STANDARD OPERATIONS ON FUZZY SETS. ⢠Complement ... satisfies axioms C1 and C2 is called a fuzzy complement. ... Probabilistic sum (Algebraic Sum):.
FUZZY MATHEMATICAL ANALYSIS
ÁNGEL GARRIDO DEPARTAMENTO DE MATEMÁTICAS FUNDAMENTALES FACULTAD DE CIENCIAS UNED
OUTLINE • • • • •
Standard operations on fuzzy sets: Fuzzy complement Fuzzy union Fuzzy intersection Other operations in fuzzy set Disjunctive sum Difference Distance Cartesian product
• t-norms and t-conorms
STANDARD OPERATIONS ON FUZZY SETS • Complement
A ( x) 1 A ( x), x X
• Union
AB ( x) max( A ( x), B ( x)), x X
• Intersection
AB ( x) min( A ( x), B ( x)), x X
FUZZY COMPLEMENT • C:[0,1][0,1]
FUZZY COMPLEMENT
FUZZY COMPLEMENT • Axioms C1 and C2 called “axiomatic skeleton” are fundamental requisites to be a complement function, i.e., for any function C:[0,1][0,1] that satisfies axioms C1 and C2 is called a fuzzy complement. • Additional requirements
FUZZY COMPLEMENT • Example 1 : Standard function
Axiom C1 Axiom C2 Axiom C3 Axiom C4
FUZZY COMPLEMENT • Example 2 :
Axiom C1 Axiom C2 X Axiom C3 X Axiom C4
FUZZY COMPLEMENT • Example 3:
Axiom C1 Axiom C2 Axiom C3 X Axiom C4
FUZZY COMPLEMENT • Example 4: Yager’s function
Axiom C1 Axiom C2 Axiom C3 Axiom C4
FUZZY COMPLEMENT • Fuzzy partition If m subsets are defined in X, m-tuple (A1, A2,…,Am) holding the following conditions is called a fuzzy partition.
FUZZY UNION
FUZZY UNION • Axioms U1 ,U2,U3 and U4 (called “axiomatic skeleton”) are fundamental requisites to be a union function, i.e., for any function U:[0,1]X[0,1][0,1] that satisfies axioms U1,U2,U3 and U4 is called a fuzzy union. • Additional requirements
• Example 1 : Standard union
Axiom U1 Axiom U2 Axiom U3 Axiom U4 Axiom U5 Axiom U6
• Example 2: Yager’s union function
Axiom U1 Axiom U2 Axiom U3 Axiom U4 Axiom U5 X Axiom U6
FUZZY UNION
• Some frequently used fuzzy unions – Probabilistic sum (Algebraic Sum):
U as ( x, y) x y x y – Bounded Sum (Bold union):
U bs ( x, y) min{1, x y} – Drastic Sum:
max{ x, y}, if min{ x, y} 0 U ds ( x, y ) 1, x, y 0
– Hamacher’s Sum
x y (2 ) x y U hs ( x, y ) , 0 1 (1 ) x y
FUZZY UNION
FUZZY INTERSECTION
FUZZY INTERSECTION • Axioms I1 ,I2,I3 and I4 (called their “axiomatic skeleton”) are fundamental requisites to be a intersection function, i.e., for any function I:[0,1]X[0,1][0,1] that satisfies axioms I1,I2,I3 and I4 is called a fuzzy intersection. • Additional requirements
• Example 1 : Standard intersection function
Axiom I1 Axiom I2 Axiom I3 Axiom I4 Axiom I5 Axiom I6
• Example 2: Yager’s intersection function
Axiom I1 Axiom I2 Axiom I3 Axiom I4 Axiom I5 X Axiom I6
FUZZY INTERSECTION
• Some frequently used fuzzy intersections - Probabilistic product (Algebraic product):
I ap ( x, y) x y - Bounded product (Bold intersection):
I bd ( x, y) max{ 0, x y 1} - Drastic product:
min{ x, y}, if max{ x, y} 1 I dp ( x, y ) 0, x, y 1
- Hamacher’s product x y I hp ( x, y ) , 0 (1 )( x y x y )
FUZZY INTERSECTION
OTHER OPERATIONS • Disjunctive sum (exclusive OR)
OTHER OPERATIONS
OTHER OPERATIONS
MORE OPERATIONS • Disjoint sum (elimination of common area)
• Difference Crisp set
Fuzzy set : Bounded difference
OTHER OPERATIONS • Example Simple difference
• Example Bounded difference
• Distance and difference
• Distance Hamming distance
OTHER OPERATIONS Euclidean distance
Relative Euclidean distance Minkowski distance (w=1-> Hamming and w=2-> Euclidean)
• Cartesian product Power
Cartesian product
• Example: • A = { (x1, 0.2), (x2, 0.5), (x3, 1) } • B = { (y1, 0.3), (y2, 0.9) }
T-NORMS AND T-CONORMS (OR SNORMS)
T-NORMS AND T-CONORMS (S-NORMS)
T-NORMS AND T-CONORMS (S-NORMS) • Duality of t-norms and t-conorms
Applying complements
( x, y ) 1 T (1 x,1 y) 1 T ( x, y) T ( x, y), : t - conorms T : t - norms De Morgan’s laws