Calculation of the Deformation Potentials by the Green Function Method

0 downloads 0 Views 133KB Size Report
Rev. 94, 111 1 (1954). 3. Ham, F.S. and Segall, B., Phys. Rev. 124, 1786 (1961). 4. Johnson, K.H., J. Chern. Phys. 45, 3085 (1966). 5. Slater, J.C., Phys. Rev.
Revista Brasileira de Física, Vol. 8, Nº 1, 1978

Calculation of the Deformation Potentials by the Green Function Method: Niobium* E. Z. SILVA*" and L. G. FERREIRA *, Universidade de São Paulo, São Paulo SP

Instituto de Física

Recebido em 23 de Setembro de 1977

I n t h i s paper we show how t o introduce, i n the band s t r u c t u r e c a l c u l a t i on by the KKR method, a simultaneous e v a l u a t i o n o f the i s o t r o p i c mation p o t e n t i a l s , wi t h o u t al t e r i n g the s t r u c t u r e f a c t o r s .

An

deforappl i c a -

t i o n t o niobium i s presented.

Neste a r t i g o , mostramos como i n t r o d u z i r o c á l c u l o dos p o t e n c i a i s de deformação em um c á l c u l o de e s t r u t u r a de f a i x a s p e l o &todo Kohn e Ros toker. estrutura.

A v i r t u d e de nosso método

é

de

Korringa,

de preservar os f a t o r e s de

Como aplicação, estudamos o caso do metal Niõbio.

1. INTRODUCTION The Green f u n c t i o n (KKR, m u l t i p l e s c a t t e r i n g ) c r y s t a l and molecules,

method (Refs.l,2

though much f a s t e r than o t h e r methods,

3,4) !;

o u s l y handicapped whenever one i s faced w i t h the c a l c u l a t i o n o f the trix elements

of

a Hamiltonian p e r t u r b a t i o n .

These

for

seri ma-

c a l c u l a ions are

u s u a l l y compl i c a t e d due t o the p e c u l i a r expansion o f the wave f u n c t i o n i n the r e g i o n o u t s i d e the spheres c i r c u m s c r i b i n g the atoms.

*

Work supported by the

Paulo (FAPESP)

** Present

.

address: H.H.

TOL BS8 ITL, U.K.

***

fundaçãode Amparo à Pesquisa do Estado de W i l l s Physics Laboratory, Tyndal

.

Postal address: C.P.

I n that re-

20516, 01000

-

São Paulo SP.

são

Avenue, BRIS-

gion, t h e expansion i s rnade i n terms o f s c a t t e r e d f u n c t i o n s o f many cent e r s thus c o m p l i c a t i n g the c a l c u l a t i o n o f the volume i n t e g r a l s .

l n what

follows, we consider a s p e c i a l p e r t u r b a t i o n which can be handled by the Green f u n c t i o n method ir1 a s u r p r i s i n g l y simple way: the p e r t u r b a t i o n

of

an i s o t r o p i c l a t t i c e expansion i n cubic c r y s t a l s . A s s t r a i n deformation i f the l a t t i ce a f f e c t s the band s t r u c t u r e by means o f coef f i c i e n t s known as

deformation potentiats. For a given s t r a i n ten-

the energy o f a c e r t a i n s t a t e i n the B r i l l o u i n zone i s s h i f t e d by

where D..

23

i s the deformé~tionp o t e n t i a l tensor.

I n t h e special

case

of

an i sotrop~ i sc t r a i n i n e cubic c r y s t a l , Eq.(l .l) i s e q u i v a l e n t t o

where 6a i s the change i n the l a t t i c e parameter. note i s t o show how t o c:alculate C, i n Eq.(l .2),

The purpose

of

this

simultaneously w i t h the

band s t r u c t u r e c a l c u l a t i o n .

Z. THEORY I n order t o f i x our notation, we review the equations o f the KKR rnethod:

i s the secular equation, where X denotes the pai r (L,m) def i n i n g an g u l a r momentum;

sX

=

where jk and nR are the spheri c a l Bessel and Neumann functions; whi l e

an-

are t h e l o g a r í t h m i c d e r i v a t i v e s a t the sphere radius Fi and energy E;

,

K2 = € - V , , where

(2.4)

V , , i s t h e constant p o t e n t i a1 i n t h e region outs de the spheres ; G(X,X')

+

= 4a C IA(X,X1) r A ( K , 2)

,

(2.5)

A the I A * s denoting Gaunt i n t e g r a l s f o r A

r A ( s D = cot

(KR)

m

( L , M ) , and

4a

wL(m'

are the s t r u c t u r e f a c t o r s expanded as s e r i e s i n the reciproca1 la t t i c e

+

+

vectors g, f o r a given p o i n t k i n the B r i l l o u i n zone. When s t r a i n e d i s o t r o p i c a l l y ,

the l a t t i c e parameter changes from a

and a given energy s t a t e from

E,

i n the secular equation (2.1)

i s a f u n c t i o n o f a and E, and i f E

are t o be s o l u t i o n s t o (2.1)

to

E.

The determinant D o f the

O

t o a, matrix and E,

f o r the l a t t i c e parameters a and ao,we must

have

Expanding D(E,~) t o the f i r s t order i n (E at

-

E

o

) and ( a

- a o ) , We

avive

-

I n a band s t r u c t u r e c a l c u l a t i o n , one has simple access t o the denominator

I

i n Eq. (2.8) because, i n o r d e r t o f i n d the eigenvalue E one has o' an t o c a l c u l a t e the determinant f o r a n e t o f E values. A numeriral d e r i v a -

t i v e o f the determinant i n t h i s n e t produces

The c a l c u l a t i o n o f the numerator

1

ao

can be s i m p l i f i e d i f we consider E

O

the s p e c i a l form o f the s t r u c t u r e f a c t o r s

rA, Eq.(2.6),

now w r i t t e n as

-+

I n a l a t t i c e expansion, the r a t i o s W a 3 , R/a, and the vectors are kept constant. Thus, TA depends on

Ka,

E

-+

ak and ag

and a o n l y through the

product

that i s

Thus, i n s t e a d o f c o n s i d e r i n g the determinant D as a f u n c t i o n o f we may a l s o consider i t as f u n c t i o n of a and Ka. between

E

and K, we o b t a i n

E

and a,

Using t h e r e l a t i o n (2.4)

,

I n (2.101, performed.

the d e r i v a t i v e s appearing i n the second term can

be

readily

I n the f i r s t term, the numerator becomes

where MXX i s the minor o f the element ()i,X)

Denoting by Hhh,

,

i n the secular m a t r i x , and

the s e c u l a r m a t r i x element, we have

and o b t a i n

Thus one sees t h a t i n o r d e r t o make a c a l c u l a t i o n o f the c o e f f i c i e n t s

I

C

along w i t h the band s t r u c t u r e c a l c u l a t i o n , we a l s o need, besides the 10g a r i t h m i c d e r i v a t i v e , the values o f i n a n e t o f energies

E.

a~ a~ .1a 2 IE, 2 a

n d s

tabulated E

These values depend on the rnodel assumed f o r the

p o t e n t i a l and i t s change i n a l a t t i ce expansion.

3. APPLICATION TO NIOBIUM

The procedure described above was a p p l i e d t o the band s t r u c t u r e o f bium.

nio-

The p o t e n t i a l was assumed equal t o a sum o f atomic p o t e n t i a l s .

a l a t t i c e expansion,

In

the atomic p o t e n t i a l s were supposed t o move r i g i d l y .

S l a t e r ' s average o f the exchange i n t h e f ree- electron gas

approximation

was used5. The r e s u l t s f o r a l a t t i c e parameter a = 6.2377 a.u. b l e and i n Figs. 1 and 2. being numbered from below.

I n Fig.1, I n Fig.2,

are shown i n t h e Ta-

we p l o t the energy bands, the bands we show t h e behaviour o f t h e coef-

f i c i e n t C i n the B r i l l o u i n zone f o r the bands numbered i n Fig.1.

It

is

q t i t e remarkable t h a t C v a r i e s much w i t h i n a band, and any model, f o r the e l e c t r o n a c o u s t i c phonon i n t e r a c t i o n f o r instance, based on a constant C, i s very unreal i s t i c .

TABLE

-

Energy eigenva!ues and isotropic deformtion poten-

t i a l s i n ths B r i l l o u l n zone of nlobium.

REFERENCES

1. Korringa, J.,

Physica 13, 392 (1947).

2. Kohn, W. and Rostoker, N.,

3. Ham, F.S.

and Segall, B.,

4. Johnson, K.H., 5. S l a t e r , J.C.,

Phys. Rev. 94,

111 1 (1954).

Phys. Rev. 124,

1786 (1961).

J. Chern. Phys. 45, 3085 (1966). Phys. Rev. 81, 385 (1951).

Suggest Documents