Biocomplex Gamma And Beta Function

1 downloads 0 Views 379KB Size Report
known Gamma and Beta functions from the set of complex numbers to the set of bicomplex numbers. We also discuss various properties connected with these.
J. Rajasthan Acad. Phy. Sci., Vol. 5, No. 1, June 2006, pp.131-142 © Printed in India

BICOMPLEX GAMMA AND BETA FUNCTION S.P. GOYAL*, TRILOK MATHUR** and RITU GOYAL*** Department of Mathematics, University of Rajasthan, Jaipur-302004 (India)  e-mail: [email protected]  e-mail: [email protected]  e-mail: [email protected] Abstract: The aim of this paper is to define bicomplex Gamma and Beta functions. We also discuss conditions of validity and T-holomorphicity for these functions. Various properties including Legendre duplication formula, Gauss multiplication theorem and Binomial theorem are established. These functions which are believed to be new will provide a fundamental tool to develop the theory of bicomplex special functions. Key words: bicomplex number, Idempotent basis, Gamma and Beta functions.

1. Introduction, Definitions and Preliminaries In search for development of special algebras, Segre1 published a paper in 1892, in which he treated an infinite set of algebras whose elements, he called bicomplex numbers, tricomplex,…, n-complex numbers. The algebras of quarternions and bicomplex numbers are developed by making use of so called complex pairs. One 2

3

can also refer to the recent works by Price and Rönn for other details of bicomplex 4

algebras and function theory. Rochon has developed a bicomplex Riemann-Zeta 5

function while Goyal and Goyal have recently developed bicomplex Hurwitz-Zeta function. Motivated by these works, in this paper we extend the domain of the well known Gamma and Beta functions from the set of complex numbers to the set of bicomplex numbers. We also discuss various properties connected with these functions. (a) Bicomplex Number 3

The bicomplex number (see, e.g. Rönn )  is defined as   a  i b  i c  jd (a, b, c, d  R) 1

2

2

2

(1)

2

where i1  i 2  1 j  1 i 2 j  j i 2   i1 i1 j  j i1   i 2 and i1i 2  i 2i1  j  can also be written as   ( a  i1b)  i 2 (c  i1d ) ,

(a, b, c, d,  R)

(2)

or

  z1  i 2 z 2

(z1 , z 2  C1)

(3)

S.P. Goyal, Trilok Mathur and Ritu Goyal

132

where z  a  i b , z  c  i and 1 1 2 1 2 C1  x  i1y : i1  1 x, y  R} is the set of complex numbers.

Let C2 be the set of bicomplex numbers, then 2 2 2 C2   a  i1b  i 2 c  j d : i1  i 2   1 j  1 a, b, c, d  R }

(4)

can be viewed as complexification of C1 and a bicomplex number can be seen as an 2

element of C 1 . Moreover C2 is commutative unitary ring with the following characterization for the non invertible elements.

  z1  i 2 z 2  C2 is non invertible iff

2

2

z1  z 2  0

(b) Bicomplex Algebra The algebraic operations for bicomplex numbers are defined as follows, Let     C2 such that 1  z1  i 2 z 2 and 2  x1  i 2 x 2 , z1 , z 2 , x1 , x 2  C1. Then 1

2

(i)

1  2   z1  x1   i 2  z 2  x 2   C2

(5)

(ii)

1  2   z1x1  z 2 x 2   i 2  z 2 x1  z1 x 2 

(6)

where  represent bicomplex multiplication and ‘.’ represent complex multiplication. z  z  2 2 1 (iii) 1  2 1 2  i 2 2 2 2 ( z1  z 2  0 ) (7) z1  z 2 z1  z 2

(iv)

1

2

 1  21 

z1x1  z 2 x 2 x12  x 22

 i2

z 2 x1  z1x 2 x12  x 22

(8)

x12  x 22  0 . (v) (vi)

10  1 and

n

n 1

1  1  1

     z1   i 2  z 2 

 n  Z

  R

(9) (10)

Remark: The bicomplex multiplication  is associative, distributive over bicomplex addition + and most significantly is commutative. For other properties one 2

can refer to the book by Price .

Bicomplex Gamma And Beta Function

133

(c) Differentiability of a bicomplex function Differentiability of a bicomplex function (see, e.g. Rönn3) at a point of C2 can be defined as: Let U be an open set of C2 and 0  U, then f : U  C2  C2 is said to be C2differentiable at 0 with derivative equal to f ' (0)  C2, given by following equation f (  f(0  lim  f '  0  (11)   0   0 provided that the limit exists and  – 0 is invertible. We shall say that the function f is C2 - holomorphic on an open set U iff f is C2 differentiable at each point of U. A function f (  f (z  i z   f  z , z   i f  z  z  of C2 can be seen 1

2 2

1

1

2

2 2

1

2

as a mapping f (z  z    f  z , z   f  z  z  of C2. 1

2

1

1

2

2

1

2

Lemma 1: Let U be an open set of C, and f : U  C2  C2. Also f (z1 + i2z) = f1 (z1, z2) + i2 f2 (z1, z2), then f is C2 -holomorphic iff f1 and f2 are holomorphic in U and f1 f 2 f 2 f     1 on U (12) z1 z 2 z1 z 2 Aforementioned equations are known as complexified Cauchy-Riemann (C – R) equations. The class of T-holomorphic mappings on an open set U  C2 is defined as:

 f f f f T H(U)  f : U  C 2  C 2  f H (U) and 1  2  2   1 on U z1 z 2 z1 z 2 

   (13)

where H(U) is the class of C2-holomorphic functions on U  C2. (d) Bicomplex Integration The bicomplex integration of a bicomplex function    1  z1 z 2   i 2 2  z1 z 2  is defined as a line integral, that is evaluated with respect to some four-dimensional curve H in C2. More specifically, the bicomplex integration (see, e.g. Rönn 3 ) is defined as





   d 

d  dz1 dz 2 

(14)

S.P. Goyal, Trilok Mathur and Ritu Goyal

134

where H is a piecewise continuously differentiable curve in C2 and has the parametric equation H : P= P (t) , P (t) = (a (t), b (t) ), for r  t  s and H can be taken as a curve made up of two component curves 1 and 2 in C i.e. H = (1, 2) thus

I 

s

r

 t) ]  '  t)  dt

(15)

(e) Idempotent Basis Every bicomplex number  = z1 + i2z2 has the following unique idempotent representation (16)   z1  i 2 z 2   z1  i1z 2  e1   z1  i1z 2  e 2 where e  1  j)/2, e  1  j)/2 and 1 2

j  i1 i 2

This representation is very useful because addition, multiplication and division can be done term-by-term. Also an element is non invertible iff

z12  z 22  0  z1  i1 z 2  0 or z1  i1z 2  0 . Hence we can say that A  C2 is a C2-cartesian set determined by A1  C1 and  C1 if A  A1 e A 2

A2

 { z1  i 2 z 2 C2 : z1  i 2 z 2  1e1  2e 2 and (1 , 2 )A1  A 2 } . Thus if   C2 is in the form  = 1e1 + 2e2 and also if  = z1 + i2z2 , then 1  z1  i1z 2  2  z1  i1z 2 (17)

z1  1  2   2 

z2 

i1

  2  (18) 2 1 The set B = {e1, e2} is called the idempotent basis of C2. Lemma 2: If f  A  C1 and f  A  C1 are holomorphic (analytic) functions e 1 e 2 1

2

of C1 on the domain A1 and A2 respectively. Then the function f : A1 ×e A2  C2 is defined as (19) f (z  i z   f  z  i z  e  f  z  i z  e 1

2 2

e1

1

1 2

1

e2

1

1 2

2

 z1 + i2z2  A1 ×e A2 is T-holomorphic on the domain A1 ×e A2  C2.

Bicomplex Gamma And Beta Function

Lemma 3: If f

e1

135

 A1  C1 and f e  A1  C1 are holomorphic functions of C1 on 2

the domain A1 and A2 respectively. Also let f : A1 ×e A2  C2 is defined by (20) f (  f ( ) e  f   e e1

1

1

e2

2

2

where    e   e  d  d  e  d  e 1 1 2 2 1 1 2 2

        f(  )  d   f (  ) d  e  f (  ) d    e1 1 1 1   e2 2 2  e2        1   2  where H     t) ,  (t)  1  t) e1  2  t) e 2 r  t  s then

(21) (22)

Remark: If   u e  u e and   v e  v e are two elements of C2, then 1 1 1 2 2 2 1 1 2 2 (i)

1  2 iff u1  v1 and u 2  v 2

(23)

(ii)

1  2   u1  v1  e1   u 2  v 2  e 2

(24)

(iii)

1  2   u1v1  e1   u 2 v 2  e 2

(25)

(iv)

 1  1  1  1    e1    e 2  u1 u 2  0 u  u   1  2

(26)

u  u  (27)   1  e1   2  e 2  v1 v 2  0 v  2  v1   2 2. Bicomplex Gamma Function (A) We define the bicomplex Gamma function in the Euler product form as (v)

1

1    e  2 





n 1

      1   exp        n   n 

(28)

where   z1  i 2 z 2   z1  i1z 2  e1   z1  i1z 2  e 2 , and   0    1 is the Euler constant (see, e.g. Rainville6 ) defined as

  lim  H n  log n)

(29)

1 k

(30)

n  n

Hn 



k 1

This definition is justified by the following

S.P. Goyal, Trilok Mathur and Ritu Goyal

Theorem 1: Let   z  i z  C2 with z   1 2 2 1

  m  ) and z 2  1   m) where 2 2

m,n  N  {0}, then 1 1 1  e1  e    z  i z   z  i z  2 2

1

1 2

1

136

(31)

1 2

Proof. Consider

e

  n

   z  i z e   z  i z  e   (z  i z   2 1 2 2  exp  1 2 2   exp   1 1 2 1  n n     

  z  i z    z  i z    exp  1 1 1  e1  exp  1 1 2  e 2 n n     e 1e1   2 e 2   e 1 )e   e  2  e   1 2  

      z  i z  1    exp     1  1 1 2 n  n  n  

   z  i z    exp  1 1 2  e  n   1 

 z  i z  1  1 1 2  n 

   z  i z    exp  1 1 2  e  n   2 

   e  





n 1

      1  n   exp   n     

   z  i z      z1  i1z 2     z i z    z1  i1z 2  e   1  1 n 1 2  exp  1 n 1 2   e1     n 1       z  i z     z  i z     z i z    z1  i1z 2  e 1 1 2   1  1 1 2  exp  1 1 2   e 2   n n     n 1    1 1 1 (using Lemma 2)   e1  e 2    z1  i1z 2    z 2  i1z1  2 provided that z1  i1z 2  0  1  2  and z 2  i1z1  0  1  2 

m m  z1     and z 2  i1    2   2 

m,   N  {0}.

Bicomplex Gamma And Beta Function

137

Remarks (i) (ii)

m m 2 () is T-holomorphic if z1     z 2  i1    2   2  2 () has simple pole at m m z1     and z 2  i1  ,  m, n N  {0}  2   2  p, q  N  {0} or z  i z   p and z1  i1z 2   q , 1 1 2

(iii)

2 has essential singularities at z1 =  or z2 = 

(iv)

2 is never zero since

1 has no poles.  

(B) Integral form: For   z1  i 2 z 2  C2 , p  p1e1  p 2 e 2  p1 p 2  R+ we define

2    

e

p

p

 1

 dp

(32)

L

where H  (1  2 

and 1  1  p1  and  2   2  p 2 

This definition is justified since

       1  1 e  p  p 1  dp   e  p1 p1 1 dp1  e1   e  p 2 p 2 2 dp 2  e 2 H  0   0  where 1  z1  i1z 2 , 2  z1  i1z 2



 2 ( )  [ (1 )]e1  [  (2 )]e 2

{using Rainville6 [p.15, Theorem 6]} (33)

Bicomplex Beta Function: For 1 2  C2  p  p1e1  p 2 e 2 C2, p1p 2  01 we define B2 (1 2    where

p

1 1  1  1  p) 2  dp

(34)

L

H  ( 1 ,  2 ) and  1   1(p1 ) and  2   2 ( p 2 )

Theorem 2: Let 1  u1  i 2 u 2 , 2  v1  i 2 v 2 , with Re (u1 )  | Im (u 2 ) | and Re (v1    Im (v2  then B2 (1 2   B (u1  i1u 2  v1  i1v 2  e1  B (u1  i1u 2  v1  i1v 2  e 2

(35)

S.P. Goyal, Trilok Mathur and Ritu Goyal

138

where B (x,y) is ordinary Beta function. Theorem 3: Let   u  i u    v  i v     e   e        C2, 1

1

2 2

2

1

2 2

1 1

2 2

1

2

with Re (u    Im (u   and Re (v    Im (v   then 1 2 1 2 B2 (     2 1 2

sin

21 1

  cos

2 2 1

  d

(36)

H

where      and      1 1 1 2 2 2

0  1    2

Proof of above theorem is straight forward by using the substitution p1 2 = sin 1 and p2 = sin 2. Theorem 4. Let 1  u1  i 2 u 2 and 2  v1  i 2 v 2 valid under the conditions 2

mentioned in Theorem 3. Then      2  2  B2  1 2   2 1 2  1  2 

(37)

Proof: Consider

2 (1 )  2 (2 )   e  p  p1 1  dp ⊙  e  q  q 2 1  dq   1    2   z1 z 2 C1 ; 2  y1e1  y 2e 2  y1 y 2 C1 , where 1  z1e1  z 2e 2 z1  u1  i u 2  z 2  u1  i1u 2 , y1  v1  i1v 2  p  p1e1  p 2e 2

y 2  v1  i1v 2

 p1 p 2  R+ and q  q1e1  q 2e 2

 q1 q 2 R+

   p z 1     q y 1  Thus 2  1   2  2     e 1 p1 1 dp1    e 1 q1 1 dq1  e1  0  0     p 2 z 2 1     q 2 y 2 1     e p 2 dp 2    e q 2 dq 2  e 2  0  0   I1 e1  I 2 e 2 (38)    p z 1     q y 1  I1    e 1 p1 1 dp1    e 1 q1 1 dq1   0  0   I1   z1  y1     z1  y1  B (z1 y1 

(39)

Bicomplex Gamma And Beta Function

139

   p z 1     q y 1  similarly I 2    e 2 p 2 2 dp 2    e 2 q 2 2 dq 2    z 2  y 2  B (z 2  y 2   0  0  (40) Therefore        2 1 2 2

  z1  y1  B (z1 y1  e1    z 2  y 2  B (z 2  y 2  e 2     z1  y1  e1    z 2  y 2  e 2  B (z1 y1  e1  B (z 2  y 2  e 2     z1e1  z 2e 2    y1e1  y 2e 2  B (z1 y1  e1  B (z 2  y 2  e 2 

 2 1   2 2   2 1  2   B2 1 2  which gives the result (37). We can also prove that

H

  1   1 2  1   2  2   2   2  1 2     sin   cos   d     2  2   22  1   2  

(41)

3. Properties of Gamma Function 2   1    2  (i) Proof: Let   z1  i 2 z 2  C2

2    z1  i1z 2  e1    z1  i 2 z 2  e 2

 2   1    z1  1  i1z 2  e1    z1  1  i 2 z 2  e 2   z1  i1z 2    z1  i1z 2  e1   z1  i1z 2    z1  i1z 2  e 2    z1  i1z 2  e1   z1  i1z 2  e 2    z1  i1z 2  e1    z1  i1z 2  e 2   2   1    2   sin  Proof: Using Theorem 4, we have (ii)

2   2 1   

2    2 1    B2 (1    

   z1  i 2 z 2  C2 p  1  1  p)   dp H

(42)

S.P. Goyal, Trilok Mathur and Ritu Goyal

140

where p = p1e1 + p2e2 ,  p1, p2  [0,1] z1  i1z 2   1  dp1   p  dp  1  p1          e1      0   p p1 H 1 p  0 1  p1      p p Now put 1  q1 2  q 2   q1 q 2  R+ 1 - p1 1- p2

 p   2  1 p   2

z1  i1z 2

dp 2  e p2  2 

  q z1  i1z 2    q z1  i1z 2  1 2  2    2 1      dq1  e1    dq 2  e 2  0   0  1  q1 1 q2         e1  e2  sin   z1  i1z 2  sin   z1  i1z 2  sin  z1  i1z 2 e1   z1  i1z 2 e 2 

  sin  (iii) Pochammer Symbol

6



(Using Rainville [p. 21, Eq.(4) ] )

n

 n      1      n  1     i  1

 n 1

(43)

i 1

It is easy to show that   n 

2    n) 2 ()

(44)

(iv) Gauss Multiplication Theorem For   z1  i 2 z 2  C2 we have

s 1  1  2 k 1 2     k1/2  k  2  k    2 k   s 1 Proof. Consider s 1 s 1 s 1    2        z1  i1z 2   e1    z1  i1z 2  e k  k  k  2    k



k



s 1

s 1 s 1    z1  i1z 2   e1    z1  i1z 2   e2 k  k    s 1 k

(45)

Bicomplex Gamma And Beta Function

141

1/2  k(z1  i1z 2    21  2 k 1 k k(z1  i1z 2  e1   1/2  k(z1  i1z 2    21  2 k 1 k k(z1  i1z 2   e 2   (Using Gauss Multiplication Theorem for Gamma function)

 k(z1  i1z 2   k(z1  i1z 2    21  2 k 1  k1/2  k e1  k e 2         k (z1  i1z 2 e1  k (z1  i1z 2 e 2   

  21  2 k 1  k1/2  k  2  k  (v) Legendre Duplication Formula For   z1  i 2 z 2  C2, we have

 2 2n  2 2n    n    1  2 n Proof. We have 2  2  2n)

2  2

Since



(46)

2 z1  i1z 2  n) }e1  2(z1  i1z 2  n)}e 2 2 z1  i1z 2 ) }e1  2(z1  i1z 2 )}e 2

1 1 1  e1  e 2 , therefore ae1  be 2 a b

Thus 2  2  2n)

2  2



2 z1  i1z 2  n)} 2 z1  i1z 2 )}

e1 

2(z1  i1z 2  n)} 2(z1  i1z 2 )}

e2

 22n  z1  i1z 2  n  z1  i1z 2  1 2 n e1  22n  z1  i1z 2  n  z1  i1z 2  1 2 n e 2 (Using Legendre Duplication Formula for Gamma function)

 22n  z1  i1z 2  n e1   z1  i1z 2  n e 2    z1  i1z 2  1 2 n e1   z1  i1z 2  1 2 n e 2    2 2n  22n   n    1 2 n (vi) Binomial Theorem Let a  C2 be a bicomplex constant and   z1  i 2 z 2  C2 ,then

S.P. Goyal, Trilok Mathur and Ritu Goyal



a

1   



n 0

2 a  1)

n  2  a  n  1) n!

L.H.S.  (1  a  1   =

a1e1  a 2 e 2

where

142

(47)

a 1 a 2  C2

(1  z1  i1z 2 )a1 e1  (1  z1  i1z 2 )a 2 e 2 

 (a1  1) ( z1  i1z 2 ) n (a 2  1) ( z1  i1z 2 ) n   e1   e2  ( a  n  1) n !  ( a  n  1) n ! 1 2 n 0 n 0







 a1  1 e1  a 2  1 e 2    z1  i1z 2  n e1   z1  i1z 2  n e 2  n ![  a1  n  1) e1   a 2  n  1) e 2 

n 0







n 0

2  a  1)

n   R.H.S. 2 a  n  1) n!

Acknowledgement The authors (T.M. and R.G.) thank U.G.C. and CSIR respectively for awarding JRFs under scheme No. 2-48/2001/(II)EU.II and 9/(149)294/2k2/EMR-I respectively. 1 2 3 4 5 6 7

References Segre C.(1892) Math. Ann. 40: 413. Price G.B.(1991), An introduction to multicomplex spaces and functions, Marcel Dekker, New York. Rönn S., Bicomplex algebra and function theory. Preprint: http:// arXiv.org/abs/ math/0101200 VI, Jan. 2001. Rochon D. (2004) Tokyo J. Math. 27: 357 Preprint: www.3dfractals.com/docs/Riemann.pdf. Goyal S.P. and Goyal Ritu (2004) The bicomplex Hurwitz Zeta function, South East Asian J. of Math. and Math. Sci., 4 (3) (2006), 59-66. Rainville E.D.(1960) Special Functions, Chelsea Publications, New York. Erdelyi,A.et.al. (1953) Higher Transdendental functions – I, McGraw-Hill, New York.