕﯿﻦ در اراﺿﯽ اﻃﺮاف ﻣﻌﺪن ﺳﺮب و روي ﻋﻤﺎرت ﺷﺎزﻧﺪ اراك ﺑﻪﻣﻨﻈﻮر اﺳﺘﻔﺎده در ﮔﯿﺎهﭘﺎﻻﯾﯽ‪ .‬ﻣﺠﻠﻪ ﺗﺤﻘﯿﻘﺎت آب و ﺧﺎك اﯾﺮان‪.‬‬ ‫‪.163-174 :(1) 39‬‬ ‫‪ .43‬ﻣﺤﻘﻖ‪ ،‬پ‪ ،.‬م‪ ،‬ﺷﯿﺮواﻧﯽ و س‪ ،‬ﻗﺎﺳﻤﯽ‪ .1389 .‬ﺗﺄﺛﯿﺮ ﮐﺎرﺑﺮد ﺳﯿﻠﯿﺴﯿﻢ ﺑﺮ رﺷﺪ و ﻋﻤﻠﮑﺮد دو رﻗﻢ ﺧﯿﺎر در ﺳﯿﺴﺘﻢ ﻫﯿﺪروﭘﻮﻧﯿﮏ‪ .‬ﻋﻠﻮم و‬ ‫ﻓﻨﻮن ﮐﺸﺖﻫﺎي ﮔﻠﺨﺎﻧﻪاي‪.35-39 :(1)1 .‬‬ ‫‪ .44‬ﻣﺤﻤﺪي‪ ،‬آ‪ .‬و م‪.‬ع‪ .‬ﺑﻬﻤﻨﯿﺎر‪ .1393 .‬اﺛﺮ ﺗﺠﻤﻌﯽ ﮐﺎرﺑﺮد ﺳﻪ ﺳﺎﻟﻪ ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي و ﮐﻤﭙﻮﺳﺖ ﻫﻤﺮاه ﺑﺎ ﮐﻮد ﺷﯿﻤﯿﺎﯾﯽ ﺑﺮ ﻣﯿﺰان‬ ‫ﻏﻠﻈﺖ ﺑﺮﺧﯽ ﻋﻨﺎﺻﺮ ﺳﻨﮕﯿﻦ در اﻧﺪامﻫﺎي ﻣﺨﺘﻠﻒ ﮔﯿﺎه ﺗﺤﺖ ﮐﺸﺖ ﺑﺮﻧﺞ ‪.‬ﻣﺠﻠﻪ ﻋﻠﻮم آب و ﺧﺎك ‪ -‬ﻋﻠﻮم و ﻓﻨﻮن ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ‬ ‫ﻃﺒﯿﻌﯽ‪.173 -182 :(68)18 .‬‬ ‫‪ .45‬ﻣﺤﻤﺪي ﺗﺮﮐﺎﺷﻮﻧﺪ‪ ،‬ع و ﺑﺮﯾﻤﻮﻧﺪي‪ ،‬ا‪ .‬ر‪ .1387 .‬اﺛﺮات ﻣﻼس ﻧﯿﺸﮑﺮ ﺑﺮ ﺧﺼﻮﺻﯿﺎت ﺷﯿﻤﯿﺎﯾﯽ ﺧﺎكﻫﺎي آﻫﮑﯽ‪ .‬ﭘﮋوﻫﺶ و ﺳﺎزﻧﺪﮔﯽ‪.‬‬ ‫زراﻋﺖ و ﺑﺎﻏﺒﺎﻧﯽ‪ .‬ﺷﻤﺎره ‪.81‬‬ ‫‪ .46‬ﻣﺤﻤﻮدي ش‪ ،.‬ن‪ .‬ﻧﺠﻔﯽ و ع‪ .‬رﯾﺤﺎﻧﯽﺗﺒﺎر‪ .1393 .‬ﺗﺄﺛﯿﺮ رﻃﻮﺑﺖ ﺧﺎك و ﮐﻤﭙﻮﺳﺖ ﻟﺠﻦ ﻓﺎﺿﻼب ﺑﺮ ﺷﺎﺧﺺ ﮐﻠﺮوﻓﯿﻞ ﺑﺮگ و ﺑﺮﺧﯽ‬ ‫وﯾﮋﮔﯽﻫﺎي رﺷﺪ ﮔﯿﺎه ﯾﻮﻧﺠﻪ در ﺷﺮاﯾﻂ ﮔﻠﺨﺎﻧﻪاي‪ .‬ﻣﺠﻠﻪ ﻋﻠﻮم و ﻓﻨﻮن ﮐﺸﺖﻫﺎي ﮔﻠﺨﺎﻧﻪاي‪.218 -205: (20) 5 .‬‬ ‫‪ .47‬ﻣﺼﻠﺤﯽ‪ ،‬ا‪ ،.‬م‪ .‬ﻓﮑﺮي و ا‪ .‬ﻓﺘﻮت‪ .1393 .‬اﺛﺮات ﮐﻤﭙﻮﺳﺖ زﺑﺎﻟﻪ ﺷﻬﺮي و ‪ EDTA‬را ﺑﺮ ﮔﯿﺎهﭘﺎﻻﯾﯽ ﺳﻄﻮح ﻣﺨﺘﻠﻒ ﺳﺮب و‬ ‫ﮐﺎدﻣﯿﻢ ﺗﻮﺳﻂ آﻓﺘﺎﺑﮕﺮدان‪ .‬ﻧﺸﺮﯾﻪ ﭘﮋوﻫﺸﻬﺎي ﺧﺎك)ﻋﻠﻮم ﺧﺎك و آب(‪.421 -431 :(2)28 .‬‬ ‫‪ .48‬ﻣﻈﻔﺮﯾﺎن‪ ،‬م‪ ،.‬ز‪ .‬ﻋﻔﯿﻔﯽﭘﻮر و م‪ .‬ﺣﻘﯿﻘﯽ‪ . 1390 .‬اﺛﺮ ﻧﺎﻧﻮﺳﯿﻠﯿﺴﯿﻢ و ﺳﯿﻠﮑﺎت ﭘﺘﺎﺳﯿﻢ ﺑﺮ ﭘﺮاﯾﻤﯿﻨﮓ ﺑﺬرﻫﺎي ﮔﻮﺟﻪﻓﺮﻧﮕﯽ‪ .‬ﻫﻤﺎﯾﺶ‬ ‫ﻓﻨﺎوريﻫﺎي ﻧﻮﯾﻦ در ﮐﺸﺎورزي‪ .‬داﻧﺸﮕﺎه زﻧﺠﺎن‪.496 -498 ،‬‬ ‫‪ .49‬ﻣﻘﯿﻤﯽ‪ .‬ج‪ .1384 .‬ﻣﻌﺮﻓﯽ ﺑﺮﺧﯽ ﮔﻮﻧﻪﻫﺎي ﻣﻬﻢ ﻣﺮﺗﻌﯽ ﻣﻨﺎﺳﺐ ﺑﺮاي ﺗﻮﺳﻌﻪ و اﺻﻼح ﻣﺮاﺗﻊ اﯾﺮان‪ .‬اﻧﺘﺸﺎرات آرون‪ 670 .‬ص‪.‬‬ ‫‪ .50‬ﻣﻮﺳﻮي‪ ،‬س‪.‬ع‪.‬ر‪ .1390 .‬ﻣﺪﯾﺮﯾﺖ ﺑﻬﯿﻨﻪ اراﺿﯽ ﺑﺎ ﺗﺎﮐﯿﺪ ﺑﺮ ارزش اﻗﺘﺼﺎدي ﮐﺎرﮐﺮدﻫﺎي اﮐﻮﺳﯿﺴﺘﻤﯽ و ﺑﺎ اﺳﺘﻔﺎده از ﯾﮏ ﺳﺎﻣﺎن‬ ‫ﭘﺸﺘﯿﺒﺎن ﺑﺮﻧﺎﻣﻪرﯾﺰي‪ .‬رﺳﺎﻟﻪ دﮐﺘﺮي ﻣﺮﺗﻌﺪاري‪ ،‬داﻧﺸﮑﺪه ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ داﻧﺸﮕﺎه ﺗﻬﺮان‪ 318 .‬ﺻﻔﺤﻪ‪.‬‬

‫‪202‬‬

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

.(‫ ارزﯾﺎﺑﯽ و ارزﺷﮕﺬاري اﻗﺘﺼﺎدي ﭘﺮوژهﻫﺎي اﺣﯿﺎﯾﯽ در اﮐﻮﺳﯿﺴﺘﻢﻫﺎي ﻣﺮﺗﻌﯽ ﮐﺸﻮر )ﺣﻮزه آﺑﺨﯿﺰ ﺗﻬﻢ زﻧﺠﺎن‬.1392 .‫ ح‬،‫ ﯾﮕﺎﻧﻪ‬.51 .‫ ﺻﻔﺤﻪ‬316 .‫ داﻧﺸﮑﺪه ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ داﻧﺸﮕﺎه ﺗﻬﺮان‬،‫رﺳﺎﻟﻪ دﮐﺘﺮي ﻣﺮﺗﻌﺪاري‬ 52. Ahmad, R., S.H.A. Zaheer and I.S. Ismail. 1992. Role of silicon in salt tolerance of wheat (Triticom aestivum L.). Plant Science, 85:43-50.

53. Ait Ali., N. M.P. Bernal and M. Ater. 2004. Tolerance and bioaccumulation of Cd by Phragmites australisgrown in the presence of elevated concentration of cadmium, copper, and zinc. Aquat. Bot, 80:163-176. 54. Alkorta, I., J. Hernandez-Allica., J.M. Becerril., I. Amezaga., I. Albizu and C. Garbisu. 2004. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Reviews in Environmental Science and Bio/Technology, 3: 55–70.

55. Alloway, B.J. 1990. Heavy metals in soils. John Wiley and Sons, Inc. New York, ISBN 0470215984. 56. Alloway, B.J. 2013. Heavy metals in soils. Springer Science+Business Media Dordrecht. 104p. 57. Alvarenga, P., A. de Varennes and A.C. Cunha-Queda. 2014. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil. International Journal of Phytoremediation, 16:138–154. 58. APHA, AWWA, WEF. 1998. Standard methods for the examination of water and wastewater. Washington, DC 20005. 19 pp. 59. Ashraf, M. A., Maah, M. J. and Yusoff, I. 2012. Bioaccumulation of Heavy Metals in Fish Species Collected From Former Tin Mining Catchment. Int. J. Environ. Res., 6 (1): 209-218. 60. Ames LL: The Cation Sieve Properties of Clinoptilolite. In: Minerals in Soil Environments. Dixon. J. B., and Weed, S. B. (2rd ed). SSSA Book Series. Madison, WI. 1960. 61. Atagana, HI. 2011. The potential of Chromolaena odorata (L.) to decontaminate used engine oil impacted soil under greenhouse conditions. . International Journal of Phytoremediation, 13(7): 627–641. 62. Azevedo, H., C. Gomes., G. Pinto and C. Santos. 2005. Cadmium Effects in Sunflower: Nutritional Imbalances in Plants and Calluses. Journal of Plant Nutrition, 28: 2221–2231 63. Baker, A.J.M., R.D Reeves and S.P. McGrath.1991.In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants - A feasibility study. Hinchee, R.E. and Olenbuttel, R.F., Eds., In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, Butterworth-Heinemann, London, 600-605. 64. Balsamo, R.A., W.J. Kelly., J.A. Satrio., M. Nydia Ruiz-Felix., M. Fetterman., R. Wynn and K. Hagel. 2015. Utilization of Grasses for Potential Biofuel Production and Phytoremediation of Heavy Metal Contaminated Soils. International Journal of Phytoremediation, 17: 448–455. 65. Baran, A., G. Cayci, C. Kutuk, R. Hartmann. 2001. The effect of grape marc as growing medium on growth of hypostases plant. Bioresour Technol, 78, 103– 106. 66. Bewley, J.D. 1997. Seed Germination and Dormancy. The Plant Cell. 9: 1055-1066. 67. Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman and Y. Kapulnik. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol, 31:860–865. 68. Blaylock, MJ and JW. Huang. 2000. Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York. 69. Bonanno, G. and R. Lo Giudice. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10: 639-645. 70. Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A and Morel JL 2006 Heavy metal contamination from mining sites in South Morocco: Assessment of metal accumulation and toxicity in plants. Chemosphere 63: 811-817.

203

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

71. Bradl, HB. 2004. Prediction of the adsorption equilibrium of mixtures composed of supercritical gases. J Colloid Interface Sci, 277:1–18. 72. Cakmak, I and H. Marshner. 1993. Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads, 133–137. 73. Chang, AC., AL. Page and JE. Warneke. 1987. Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. J Environ Qual, 16:217-221. 74. Chaudhry, Q., P. Schröder and D. Werck-Reichhart. 2002. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci and Pollut Res, 9 (1): 4- 17. 75. Chayapan, P., M. Kruatrachue., M. Meetam and P. Pokethitiyook. 2015. Effects of Amendments on Growth and Uptake of Cd and Zn by Wetland Plants, Typha angustifolia and Colocasia esculenta from Contaminated Sediments. International Journal of Phytoremediation. Accepted. 76. Cheraghi, M., B. Lorestani., N. Khorasani., N. Yousefi. and M. Karami. 2011. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals, Biological Trace Element Research, 144(1-3): 1133-1141. 77. Cherif, M., N. Benhamou, J.G. Menzies and R.R. Bélanger. 1992. Silicon-induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol, 41: 411-425. 78. Chopra, BK., S. Bhat and IP. Mikheenko. 2007. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci Total Environ, 378: 331-342. 79. Clemens, S., M.G. Palmgren and U. Krämer. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends in plant science, 7(7): 309-315. 80. Cunningham, SD., WR. Berti and JW.Huang, 1995. Phytoremediation of contaminated soils. Trends Biotechnol, 13: 393–397. 81. Davies, B.E. and L.H.P. Jones. 1988. “Micronutrients and toxic elements,” in Russell’s Soil Conditions and Plant Growth,A. Wild, Ed., pp. 781–814, John Wiley & Sons; Interscience, New York, NY, USA, 11th edition. 82. Day, P.R., 1982. Particle Fractionation and Particle-Size Analysis. In: Methods of Soil Analysis Part 2, Page, A.L., R.H. Miller and D.R. Keeney (Eds.). Chemical and Microbiological Properties Soil Science Society of American, Inc., Madison, WI., pp: 545-567. 83. Du Laing, G., F.M.G. Tack and M.G. Verloo. 2003. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal. Chim. Acta 497: 191-198. 84. Dzantor, EK and RG. Beauchamp. 2002. Phytoremediation, Part I: fundamental basis for the use of plants in remediation of organic and metal contamination. Environ Prac, 4:77–87. 85. Ebbs, SD and LV. Kochian. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual, 26:776–781. 86. Ebrahimi, M. and F. Madrid Díaz. 2014. Use of festuca ovina l. in chelate assisted phytoextraction of copper contaminated soils. Journal of Rangeland Science,4(3): 171-181. 87. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91, 1117. 88. Epstien, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50: 641-664.Fein JB, Boily JF, Güclü K, Kaulbach E (1999) Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces. Chem Geol, 162:33–45.

204

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

89. Haden, V.R., S.De Gryze and N. Nelson. 2014. Methodology for Compost Addions to Grazed Grasslands. Robert Parkhurst, Ashley Rood*, and Sara Snider, Environmental Defense Fund. 50 pp. 90. FengPeng, F., Y. Hui Song, P. Yuan, X. Cui and G. Qiu, 2009. The remediation of heavy metals contaminated sediment. J. Hazardous Mater, 161: 633-640. 91. Fu, J., Q. Zhou., J. Liu., W. Liu., T. Wang. and Q. Zhang. 2008. High levels of heavy metals in rice from a typical e-Waste recycling area in southeast China and its potential risk to human health. Chemosphere, 71:1269-1275. 92. Gadde, R.R. and H.A. Laitinen. 1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides, Anal. Chem, 46. Garcia-Sanchez, A., A. Alastuey and X. Querol. 1999. Heavy metal adsorption by different minerals: Application to the remediation of polluted soils. Sci. Total Environ. 242: 179-188. 93. García, C., T. Hernández., J.A. Pascual., J.L. Moreno-Ortego and M. Ross. 1999. Soil microbial activity as biomarker of degradation and rehabilitation processes. In: R. P. Dick (ed). Enzymes in the Environment: Activity Ecology & Applications. Granada, Spain, p. 124. 94. Gerhardt KE, Huanga XD, Glicka BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176: 20-30. 95. Golubev, I.A. 2013. Handbook of Phytoremediation. Nova Science Publishers, Inc. New York. 840P. 96. Grim, R.E. 1968. Clay Mineralogy. 2nd Edition. Mc Graw-Hill Book Co. New York. 201: 3240. 97. Gupta, D.K., F.J. Corpas and JM. Palma. 2013. Heavy Metal Stress in Plants. Springer Heidelberg New York Dordrecht London. Library of Congress Control Number: 2013944774. ISBN 978-3-642-38468-4 DOI 10.1007/978-3-642-38469-1. 245p. 98. GWRTAC. 1997. “Remediation of metals-contaminated soils and groundwater,” Tech. Rep. TE-97-01, GWRTAC, Pittsburgh, Pa, USA, GWRTAC-E Series. 99. Haden VR., SD, Gryze and N Nelson. 2014. Mthodology for compost additions to grazed grasslands. American Carbon Registry, 50 p. 100. Hammer, D and C. Keller. 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality, 31: 1561–1569. 101. Henry, G.R. 2000. An Overview of the Phytoremediation of Lead and Mercury. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation office Washington, D.C. 55 p. 102. http://www.EnvironmentalChemistry.com 103. Hubbard, R.K., D.D. Bosch., L.K. Marshall., T.C. Strickland., D. Rowland., T.S. Griffit., C.W. Honeycutt., S.L. Albrecht., K.R. Sistani., h.a. Torbert., B.J. Wienhold., B.L. Woodbury and J.M. Powell. 2008. Nitrogen mineralization from broiler litter applied to southeastern Coastal Plain soils. Jouran of soil and water conservation, 63: 182-192. 104. Jarrah, M., R. Ghasemi-Fasaei, N. Karimian and A. Ronaghi. 2014. Investigation of Arbuscular mycorrhizal Fungus and EDTA Efficiencies on Lead Phytoremediation by Sunflower in a Calcareous Soil. Bioremediation Journal, 18(1):71–79. 105. Jarrah, M., R. Ghasemi-Fasaei., N Karimian and A. Ronaghi. 2014. Investigation of Arbuscular mycorrhizal Fungus and EDTA Efficiencies on Lead Phytoremediation by Sunflower in a Calcareous Soil. Bioremediation Journal, 18(1):71–79. 106. Jing, J. and T.J. Logan. 1992. Effect of sewage sludge cadmium concentration on Chemical extractability and plant uptake. J. environ Qual, 21:73-81

205

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

107. Kabata, A. and H. Pendias. 2001. Trace Elements in Soils and Plants. Third Edition, CRC Press. 108. Kabata, A. and H. Pendias. 2011. Trace Metals in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 2nd edition. 109. Kamenidou S., T.J. Cavins and S. Marek. 2008. Silicon supplements affect horticultural traits of greenhouse produced ornamental sunflowers. Hort. Sci., 43: 236–239. 110. Karaka, A. 2004. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma, 122: 297–303. 111. Kärenlampi., S, H. Schat., J. Vangronsveld., JAC.Verkleij van der., D. Lelie., M. Mergeay and AI. Tervahauta. 2000. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environment Pollution, 7:225–231 112. Kaya, C., L. Tuna and D. Higgs. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown.under water - stress condition. Journal of Plant Nutrition, 29: 1469-1480. 113. Kent, DB., RH. Abrams. JA. Davis and DR. Coston Le Blanc. 2000. Unsaturated-zone wedge beneath a large, natural lake. Water Resour Res, 36:3401–3409 114. Kloke, A. 1980. Content of arsenic, cadmium chromium, fl uorine, lead, mercury and nickel in plants grown on contaminated soil, paper presented at United Nations-ECE Symp. on Effects of Air-borne Pollution on Vegetation, Warsaw, August 20, 192. 115. Kulli, B., M. Balmer., R. Krebs., B. Lothenbach., G. Geiger and R. Schulin. 1999. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J. Environ. Qual, 28: 1699–1705 . 116. Kumar, A. and S. Kumar Maiti. 2015. Effect of Organic Manures on the Growth of Cymbopogon citratus and Chrysopogon zizanioides for the Phytoremediation of ChromiteAsbestos Mine Waste: A Pot Scale Experiment. International Journal of Phytoremediation, 17: 437–447. 117. Larney, F.J., A.F. Olsen., J.J. Miller., P.R. DeMaere., F. Zvomuya., T.A. McAllister. 2008. Physical and Chemical changes during composting of wood chip-bedded and straw-bedded beef cattle feedlot manure. Journal of environmental quality, 37: 725-735. 118. Le, V.N. Y. Rui., X. Gui., X. Li., S. Liu and Y. Hang. 2014. Uptake, transport, distribution and Bio-effects of SiO 2 nanoparticles in Bt-transgenic cotton. Journal of Nanobiotechnology, 1-15. 119. Le, V.N. Y. Rui., X. Gui., X. Li., S. Liu and Y. Hang. 2014. Uptake, transport, distribution and Bio-effects of SiO 2 nanoparticles in Bt-transgenic cotton. Journal of Nanobiotechnology, 1-15. 120. Lebeau, T., A. Braud and K. Jézéquel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ Poll, 153: 497-522. 121. Lee, CW., JM. Choi and CH. Pak. 1996. Micronutrient toxicity in seed geranium (Pelargonium 9 hortorum Baley). J Am Soc Horti Sci, 121:77–82 122. Lefcourt, A and M. Meisinger. 2001. Effect of adding alum and zeolite to dairy slurry on ammonia volatilization and chemical composition. Journal of Dairy Science, 84: 1814-1824. 123. Li, X., S.L. Lee., S.C. Wong., W. Shi and I. Thornton. 2004. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129:113124. Liang, Y., W. Sun., Y-G. Zhu and P. Christie. 2007. Mechanisms of siliconmediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147: 422– 428. 125. Lindsay, W.L and W.A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J, 42:421-428.

206

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

126. Lingua, G., C. Franchin., V. Todeschini., S. Castiglione., S. Biondi., B. Burlando., V. Parravicini., P. Torrigiani and G. Berta. 2008. Arbuscularmycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environmental Pollution, 153:137-147. 127. Liu, J., H. Cai., C. Mei and M. Wang. 2015. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front. Environ. Sci. Eng, 1-7. 128. Loeppert, R.L. and W.P. Inskeep.1996. Iron. In: Sparks, D.L. (ed.) Methods of soil analysis Part 3. 3rd ed. Madison, WI: SSSA, ASA. 639-664. 129. Lorestani, B., M. Cheraghi and N. Yousefi. 2011. Phytoremediation Potential of Native Plants Growing on a Heavy Metals Contaminated Soil of Copper mine in Iran. World Academy of Science, Engineering and Technology, 5: 5-24. 130. Lu, Y., X. Li., M. He and F. Zeng. 2013. Behavior of native species Arrhenatherum elatius (poaceae) and Sonchus transcaspicus (asteraceae) exposed to a heavy metal-polluted field: plant metal concentration, phytotoxicity, and detoxification responses. International Journal of Phytoremediation, 15:924–937. 131. Ma, J.H., C.J. Chu and J. Li. 2009. Heavy metal pollution in soils on railroad side of Zhengzhou-Putian Section of Longxi-Haizhou railroad, China. Pedosphere, 19(1): 121-128. 132. Ma, T.T., P. Christie., Y. Teng and Y.M. Luo. 2013. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. International Journal of Phytoremediation, 15:154–167. 133. Mahara, Y., T. Kubota., R. Wakayama., T. Nakano-Ohta and T. Nakamura. 2007. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics. Science of the Total Environment, 387: 220–227. 134. Maiti, RK., JLH. Pinero., JAG. Oreja and DL. Santiago. 2004. Plant based bioremediation and mechanisms of heavy metals tolerance of plants: a review. Proc. Indian Natl. Sci, (1):1-12. 135. Manahan, S.E. 2003. Toxicological Chemistry and Biochemistry, CRC Press, Limited Liability Company (LLC), 3rd edition. 136. Mangkoedihardjo, S. and A. Surahamaida. 2008. Jatropha CurcasL. for phytoremediation of Lead and Cadmium polluted soil. World Appl Sci J, 4(4): 519–522. 137. Marschner, H. 1995. Mineral nutrition of higher plants. Oxford University Press, London. 138. Martinez, CE. and HL. Motto. 2000. Solubility of lead, zinc and copper added to mineral soils. Environ Pollut, 107:153–158. 139. Miller, R.R. 1996. Phytoremediations. Ground-Water Remediation Technologies Analysis Center (GWRTAC)-Technology Overview Report TO-96-03, GWRTAC-O-Series . 140. Miller, RR. 1996. Phytoremediations. Ground-Water Remediation Technologies Analysis Center (GWRTAC)-Technology Overview Report TO-96-03, GWRTAC-O-Series. 141. Mok, H.F., D, Gregory., R. Majumder., A.J.M. Baker., W. Scott Laidlaw and S.K. Arndt. 2013. Native Australian species are effective in extracting multiple heavy metals from biosolids. International Journal of Phytoremediation, 15:615–632. 142. Morzck, E. and NA. Funicclli. 1982. Effect of lead and on germination of Spartina alterniflora Losiel seeds at various salinities. Environ Exp Bot, 22: 23–32. 143. Muddarisna, N., B.D. Krisnayanti, S.R. Utami and E. Handayanto. 2013. The potential of wild plants for phytoremediation of soil contaminated with mercury of gold cyanidation tailings. IOSR Journal of Environmental Science, Toxicology and Food Technology, 4(1): 15-19. 144. Nagajyoti, PC., KD. Lee and TVM. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett, 8(3):199–216.

207

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

145. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. In: Sparks, D.L. (ed.) Methods of soil analysis. Part 3. 3rd ed. Madison, WI: SSSA, ASA. 9611010. 146. Neugschwandtner, R.W., P. Tlustos, M. Komarek and J. Szakova. 2008. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma 144:446–454. 147. NSC. 2009. Lead Poisoning, National Safety Council, http://www.nsc.org/news resources/Resources/Documents/Lead Poisoning.pdf. 148. Ostos, J.C., R. Lopez-Garrido, J.M. Murillo and R. Lopez. 2008. Substitution of peat for municipal solid waste-and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrub Pistaci lentiscus L. Bioresour Technol, 99: 17931800. 149. Pais, I. and Jr. Jones. 2000. The Handbook of Trace Elements. CRC Press, Boca Raton, FL, USA. 85 p. 150. Parizanganeh, A., P. Hajisoltani and A. Zamani. 2010. Assessment of heavy metal pollution in surficial soils surrounding Zinc Industrial Complex in Zanjan-Iran. Procedia Environmental Sciences, 2: 162–166. 151. Pierce, B.L., E.F. Redente., K.A. Barbarick, R.B. Brobst and P. Hegeman. 1997. Journal of Environmental Quality, 27(4): 789-794. 152. Pietramellara, G., P. Nannipieri and G.Renella. 2009. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicology and Environmental Safety, 72, 115-119. 153. Prasad, M.N.V. 2004. Heavy Metal Stress in Plants. From Biomolecules to Ecosystems. 2th edition. ISBN 978-3-642-07268-0. 476p. 154. Pulford, ID. and C. Watson. 2003. Phytoremediation of heavy metal contaminated land by tree a review. J. Environmental. INT, 29: 529-40. 155. Raskin, I. and B.D. Ensley. 2000. Phytoremediation of Toxic Met- als:Using Plants to Clean Up the Environment, John Wiley & Sons, New York, NY, USA. 156. Redon, P.O., TB. Guiristain and C. Leyval. 2008. Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem, 40: 2710-2712. 157. Reeves, R.D. and R.R. Brooks. 1983. Hyperaccumulation of Lead and Zinc by Two Metallophytes from Mining Areas of Central Europe. Environ. Pollut. Ser. A, 31:277285. 158. Roongtanakiat, N. 2009. Vetiverphytoremediation for heavy metal decontamination. Technical Bulletin, 1: 1-20. 159. Rotkittikhun, R., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A and Baker AJM. 2006. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ. Pollut. 144: 681- 688. 160. Ryals, R. and W.L. Silver. 2013. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. Ecological Applications 23:46–59. 161. Saba, G., A.H. Parizanganeh., A. Zamani and J. Saba. 2015. PhytoremeDiation of Heavy Metals Contaminated Environments: Screening for Native Accumulator Plants in Zanjan-Iran. Int. J. Environ. Res., 9(1): 309-316. 162. Sabir, M., A. Ali., M. Z. Rehman and K.R. Hakeem. 2015. Contrasting effects of farmyard manure (fym) and compost for remediation of metal contaminated soil. International Journal of Phytoremediation, 17: 613–621.

208

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

163. Sabir, M., A. Ali., M. Zia-Ur-rehman and K. R. Hakeem. 2015. Contrasting Effects of Farmyard Manure (FYM) and Compost for Remediation of Metal Contaminated Soil. International Journal of Phytoremediation. 17: 613–621. 164. Safari Sinegani, A.A. and F. Khalilikhah. 2008. Phytoextraction of lead by Helianthus annuus: effect of mobiliing agent application time. Lant Soil Environ, 54(10): 434-440. 165. Salt, DE., M. Blaylock., PBAN. Kumar., V. Dushenkov., BD. Ensley., I. Chet and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnol, 13: 468–475. 166. Salt, DE., RD. Smith and I. Raskin. 1998. Phytoremediation.Annu. Rev. Plant Physiol. Plant Mol. Biol, 49: 643–668. 167. Schmidt, U. 2003. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation and leaching of heavy metals. J Environ Qual, 32: 1939–1954. 168. Sekabira, K., H. Oryem–Origa., G. Mutumba E., Kakudidi and T. A. Basamba. 2011. Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodon dactylon (L) growing in Urban stream sediments. International Journal of Plant Physiology and Biochemistry, 3(8): 133-142. 169. Serbaji, M. M., Azri, C. and Medhioub, K. 2012. Anthropogenic Contributions to Heavy Metal Distributions in the Surface and Sub-surface Sediments of the Northern Coast of Sfax, Tunisia. Int. J. Environ. Res., 6 (3), 613-626.

170. Sharifi, Z., A.A. Safari Sinegani and S. Shariati. 2012. Potential of Indigenous Plant Species for the Phytoremediation of Arsenic Contaminated Land in Kurdistan (Iran). Soil and Sediment Contamination, 21:557–573

171. Sharma, R.K., M. Agrawal and F.M. Mashall. 2009. Heavy metals in vegetables collected from production and market site of a tropical urban area of India. J. food chem. Toxicol, 47: 583-591. 172. Shen, Z.G., X.D. Li., C.C. Wang., H.M. Chen and H. Chua. 2002. Lead phytoextraction from contaminated soil with high biomass plant species. J. Environ. Qual, 31: 1893–1900. 173. Shuman, L.M. 1999. Organic waste amendments effect on zinc fractions of two soils. J. Environ.Qual, 28: 1442-1447. 174. Shuman, L.M., Dudka, S., and Das, K. 2002. Cadmium forms and plant availability in compost-amended soil. Commun. Soil Sci. Plant Anal. 33: 737-748. 175. Smolinska, B. 2015. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil. Environ Sci Pollut Res. 22:3528–3537. 176. Squires, V., Hua, L., Li, G and Zhang, D. 2010. Towards Sustainable Use of Rangelands in North-West China. Springer Science+Business Media B.V. 236 pp. 177. Takahashi, E., J.F. Ma & Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments in Agriculture and Food Chemistry, 2: 99–122. 178. Thai Danh, Luu., N. Foster., P. Truong and R. Mammucari. 2014. A critical review of the Arsenic uptake mechanisms and phytoremediation potential of Pterisvittata. International Journal of Phytoremediation, 16: 429–453. 179. Thomas, G.W.1965. Soil pH and soil acidity. In: Sparks, D.L. (ed.) Methods of soil analysis. Part 3. 3rd ed. Madison, WI: SSSA, ASA. pp. 475–490. 180. USEPA, 1996. Report: recent Developments for In Situ Treatment of Metals contaminated Soils, U.S. Environmental Protection Agency, Once of Solid Waste and Emergency Response. 181. Vandevivere, P., H. Saveyn., W. Verstraete., W. Feijtel and D. Schowanek. 2001. Biodegradation of metal-[S,S]-EDDS complexes. Environ. Sei. Technol, 35: 1765-1770.

209

‫ﻣﻬﺪي ﻣﻌﻤﺮي‬

‫ارزﯾﺎﺑﯽ ﺗﻮاﻧﻤﻨﺪي ﮔﯿﺎﻫﺎن ﻣﺮﺗﻌﯽ در ﭘﺎﻻﯾﺶ ﺧﺎكﻫﺎي آﻟﻮده ﺑﻪ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و روي‬

182. Varennes, A., M.M. Abreu., G. Qu and C. Cunha-Queda. 2010. Enzymatic activity of a mine soil varies according to vegetation cover and level of compost applied. International journal of phytoremediation, 12: 371–383. 183. Vatehová, Z., K. Kollárová., I. Zelko., D.R. Kucerová., M. Bujdoš and D. Lišková. 2012. Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia, 67(3): 498-504. 184. Walter, I., F. Martínez, and G. Cuevas. 2006. “Plant and Soil Responses to the Application of Composted MSW in a Degraded, Semiarid Shrubland in Central Spain.” Compost Science and Utilization. 14(2):147–54. 185. Webster Online Dictionary. 2010. "Pollution - Definition from the Merriam-Webster Online Dictionary". Merriam-webster.com. 08-13.Retrieved -08-26. 186. Wei, X., M. Hao, M. Shao and W. J. Gale. 2006. Changes in soil properties and the availability of soil micronutrients after18years of cropping and fertilization. Soil and Tillage Research. 91: 120-130. 187. Wenger, Ch and U. Ziegler. 1999. Management of contaminated sites in Western Europe. 171p. 188. WWW.Wikipedia.com 189. Yang, X., Y. Feng., Z. He and P.J. Stoffella. 2005. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18: 339-353. 190. Yin, L., A. Ren., M. Wei., L. Wu., Y. Zhou., X. Li and Y. Gao. 2014. Neotyphodium coenophialum-infected tall Fescue and its potential application in the Phytoremediation of saline soils. International Journal of Phytoremediation, 16:235–246. 191. Yoon, J., X. Cao., Q. Zhou and L.Q. Ma. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368: 456– 464. 192. Yoshida. S., Y. Ohnishi and K.Kitagishi. 1962. Histochemistry of silicon in rice plant III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Science and Plant Nutrition, 8:1–5. 193. Zamani, N., M.R. Sabzalian., A. Khoshgoftarmanesh and M. Afyuni. 2015. Neotyphodium Endophyte Changes Phytoextraction of Zinc in Festuca arundinacea and Lolium perenne. International Journal of Phytoremediation, 17: 456–463. 194. Zhang, M.K., Z.Y. Liu, and H. Wang. 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7): 820–831. 195. Zu, Y.Q., Y. Li., J.J. Chen., H.Y. Chen., L. Qin and C. Schvartz. 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ. Int., 31: 755-762.

210