Rev. 94, 111 1 (1954). 3. Ham, F.S. and Segall, B., Phys. Rev. 124, 1786 (1961). 4. Johnson, K.H., J. Chern. Phys. 45, 3085 (1966). 5. Slater, J.C., Phys. Rev.
Revista Brasileira de Física, Vol. 8, Nº 1, 1978
Calculation of the Deformation Potentials by the Green Function Method: Niobium* E. Z. SILVA*" and L. G. FERREIRA *, Universidade de São Paulo, São Paulo SP
Instituto de Física
Recebido em 23 de Setembro de 1977
I n t h i s paper we show how t o introduce, i n the band s t r u c t u r e c a l c u l a t i on by the KKR method, a simultaneous e v a l u a t i o n o f the i s o t r o p i c mation p o t e n t i a l s , wi t h o u t al t e r i n g the s t r u c t u r e f a c t o r s .
An
deforappl i c a -
t i o n t o niobium i s presented.
Neste a r t i g o , mostramos como i n t r o d u z i r o c á l c u l o dos p o t e n c i a i s de deformação em um c á l c u l o de e s t r u t u r a de f a i x a s p e l o &todo Kohn e Ros toker. estrutura.
A v i r t u d e de nosso método
é
de
Korringa,
de preservar os f a t o r e s de
Como aplicação, estudamos o caso do metal Niõbio.
1. INTRODUCTION The Green f u n c t i o n (KKR, m u l t i p l e s c a t t e r i n g ) c r y s t a l and molecules,
method (Refs.l,2
though much f a s t e r than o t h e r methods,
3,4) !;
o u s l y handicapped whenever one i s faced w i t h the c a l c u l a t i o n o f the trix elements
of
a Hamiltonian p e r t u r b a t i o n .
These
for
seri ma-
c a l c u l a ions are
u s u a l l y compl i c a t e d due t o the p e c u l i a r expansion o f the wave f u n c t i o n i n the r e g i o n o u t s i d e the spheres c i r c u m s c r i b i n g the atoms.
*
Work supported by the
Paulo (FAPESP)
** Present
.
address: H.H.
TOL BS8 ITL, U.K.
***
fundaçãode Amparo à Pesquisa do Estado de W i l l s Physics Laboratory, Tyndal
.
Postal address: C.P.
I n that re-
20516, 01000
-
São Paulo SP.
são
Avenue, BRIS-
gion, t h e expansion i s rnade i n terms o f s c a t t e r e d f u n c t i o n s o f many cent e r s thus c o m p l i c a t i n g the c a l c u l a t i o n o f the volume i n t e g r a l s .
l n what
follows, we consider a s p e c i a l p e r t u r b a t i o n which can be handled by the Green f u n c t i o n method ir1 a s u r p r i s i n g l y simple way: the p e r t u r b a t i o n
of
an i s o t r o p i c l a t t i c e expansion i n cubic c r y s t a l s . A s s t r a i n deformation i f the l a t t i ce a f f e c t s the band s t r u c t u r e by means o f coef f i c i e n t s known as
deformation potentiats. For a given s t r a i n ten-
the energy o f a c e r t a i n s t a t e i n the B r i l l o u i n zone i s s h i f t e d by
where D..
23
i s the deformé~tionp o t e n t i a l tensor.
I n t h e special
case
of
an i sotrop~ i sc t r a i n i n e cubic c r y s t a l , Eq.(l .l) i s e q u i v a l e n t t o
where 6a i s the change i n the l a t t i c e parameter. note i s t o show how t o c:alculate C, i n Eq.(l .2),
The purpose
of
this
simultaneously w i t h the
band s t r u c t u r e c a l c u l a t i o n .
Z. THEORY I n order t o f i x our notation, we review the equations o f the KKR rnethod:
i s the secular equation, where X denotes the pai r (L,m) def i n i n g an g u l a r momentum;
sX
=
where jk and nR are the spheri c a l Bessel and Neumann functions; whi l e
an-
are t h e l o g a r í t h m i c d e r i v a t i v e s a t the sphere radius Fi and energy E;
,
K2 = € - V , , where
(2.4)
V , , i s t h e constant p o t e n t i a1 i n t h e region outs de the spheres ; G(X,X')
+
= 4a C IA(X,X1) r A ( K , 2)
,
(2.5)
A the I A * s denoting Gaunt i n t e g r a l s f o r A
r A ( s D = cot
(KR)
m
( L , M ) , and
4a
wL(m'
are the s t r u c t u r e f a c t o r s expanded as s e r i e s i n the reciproca1 la t t i c e
+
+
vectors g, f o r a given p o i n t k i n the B r i l l o u i n zone. When s t r a i n e d i s o t r o p i c a l l y ,
the l a t t i c e parameter changes from a
and a given energy s t a t e from
E,
i n the secular equation (2.1)
i s a f u n c t i o n o f a and E, and i f E
are t o be s o l u t i o n s t o (2.1)
to
E.
The determinant D o f the
O
t o a, matrix and E,
f o r the l a t t i c e parameters a and ao,we must
have
Expanding D(E,~) t o the f i r s t order i n (E at
-
E
o
) and ( a
- a o ) , We
avive
-
I n a band s t r u c t u r e c a l c u l a t i o n , one has simple access t o the denominator
I
i n Eq. (2.8) because, i n o r d e r t o f i n d the eigenvalue E one has o' an t o c a l c u l a t e the determinant f o r a n e t o f E values. A numeriral d e r i v a -
t i v e o f the determinant i n t h i s n e t produces
The c a l c u l a t i o n o f the numerator
1
ao
can be s i m p l i f i e d i f we consider E
O
the s p e c i a l form o f the s t r u c t u r e f a c t o r s
rA, Eq.(2.6),
now w r i t t e n as
-+
I n a l a t t i c e expansion, the r a t i o s W a 3 , R/a, and the vectors are kept constant. Thus, TA depends on
Ka,
E
-+
ak and ag
and a o n l y through the
product
that i s
Thus, i n s t e a d o f c o n s i d e r i n g the determinant D as a f u n c t i o n o f we may a l s o consider i t as f u n c t i o n of a and Ka. between
E
and K, we o b t a i n
E
and a,
Using t h e r e l a t i o n (2.4)
,
I n (2.101, performed.
the d e r i v a t i v e s appearing i n the second term can
be
readily
I n the f i r s t term, the numerator becomes
where MXX i s the minor o f the element ()i,X)
Denoting by Hhh,
,
i n the secular m a t r i x , and
the s e c u l a r m a t r i x element, we have
and o b t a i n
Thus one sees t h a t i n o r d e r t o make a c a l c u l a t i o n o f the c o e f f i c i e n t s
I
C
along w i t h the band s t r u c t u r e c a l c u l a t i o n , we a l s o need, besides the 10g a r i t h m i c d e r i v a t i v e , the values o f i n a n e t o f energies
E.
a~ a~ .1a 2 IE, 2 a
n d s
tabulated E
These values depend on the rnodel assumed f o r the
p o t e n t i a l and i t s change i n a l a t t i ce expansion.
3. APPLICATION TO NIOBIUM
The procedure described above was a p p l i e d t o the band s t r u c t u r e o f bium.
nio-
The p o t e n t i a l was assumed equal t o a sum o f atomic p o t e n t i a l s .
a l a t t i c e expansion,
In
the atomic p o t e n t i a l s were supposed t o move r i g i d l y .
S l a t e r ' s average o f the exchange i n t h e f ree- electron gas
approximation
was used5. The r e s u l t s f o r a l a t t i c e parameter a = 6.2377 a.u. b l e and i n Figs. 1 and 2. being numbered from below.
I n Fig.1, I n Fig.2,
are shown i n t h e Ta-
we p l o t the energy bands, the bands we show t h e behaviour o f t h e coef-
f i c i e n t C i n the B r i l l o u i n zone f o r the bands numbered i n Fig.1.
It
is
q t i t e remarkable t h a t C v a r i e s much w i t h i n a band, and any model, f o r the e l e c t r o n a c o u s t i c phonon i n t e r a c t i o n f o r instance, based on a constant C, i s very unreal i s t i c .
TABLE
-
Energy eigenva!ues and isotropic deformtion poten-
t i a l s i n ths B r i l l o u l n zone of nlobium.
REFERENCES
1. Korringa, J.,
Physica 13, 392 (1947).
2. Kohn, W. and Rostoker, N.,
3. Ham, F.S.
and Segall, B.,
4. Johnson, K.H., 5. S l a t e r , J.C.,
Phys. Rev. 94,
111 1 (1954).
Phys. Rev. 124,
1786 (1961).
J. Chern. Phys. 45, 3085 (1966). Phys. Rev. 81, 385 (1951).