ân i=1 pi = 1. Replacing the uniform weights nâ1 by pj,j = 1,n in the the celebrated Korkin's identity. (Korkin, 1882, 1883), (Mitrinovic and Vasic, 1974, pp. 6â7). 1.
ProbStat Forum, Volume 06, January 2013, Pages 1–9 ISSN 0974-3235
ProbStat Forum is an e-journal. For details please visit www.probstat.org.in
ˇ Bounds on weighted discrete Cebyˇ sev functional Dragana Jankova , Tibor K. Pog´ anyb a University b University
of Osijek, Department of Mathematics, Osijek, Croatia of Rijeka, Faculty of Maritime Studies, Rijeka, Croatia
ˇ Abstract. Two sets of inequalities are derived for the weighted discrete Cebyˇ sev functional, considering the probabilistic setting and also the Lipschitz class of functions.
1. Introduction and motivation ˇ The weighted discrete Cebyˇ sev functional is defined as the sum Tp (a, b) :=
n X
pi ai bi −
i=1
n X
pi ai
i=1
n X
pi bi ,
(1)
i=1
n where and the weight–vector p = (p1 , . . . , pn ) ∈ Rn+ , satisfying Pn a = (a1 , . . . , an ), b = (b1 , . . . , bn ) ∈ R −1 by pj , j = 1, n in the the celebrated Korkin’s identity i=1 pi = 1. Replacing the uniform weights n (Korkin, 1882, 1883), (Mitrinovi´c and Vasi´c, 1974, pp. 6–7) n n n 1 X 1 X 1X 1 aj bj = aj bj + 2 n j=1 n j=1 n j=1 n
X
(aj − ak )(bj − bk ) ,
1≤j 1, by using weighted H¨older inequality, again by the Korkin’s identity, we have n X Tp (ξ, η) ≤ 1 pj |xj − xk | pk |yj − yk | 2 j,k=1 !1/r !1/s n n X 1 X ≤ {pj |xj − xk |}r {pk |yj − yk |}s 2 j,k=1 j,k=1 !1/r !1/s n n X 1 X r−1 s−1 r s pj |xj − xk | pk |yj − yk | ≤ 2 j,k=1
(7)
j,k=1
and also we have n X Tp (ξ, η) ≤ 1 pj pk |xj − xk | |yj − yk | 2 j,k=1 !1/r !1/s n n X 1 X r s ≤ pj pk |xj − xk | pj pk |yj − yk | 2 j,k=1 j,k=1 !1/r !1/s n n X 1 X r s ≤ pj |xj − xk | pk |yj − yk | . 2 j,k=1
(8)
j,k=1
Now, from (7) and (8), we get immediately the asserted constant M . Now, let us recall the following result, which will be used in the sequel. Lemma 2.4 (Weighted P´ olya–Szeg˝ o type inequality for sums). (Pog´any, 2005, p. 118) Assume that 0 < m1 ≤ xj ≤ M1 , j = 1, n, 0 < m2 ≤ yk ≤ M2 , Pn Pm Also, let pij ≥ 0 and i=1 j=1 pij = 1. Then n X
qj x2j
j=1
m X k=1
1 rk yk2 ≤ 4
r
m1 m2 + M1 M2
r
M1 M 2 m1 m2
!2
k = 1, m .
n X m X
!2 pjk xj yk
j=1 k=1
where m X
pjk = qj ,
k=1
j = 1, n,
n X
pjk = rk ,
k = 1, m .
j=1
Inequality (9) becomes an equality if and only if m = n and κ=
M1 m2 n ∈ N0 , m1 M2 + M1 m2
xl1 = · · · xlκ = m1 , xlκ+1 = · · · = xln = M1 , yl1 = · · · ylκ = M2 , ylκ+1 = · · · = yln = m2 , lj ∈ {1, . . . , n}, pjk = 0, (j, k) ∈ {l1 , . . . , lκ } × {lκ+1 , . . . , ln } ∪ {lκ+1 , . . . , ln } × {l1 , . . . , lκ }. Now, we can state the next result.
(9)
Jankov and Pog´ any / ProbStat Forum, Volume 06, January 2013, Pages 1–9
6
Theorem 2.5. Let r.v.s ξ, η be as defined above. Then, we have ( Tp (ξ, η)
0 on Ξ, if there exists an absolute constant L > 0 such that |f (x) − f (y)| ≤ L|x − y|α
x, y ∈ Ξ .
Here L is the Lipschitz constant and the class consisting of such functions we write LipL (α). Theorem 3.1. Let r, s, r−1 + s−1 = 1,P r > 1, be conjugated H¨ older exponents and let a = (a1 , . . . , an ), b = n (b1 , . . . , bn ) ∈ Rn and p ≥ 0 such that j=1 pj = 1. Also, assume that f ∈ LipLf (αf ) and g ∈ LipLg (αg ). Then |Tp (f (a), g(b))| ≤ Lf Lg |an − a1 |αf |bn − b1 |αg min {1, M1 } , where f (x) := (f (x1 ), · · · , f (xn )), x ∈ {a, b} and M1 = n
n X
1/r 1/s n X prj psj .
j=1
(12)
j=1
Proof. As r, s, r > 1 are conjugated exponents, by virtue of the discrete weighted H¨older inequality from (2) it holds: n 1 X {pj pk }1/r+1/s |f (aj ) − f (ak )| |g(bj ) − g(bk )| 2 j,k=1 1/s 1/r n n X X 1 pj pk |g(bj ) − g(bi )|s . pj pk |f (aj ) − f (ak )|r ≤ 2
|Tp (f (a), g(b))| ≤
(13)
j,k=1
j,k=1
Because of f ∈ LipLf (αf ), g ∈ LipLg (αg ), having in mind that coordinates of a, b can be taken increasing without loss of generality, we estimate the right–hand–side of (13) in the following way: 1/r 1/s n n X Lf Lg X |Tp (f (a), g(b))| ≤ pj pk |aj − ak |αf r pj pk |bj − bk |αg s 2 j,k=1
j,k=1
= Lf Lg |an − a1 |αf |bn − b1 |αg
n X
1/r+1/s pj pk
j,k=1
= Lf Lg |an − a1 |αf |bn − b1 |αg . Now, it is left to derive M1 . Again, by using discrete H¨older inequality with the same pair of conjugated
Jankov and Pog´ any / ProbStat Forum, Volume 06, January 2013, Pages 1–9
8
parameters r, s and the definition of Lipschitz functions f and g we get: n 1 X {pj |f (aj ) − f (ak )|} · {pk |g(bj ) − g(bk )|} 2 j,k=1 1/r 1/s n n X X 1 r s ≤ prj |f (aj ) − f (ak )| psk |g(bj ) − g(bk )| 2
|Tp (f (a), g(b))| ≤
j,k=1
j,k=1
≤ Lf Lg |an − a1 |αf |bn − b1 |αg
n X
j,k=1
1/r prj
n X
1/s psk
j,k=1
1/r 1/s n n X X = Lf Lg |an − a1 |αf |bn − b1 |αg n prj psj j=1
j=1
which completes the proof of the Theorem. Now, we discuss certain results which follow by the previous theorem. First, we would need the well– known fact that every Lipschitz function f : Ξ 7→ Υ is uniformly continuous, i.e. for every > 0 there is a δ > 0 such that |f (x) − f (y)| < for all points x, y ∈ Ξ such that |x − y| < δ. Corollary 3.2. Let a = (a1 , . . . , an ), b = (b1 , . . . , bn ) be two n–tuples coming from the metric space Ξ and let f, g : Ξ 7→ Υ be Lipschitz functions, f ∈ LipLf (αf ) and g ∈ LipLg (αg ). Then Tp (f (a), f (b)) is uniformly continuous. Proof. Desired result follows directly by Theorem 3.1, and uniform continuity of the functions f, g. It is enough to observe that for all max{|an − a1 |, |bn − b1 |} < δ it follows that |Tp (f (a), g(b))| < Lf Lg δ αf +αg min{1, M1 } =: , where M1 is given with (12). Corollary 3.3. If f, g : Ξ 7→ Υ are injective Lipschitz functions between metric spaces, f ∈ LipLf (αf ) and g ∈ LipLg (αg ), corresponding metric d is discrete and a = (a1 , . . . , an ), b = (b1 , . . . , bn ) are two n–tuples from Ξ, then |Tp (f (a), g(b))| ≤ Lf Lg min{1, M1 } ,
(14)
where M1 is given with (12). Proof. Assertion (14) follows from Theorem 3.1 and definition of a discrete metric: ( 1, if x 6= y d(x, y) = . 0, if x = y So the asserted result. References Bogn´ ar, J. Mrs., Mogyor´ odi, J., Pr´ ekopa, A., R´ enyi, A., Sz´ asz, D. (2001) Probability Theory Problem Collection. Second edition. Typotex, Budapest. (In Hungarian). ˇ Cebyˇ sev, P. L. (1882) O pribliˇ zennyh vyraˇ zenijah odnih integralov ˇ cerez drugie. Soobˇs´ cenija i protokoly zasedani˘ı Matemmatiˇ ceskogo obˇ cestva pri Imperatorskom Har’kovskom Universitete No. 2, 93–98; (1948) Polnoe sobranie soˇ cineni˘ı P. L. ˇ Cebyˇ seva (1948), Moskva–Leningrad, 128–131.
Jankov and Pog´ any / ProbStat Forum, Volume 06, January 2013, Pages 1–9
9
ˇ Cebyˇ sev, P. L. (1883) Ob odnom rjade, dostavljajuˇs´ cem predel’nye veliˇ ciny integralov pri razloˇ zenii podintegral’no˘ı funkcii ˇ na mnoˇ zeteli. Priloˇ zeni k 57 tomu Zapisok Imp. Akad. Nauk, No. 4; (1948) Polnoe sobranie soˇ cineni˘ı P. L. Cebyˇ seva, Moskva–Leningrad, 157–169. Dragomir, S. S. (2003) Reverses of the Cauchy–Bunyakovsky–Schwarz inequality for n–tuples of complex numbers. Available online at [http://www.ajmaa.org/RGMIA/papers/v6n4/RCBSInTCN.pdf] Jankov, D., T. K. Pog´ any, T. K. (2012) Andreev-Korkin identity, Saigo fractional integration operator and LipL (α) functions, Zh. Mat. Fiz. Anal. Geom. 8, No. 2, 144–157. Korkin, A. N. (1882) Ob’ odnom opredelennom’ integrale. Math. Sbornik 10, 571-572. Korkin, A. N. (1883) Sur un th´ eor` eme de M. Tchebychef. C.R. Acad. Sci. Paris 96, 326–327. ˇ Mitrinovi´ c, D. S., Vasi´ c, P. M. (1974) History, variations and generalisations of the Cebyˇ sev inequality and the question of some priorities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 461–497, 1–30. Mitrinovi´ c, D. S., Peˇ cari´ c, J. E., Fink, A. M. (1993) Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht. M´ ori, T. F., Sz´ ekely, G. J. (1986) On the correlation between the sample mean and sample variance. In: Iv´ anyi, A. (Ed.), Proceedings of Second Conference of Program Designers, Budapest, 1986. E¨ otv¨ os Lor´ and University Press, Budapest, 227– 229. Pog´ any, T. K. (2005) A new (probabilistic) proof of the Diaz–Metcalf and P´ olya–Szeg¨ o inequalities and some applications. Theor. Probab. Math. Statist. 70, 113-122. Sonin, N. Y. (1898) O nekotoryh neravenstvah, otnosyaˇsˇ cihsyak opredelennym integralam. Zap. Imp. Akad. Nauk. po FizikoMatem. Otd. 6, 1-54.