Characterization of a Polyacrylamide Solution Used for ... - MDPI

34 downloads 5516 Views 4MB Size Report
Jan 2, 2016 - contact angle, surface tension, and viscosity of PAM solutions were ..... Ground-Water Remediation Technologies Analysis Center: Pittsburgh,.
materials Article

Characterization of a Polyacrylamide Solution Used for Remediation of Petroleum Contaminated Soils Jongwon Jung 1 , Jungyeon Jang 1 and Jaehun Ahn 2, * Received: 8 October 2015; Accepted: 21 December 2015; Published: 2 January 2016 Academic Editor: Maryam Tabrizian 1 2

*

Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; [email protected] (J.J.); [email protected] (J.J.) School of Urban, Architecture, and Civil Engineering, Pusan National University, Busan 609-735, Korea Correspondence: [email protected]; Tel.: +82-51-510-7627

Abstract: Biopolymers are viewed as effective and eco-friendly agents in soil modification. This study focuses on the wettability analysis of polyacrylamide (PAM) solutions for soil remediation. The contact angle, surface tension, and viscosity of PAM solutions were experimentally evaluated in air- and decane-biopolymer solution systems. Furthermore, a micromodel was used to investigate the pore-scale displacement phenomena during the injection of the PAM solution in decane and or air saturated pores. The contact angle of the PAM solution linearly increases with increasing concentration in air but not in decane. The surface tension between the PAM solution and air decreases at increasing concentration. The viscosity of the PAM solution is highly dependent on the concentration of the solution, shear rate, and temperature. Low flow rate and low concentration result in a low displacement ratio level, which is defined as the volume ratio between the injected and the defended fluids in the pores. The displacement ratio is higher for PAM solutions than distilled water; however, a higher concentration does not necessarily guarantees a higher displacement ratio. Soil remediation could be conducted cost-efficiently at high flow rates but with moderate concentration levels. Keywords: biopolymer; polyacrylamide; contact angle; surface tension; micromodel; viscosity; soil remediation

1. Introduction Recent developments in the use of organic agents for soil improvement have elicited promising results. Organic agents, including polymers, biopolymers, and surfactants, have shown to improve the shear strength, stiffness, soil remediation, and erosion resistance behaviors of geomaterials [1–8]. Among them, biopolymers such as polyacrylamide (PAM) and Xanthan gum have shown great promise for enhanced oil recovery (EOR) because they lead to an increase in the viscosity of water, decrease in the mobility of water, and contact with a larger volume of the reservoir [9–11]. Given the water flooding performance of biopolymer solutions through porous media in EOR, they have been considered as cost-efficient materials for oil contaminant soil remediation [12]. However, previous works on biopolymers were limited to the evaluation of the shear strength, stiffness, and erosion resistance properties of soils saturated with biopolymer solutions. Little is known about the flow characteristics of biopolymer solutions through a porous medium. Therefore, in this study, we selected PAM—one of the most widely used biopolymers—and explored its physical properties such as contact angle, surface tension, and viscosity at different concentrations. Furthermore, we conducted micromodel tests to understand the flow behavior of a PAM solution in porous media.

Materials 2016, 9, 16; doi:10.3390/ma9010016

www.mdpi.com/journal/materials

Materials 2016, 9, 16

2 of 13

2. Literature Review 2.1. Remediation of Petroleum Contaminated Soil Soil contamination in urban and rural environments can be caused at industrial sites such as mining heaps, dumps, filled natural depressions, and quarries [13]. Important characterization and remediation techniques have been developed to deal with the contamination of soils and sediments [14,15]. Soil remediation technologies such as excavation, soil vapor extraction, bioremediation, surfactants enhanced remediation, and steam injection have been used for many years [16–18]. The excavation of contaminated soil is a simple solution. However, this method has become less popular owing to its high cost and the lack of available landfill sites [15]. Instead, soil flushing methods such as soil vapor extraction, surfactant-enhanced remediation, and steam injection have been more popular in recent years [19]. Among these, surfactant-enhanced remediation affords an enhanced rate of remediation by exploiting the low surface tension of the surfactants [15]. Oil-contaminated sites have been remediated by in-situ flushing using biosurfactants, that is, surface-active substances synthesized by living cells [20,21]. Biopolymers synthesized from plants can also be used instead of biosurfactants as an eco-friendly soil remediation method [22]. Biopolymer flushing was originally developed for petroleum-enhanced oil recovery, and subsequently, it has been used for the remediation of petroleum waste at contaminated sites [23–29]. The basic principle of biopolymer flushing is that the addition of a biopolymer to the flushing water leads to increased viscosity and capillary number, decreased mobility, and contact with a larger volume of the reservoir [30]. The capillary number of a fluid is related to the fluid velocity, fluid viscosity, and surface tension. Mobility is a relative measure of how easily a fluid moves through porous media. Apparent mobility is defined as the ratio of the effective permeability to the fluid viscosity [31]. The physical properties of biopolymers, such as viscosity, surface tension, and contact angle, are important to determine when using biopolymer solutions is feasible for the remediation of petroleum contaminated soils. 2.2. Multiphase Fluid Flow In multiphase fluid flow, the displacement ratio in a porous medium, defined as the ratio of the volume of the injected fluid to that of the defended fluid, is governed by two dimensionless numbers, viscosity number (Nm ) and capillary number (Nc ), that are defined as follows [32,33]: µinv µdef

(1)

µinv vinv σ¨ cosθ

(2)

Nm “ Nc “

where µinv and µdef are the viscosities of the injected and defended fluids, respectively; vinv is the velocity of the injected fluid; σ is the surface tension between the injected and the defended fluids; and θ is the contact angle on the surface of the medium. These two dimensionless numbers govern the displacement characteristics of the fluids represented by three dominant patterns, capillary fingering, viscous fingering, and stable displacement, as shown in Figure 1 [34–36]. When the values of log (Nm ) and log (Nc ) are positive during fluid injection into a saturated porous medium, stable displacement can be expected. Otherwise, either viscous or capillary fingering may occur, resulting in a low displacement ratio; thus, the volume of petroleum eliminated from the contaminated soil will decrease. In the experimental program presented in this paper, PAM solution was used as the injected fluid and air or decane was used as the defended fluid. Decane (alkane hydrocarbon, anhydrous, ě99%, C10 H22 ) [37–42], a major constituent of petroleum, represents the petroleum contaminant in soils [43–45].

Materials 2016, 9, 16 Materials 2016, 9, 16  Materials 2016, 9, 16 

3 of 13

    Figure 1. Displacement pattern with respect to N m and Nc: (a) viscous fingering; (b) stable displacement;  Figure 1. Displacement pattern with respect to Nm and Ncc: (a) viscous fingering; (b) stable displacement;  : (a) viscous fingering; (b) stable displacement; Figure 1. Displacement pattern with respect to N m and N and (c) capillary fingering [32,46].  and (c) capillary fingering [32,46]. and (c) capillary fingering [32,46]. 

3. Experimental Program  3. Experimental Program 3. Experimental Program  Figure  2  and  Table  1,  respectively,  show  the  chemical  structure  and  composition  of  PAM,    Figure composition ofof  PAM, a   Figure  22  and and Table Table 1,1, respectively, respectively, show show the the chemical chemical structure structure and and  composition  PAM,  a polymer produced using acrylamide. The properties of PAM solutions, such as contact angle, surface  polymer produced using acrylamide. The properties of PAM solutions, such as contact angle, surface a polymer produced using acrylamide. The properties of PAM solutions, such as contact angle, surface  tension, viscosity, and flow characteristic (micromodel test), were tested at six concentrations—0, 2,  tension, viscosity, and flow characteristic (micromodel test), were tested at six concentrations—0, 2, tension, viscosity, and flow characteristic (micromodel test), were tested at six concentrations—0, 2,  5, 10, 15, and 20 g/L—prepared by mixing PAM with deionized water, except the viscosity at 0‐g/L  5, 10, 15, and 20 g/L—prepared by mixing PAM with deionized water, except the viscosity at 0-g/L 5, 10, 15, and 20 g/L—prepared by mixing PAM with deionized water, except the viscosity at 0‐g/L  concentration. The viscosity of deionized water is readily available in literatures.  concentration. The viscosity of deionized water is readily available in literatures. concentration. The viscosity of deionized water is readily available in literatures. 

    Figure 2. The basic chemical structure of polyacrylamide (PAM) [47].  Figure 2. The basic chemical structure of polyacrylamide (PAM) [47].  Figure 2. The basic chemical structure of polyacrylamide (PAM) [47]. Table 1. The chemical composition of polyacrylamide (PAM).  Table 1. The chemical composition of polyacrylamide (PAM).  Table 1. The chemical composition of polyacrylamide (PAM).

Label  Label  PAM  Label PAM  PAM

Name Chemical Composition  Name Chemical Composition  Polyacrylamide  (C3H5NO)n  Name Chemical Composition Polyacrylamide  (C3H5NO)n  Polyacrylamide

(C3 H5 NO)n

3.1. Contact Angle  3.1. Contact Angle  3.1. Contact Angle The sessile drop technique was used to measure the contact angle of PAM solutions on the silica  The sessile drop technique was used to measure the contact angle of PAM solutions on the silica  surface  in  air  or  in  decane.  Smooth  fused  pure  silica  plates  (VWR  Vista  Vision—Cover  Glasses,  Thein  sessile technique was fused  used to measure contact angle ofVision—Cover  PAM solutionsGlasses,  on the surface  air  or drop in  decane.  Smooth  pure  silica  the plates  (VWR  Vista  amorphous  SiO2)  were  used  as  the  substrates  to  represent  silica  sands.  Before  each  contact  angle  silica surface in air or in decane. Smooth fused pure silica plates (VWR Vista Vision—Cover Glasses, amorphous  SiO2)  were  used  as  the  substrates  to  represent  silica  sands.  Before  each  contact  angle  measurement, the silica plate was cleaned using ethanol (Malickrodt Baker, ACS reagent grade) and  amorphous SiO2 ) were used as the substrates to represent silica sands. Before each contact angle measurement, the silica plate was cleaned using ethanol (Malickrodt Baker, ACS reagent grade) and  handled  with  clean  gloves.  A  new  silica  plate  was  used  for  each  measurement  to  avoid  possible  measurement, the silica plateA  was cleaned using was  ethanol (Malickrodt Baker, ACS reagent grade) and handled  with  clean  gloves.  new  silica  plate  used  for  each  measurement  to  avoid  possible  complications introduced from the reaction history with decane and PAM solutions. A droplet of PAM  handled with clean gloves. A new silica plate was used for each measurement to avoid possible complications introduced from the reaction history with decane and PAM solutions. A droplet of PAM  solution  was  foamed  on  the  silica  surface  under  atmospheric  conditions,  and  the  contact  angle  was  complications introduced from the reaction historyatmospheric  with decaneconditions,  and PAM solutions. A droplet of PAM solution  was  foamed  on  the  silica  surface  under  and  the  contact  angle  was  measured. Furthermore, the PAM solution was introduced into the decane‐filled chamber and released  measured. Furthermore, the PAM solution was introduced into the decane‐filled chamber and released  onto  the  silica  plate  in  the  chamber.  The  evolution  of  the  biopolymer  droplet  was  monitored  using    onto  the  silica  plate  in  the  chamber.  The  evolution  of  the  biopolymer  droplet  was  monitored  using    3/13  3/13 

Materials 2016, 9, 16

4 of 13

solution was foamed on the silica surface under atmospheric conditions, and the contact angle was measured. Furthermore, the PAM solution was introduced into the decane-filled chamber and released Materials 2016, 9, 16  onto the silica plate in the chamber. The evolution of the biopolymer droplet was monitored using high-resolution time-lapse photography (Nikon D90, resolution: 12.3 megapixels). Each experimental high‐resolution time‐lapse photography (Nikon D90, resolution: 12.3 megapixels). Each experimental  case was conducted at least five times, at a constant room temperature (24 ˝ C). The captured images of case was conducted at least five times, at a constant room temperature (24 °C). The captured images  the droplets were analyzed using ImageJ, and the contact angles were measured (Figure 3). of the droplets were analyzed using ImageJ, and the contact angles were measured (Figure 3). 

  Figure  3. 3.  Contact  (c,d)  in in  decane decane  as as  determined determined  using using    Figure Contact angle  angle on  on a  a silica  silica surface  surface (a,b)  (a,b) in  in air  air and  and (c,d) high‐resolution time‐lapse photography and Image J.  high-resolution time-lapse photography and Image J.

3.2. Surface Tension  3.2. Surface Tension The surface tension of PAM solutions was measured using the Du Nouy ring method. In this  The surface tension of PAM solutions was measured using the Du Nouy ring method. In this method, a platinum ring of 6‐cm diameter is submerged into one phase (liquid) and then raised to  method, a platinum ring of 6-cm diameter is submerged into one phase (liquid) and then raised to another  phase  to  form  a  fluid  meniscus.  This  meniscus  subsequently  tears  from  the  ring.  The  another phase to form a fluid meniscus. This meniscus subsequently tears from the ring. The maximum maximum force required to support the ring is measured; this force is the surface tension between  force required to support the ring is measured; this force is the surface tension between the two liquids. the two liquids. In this study, a force tensiometer (Sigma 703D, Biolin Scientific, Stockholm, Sweden)  In this study, a force tensiometer (Sigma 703D, Biolin Scientific, Stockholm, Sweden) was used for was used for these measurements.  these measurements. 3.3. Viscosity  3.3. Viscosity The viscosity viscosity  PAM  solutions  was  measured  using  a  Brookfield  DV‐III  The ofof  thethe  PAM solutions was measured using a Brookfield ViscometerViscometer  DV-III (Brookfield, (Brookfield,  Middleboro,  USA).  In  the  tests,  a  spindle  in  the at test  fluid  rotates  at  a  Middleboro, MA, USA). InMA,  the tests, a spindle immersed in theimmersed  test fluid rotates a constant rate, and constant  rate,  and  the  viscosity  is  measured  from  the  torque  required  to  rotate  the  spindle.  The  the viscosity is measured from the torque required to rotate the spindle. The viscosity of a material viscosity of a material can be sensitive to the temperature and loading rate; the experiments were  can be sensitive to the temperature and loading rate; the experiments were conducted with controlled −1)  under  various  1 ) under conducted  with 6.8, controlled  shear  rates  (3.4, various 6.8,  17, temperatures 34,  and  68  s(25, temperatures    shear rates (3.4, 17, 34, and 68 s´ 50, 70, and 90 ˝ C). (25, 50, 70, and 90 °C).  3.4. Flow Characteristics (Micromodel Test) 3.4. Flow Characteristics (Micromodel Test)  3.4.1. Experimental Setup 3.4.1. Experimental Setup  Figure 4a shows a schematic of the experimental configuration. The silica micromodel was placed horizontally onshows  a customized jack stage. Aexperimental  syringe (2.5 mL with a 1/16 The  inch silica  fitting) controlled by a Figure  4a  a  schematic  of  the  configuration.  micromodel  was  precision syringe pump (Kats Scientific, NE-1010, Kats Enterprises, Denton, TX, USA) was connected placed horizontally on a customized jack stage. A syringe (2.5 mL with a 1/16 inch fitting) controlled  to micromodel for injecting PAM solution.NE‐1010,  To monitor theEnterprises,  flow processes in theTX,  micromodel, a by the a  precision  syringe  pump  the (Kats  Scientific,  Kats  Denton,  USA)  was  high-resolution camera (Nikon D7000, resolution: 16.2 megapixels, Nikon, Tokyo, Japan) was used connected to the micromodel for injecting the PAM solution. To monitor the flow processes in the  with computer-controlled image and video capture functions. micromodel, a high‐resolution camera (Nikon D7000, resolution: 16.2 megapixels, Nikon, Tokyo, Japan)  was used with computer‐controlled image and video capture functions. 

Materials 2016, 9, 16 Materials 2016, 9, 16 

5 of 13

(a)

(b) Computer

Waste

Camera

Microfluidic Models

PAM

10 mm

Decane

20 mm

Syringe pump

Flow direction

 

Figure 4. Micromodel test: (a) schematic design of the setup and (b) micromodel used to represent a  Figure 4. Micromodel test: (a) schematic design of the setup and (b) micromodel used to represent a two‐dimensional porous network.  two-dimensional porous network.

The micromodel fabricated by Micronit Microfluidics BV is made out of fused silica. Customized  The micromodel fabricated by Micronit Microfluidics BV is made out of fused silica. Customized pore networks are etched on two symmetrically patterned silica plates, which are then fused together  pore networks are etched on two symmetrically patterned silica plates, which are then fused together to form a two‐dimensional porous network. The dimension of the patterned area is 20 mm × 10 mm,  to form a two-dimensional porous network. The dimension of the patterned area is 20 mm ˆ 10 mm, and it contains 576 discoid silica grains (1186 pore bodies with 590‐μm diameter). The pore throat is  and it contains 576 discoid silica grains (1186 pore bodies with 590-µm diameter). The pore throat is 20‐μm deep and ~30‐μm wide. Figure 4b shows the top view of the micromodel within a chip holder  20-µm deep and ~30-µm wide. Figure 4b shows the top view of the micromodel within a chip holder for protection and tubing connection.  for protection and tubing connection. 3.4.2. Experimental Procedure  3.4.2. Experimental Procedure The micromodel was first cleaned by injecting 5 mL of absolute ethanol (Mallinckodt Baker, ACS  The micromodel was first cleaned by injecting 5 mL of absolute ethanol (Mallinckodt Baker, reagent grad), and then by 30 mL of deionized water. After cleaning, the micromodel was oven‐dried  ACS reagent grad), and then by 30 mL of deionized water. After cleaning, the micromodel was at 120 °C for 48 h. The experimental system was assembled as shown in Figure 4a. Two set of tests  oven-dried at 120 ˝ C for 48 h. The experimental system was assembled as shown in Figure 4a. Two were  conducted  using  the using micromodel.  The  first The set first was set the  PAM  solution  injection  into into the    set of tests were conducted the micromodel. was the PAM solution injection air‐saturated  micromodel  under  atmospheric  conditions.  PAM  solution  was  injected  into  the  the air-saturated micromodel under atmospheric conditions. PAM solution was injected into the micromodel at constant flow rates of 0.3, 1.0, and 50.0 μL/min. The injection was continued until the  micromodel at constant flow rates of 0.3, 1.0, and 50.0 µL/min. The injection was continued until the PAM solution percolated the micromodel, and then additional one hundred pore volume (PV) units  PAM solution percolated the micromodel, and then additional one hundred pore volume (PV) units of of PAM solution, which was sufficient to realize steady displacement, were eventually injected into  PAM solution, which was sufficient to realize steady displacement, were eventually injected into the the  micromodel.  The  second  PAM injection solution into injection  into  the  decane‐saturated  micromodel. The second set wasset  thewas  PAMthe  solution the decane-saturated micromodel. micromodel. A small tubing chamber was placed between the micromodel and the syringe pump  A small tubing chamber was placed between the micromodel and the syringe pump that was filled that was filled with PAM solution and decane. Decane was always placed at an upper layer in this  with PAM solution and decane. Decane was always placed at an upper layer in this chamber owing chamber  owing  to  its  lower  density  compared  to  the  PAM  solution,  and was therefore,  decane  to its lower density compared to the PAM solution, and therefore, decane pumped first was  and pumped first and the micromodel was initially saturated with decane. Then, the PAM solution was  the micromodel was initially saturated with decane. Then, the PAM solution was injected into the injected  into atthe  micromodel  at  of constant  rates  of  0.3,  The 1.0, injection and  50.0 continued μL/min.  until The  injection  micromodel constant flow rates 0.3, 1.0,flow  and 50.0 µL/min. no more continued  no  more  was  drained  from  the  micromodel.  Furthermore,  additional  decane wasuntil  drained from decane  the micromodel. Furthermore, additional one hundred PAM solutionone  PV hundred PAM solution PV units were eventually injected into the micromodel after the PAM solution  units were eventually injected into the micromodel after the PAM solution had percolated through the had percolated through the micromodel. The room temperature was constant at 24 °C. The images  micromodel. The room temperature was constant at 24 ˝ C. The images and videos captured during and videos captured during these injection processes were analyzed using ImageJ to compute the  these injection processes were analyzed using ImageJ to compute the biopolymer saturation, or PAM biopolymer saturation, or PAM solution‐decane displacement ratio, in the micromodel.  solution-decane displacement ratio, in the micromodel. 4. Results  4. Results The experimental results for the contact angle, surface tension, viscosity, and flow characteristics  The experimental results for the contact angle, surface tension, viscosity, and flow characteristics (micromodels)  are are presented presented and and discussed discussed in in this this section. section.  In  addition,  the  implication  of  the  test test  (micromodels) In addition, the implication of the results to soil remediation is addressed.  results to soil remediation is addressed.

5/13 

Materials 2016, 9, 16 Materials 2016, 9, 16 

6 of 13

Materials 2016, 9, 16 

4.1. Contact Angle  4.1. Contact Angle 4.1. Contact Angle 

Figure 5 shows sample snapshots of droplets of PAM solutions and water on the silica plate in  Figure 5 shows sample snapshots of droplets of PAM solutions and water on the silica plate in air. It can be seen that the contact angles increase as the concentration of the PAM solutions increases.  air. ItMaterials 2016, 9, 16  canFigure 5 shows sample snapshots of droplets of PAM solutions and water on the silica plate in  be seen that the contact angles increase as the concentration of the PAM solutions increases. air. It can be seen that the contact angles increase as the concentration of the PAM solutions increases.  In fact, fact,  air,  contact  angle  exhibits  a  linear  relationship  with  the  concentration  of  the  PAM  In inin  air, thethe  contact angle exhibits a linear relationship with the concentration of the PAM solution, 4.1. Contact Angle  In  fact,  in  air,  the  contact  angle  exhibits  a  linear  relationship  with  the  concentration  of  the  PAM  solution,  in  Figure  6a.  In  decane, the however,  contact  angles  the  PAM  solutions  are  as shown as  in shown  Figure 6a. In decane, however, contactthe  angles of the PAMof  solutions are lower than solution,  as  shown  in  Figure  6a.  In  decane,  however,  the  contact  angles  of  the  PAM  solutions  are  Figure 5 shows sample snapshots of droplets of PAM solutions and water on the silica plate in  lower than those of water, and the values are relatively constant within the concentration range of    those of water, and the values are relatively constant within the concentration range of 2–20 g/L lower than those of water, and the values are relatively constant within the concentration range of    air. It can be seen that the contact angles increase as the concentration of the PAM solutions increases.  ˝ 2–20 g/L (Figure 6b). In both air and decane, the contact angles were less than 90°.  (Figure 6b). In both air and decane, the contact angles were less than 90 . 2–20 g/L (Figure 6b). In both air and decane, the contact angles were less than 90°.  In  fact,  in  air,  the  contact  angle  exhibits  a  linear  relationship  with  the  concentration  of  the  PAM  solution,  as  shown  in  Figure  6a.  In  decane,  however,  the  contact  angles  of  the  PAM  solutions  are  lower than those of water, and the values are relatively constant within the concentration range of    2–20 g/L (Figure 6b). In both air and decane, the contact angles were less than 90°. 

 

 

Figure 5. Contact angles at various PAM concentrations on the silica surface in air. 

Figure 5. Contact angles at various PAM concentrations on the silica surface in air. Figure 5. Contact angles at various PAM concentrations on the silica surface in air. 

  Figure 5. Contact angles at various PAM concentrations on the silica surface in air. 

  Figure 6. Contact angles of PAM solutions on the silica surface: (a) in air and (b) in decane. 

 

4.2. Surface Tension  Figure 6. Contact angles of PAM solutions on the silica surface: (a) in air and (b) in decane.  Figure 6. Contact angles of PAM solutions on the silica surface: (a) in air and (b) in decane.   Figure 7 shows the results of the surface tension of the PAM solutions in air. It can be seen that  Figure 6. Contact angles of PAM solutions on the silica surface: (a) in air and (b) in decane.  4.2. Surface Tension  the  PAM  solutions  have  lower  surface tension  than deionized  water,  and  the value  of  the surface  4.2. Surface Tension 4.2. Surface Tension  tension decreases with increasing concentration. The decreasing trend of surface tension is steep up  Figure 7 shows the results of the surface tension of the PAM solutions in air. It can be seen that  Figure 7 shows the results of the surface tension of the PAM solutions in air. It can be seen that the to ~5 g/L, after which it decreases more slowly.  Figure 7 shows the results of the surface tension of the PAM solutions in air. It can be seen that  the  PAM  solutions  surface tension  than deionized  the value  of  the surface  PAMthe  solutions havehave  lowerlower  surface tension than deionized water, water,  and theand  value of the surface tension PAM  solutions  have  lower  surface tension  than deionized  water,  and  the value  of  the surface  tension decreases with increasing concentration. The decreasing trend of surface tension is steep up  decreases with increasing concentration. The decreasing trend of surface tension is steep up to ~5 g/L, tension decreases with increasing concentration. The decreasing trend of surface tension is steep up  to ~5 g/L, after which it decreases more slowly.  after to ~5 g/L, after which it decreases more slowly.  which it decreases more slowly.

  Figure 7. Surface tension of PAM solutions in air. 

6/13  Figure 7. Surface tension of PAM solutions in air.  Figure 7. Surface tension of PAM solutions in air. Figure 7. Surface tension of PAM solutions in air. 

6/13 

6/13 

 

 

Materials 2016, 9, 16 Materials 2016, 9, 16 

7 of 13

4.3. Viscosity 4.3. Viscosity  Figure Figure  88  shows shows  the the  results results  of of  the the  viscosities viscosities  of of  the the  PAM PAM solutions solutions  with with  respect respect  to to  their their  ´−1 1 . The viscosity tends to increase as the concentrations at constant shear rates of 3.4, 6.8, 17, 34 and 68 s concentrations at constant shear rates of 3.4, 6.8, 17, 34 and 68 s . The viscosity tends to increase as the  concentration increases, and it has a higher value at a lower temperature and at a higher shear rate. The concentration increases, and it has a higher value at a lower temperature and at a higher shear rate. The  viscosity consistently increases with increasing concentration at high shear rates of 17–68 s´−11. However,  . However, viscosity consistently increases with increasing concentration at high shear rates of 17–68 s ´−11 , the increasing trend seems less prominent for concentrations higher at lower shear rates of 3.4–6.8 s at lower shear rates of 3.4–6.8 s , the increasing trend seems less prominent for concentrations higher  than 10–15 g/L.   than 10–15 g/L.  Figure 8a,e is regenerated and plotted with respect to temperature in Figure 9a,b, and it becomes Figure 8a,e is regenerated and plotted with respect to temperature in Figure 9a,b, and it becomes  clear that the viscosity is inversely proportional to temperature. As the temperature increases, the time clear that the viscosity is inversely proportional to temperature. As the temperature increases, the  of interaction between neighboring molecules of a liquid decreases because of the increased time  of  interaction  between  neighboring  molecules  of  a  liquid  decreases  because  of  the  velocities increased  of individual molecules. The intermolecular force decreases, therefore causing the viscosity of the velocities of individual molecules. The intermolecular force decreases, therefore causing the viscosity  PAM solution to decrease. of the PAM solution to decrease.  To investigate the effect of the shear rate explicitly, the viscosities are plotted in Figure 10 with To investigate the effect of the shear rate explicitly, the viscosities are plotted in Figure 10 with  respect to the shear rates for the lowest and highest temperatures, 25 and 90 ˝ C. It is noted that the respect to the shear rates for the lowest and highest temperatures, 25 and 90 °C. It is noted that the  viscosity is dependent on the shear rate, indicating that the biopolymer solution is a non-Newtonian viscosity is dependent on the shear rate, indicating that the biopolymer solution is a non‐Newtonian  1 , after which it fluid. The viscosity decreases with increasing shear rate up to approximately 20 s´−1 fluid. The viscosity decreases with increasing shear rate up to approximately 20 s , after which it  becomes nearly constant at larger shear rates. becomes nearly constant at larger shear rates. 

 

  Figure 8. Cont. Figure 8. Cont.  

7/13 

Materials 2016, 9, 16 Materials 2016, 9, 16 

8 of 13

Materials 2016, 9, 16  Materials 2016, 9, 16 

 

  −1   of (a) 3.4 s´1−1; ; (b) 6.8 s Figure 8. Viscosity with respect to concentration of the solution at shear rates of (a) 3.4 s Figure 8. Viscosity with respect to concentration of the solution at shear rates (b) 6.8 s´1; ;

−1; (b) 6.8 s−1;  Figure 8. Viscosity with respect to concentration of the solution at shear rates of (a) 3.4 s −1 −1; and (e) 68 s−1. ´1 −1; (b) 6.8 s−1;  (c) 17 s Figure 8. Viscosity with respect to concentration of the solution at shear rates of (a) 3.4 s (c) 17 s´1; (d) 34 s ; ; (d) 34 s (d) 34 s´1 ; and (e) 68 −1s.  . −1 −1; and (e) 68 s (c) 17 s (c) 17 s−1; (d) 34 s−1; and (e) 68 s−1. 

     

Figure 9. Viscosity with respect to temperature at shear rates of (a) 3.4 s Figure 9. Viscosity with respect to temperature at shear rates of (a) 3.4 s  and (b) 68 s and (b) 68 s..   . . Figure 9. Viscosity with respect to temperature at shear rates of (a) 3.4 s  and (b) 68 s Figure 9. Viscosity with respect to temperature at shear rates of (a) 3.4 s  and (b) 68 s −1 ´1 −1 −1

−1 ´1 −1 −1

Figure 10. Viscosity with respect to shear rate at temperatures of (a) 25 °C and (b) 90 °C.  Figure 10. Viscosity with respect to shear rate at temperatures of (a) 25 °C and (b) 90 °C.  Figure 10. Viscosity with respect to shear rate at temperatures of (a) 25 ˝ C and (b) 90 ˝ C. Figure 10. Viscosity with respect to shear rate at temperatures of (a) 25 °C and (b) 90 °C. 

   

 

The  viscosity  of  the  PAM  solution  is  highly  dependent  on  the  concentration  of  the  solution,    The  viscosity  of  the  PAM  solution  is  highly  dependent  on  the  concentration  of  the  solution,    shear rate, and temperature, as are both N  and N cdependent  . Therefore, it is important to properly determine  The  viscosity of of the the  PAM  solution  is mmhighly  on concentration the  concentration  the  solution,  The viscosity PAM solution is highly dependent on the of theof  solution, shear   shear rate, and temperature, as are both N  and N c. Therefore, it is important to properly determine  the concentration of the PAM solution and shear rate (and, in turn, the injection rate) and estimate  shear rate, and temperature, as are both N m  and N c . Therefore, it is important to properly determine  rate, and temperature, as are both N and N . Therefore, it is important to properly determine the m c the concentration of the PAM solution and shear rate (and, in turn, the injection rate) and estimate  the  temperature  distribution  in  the  ground  in  order  to  design  the  soil  remediation  process  and  the concentration of the PAM solution and shear rate (and, in turn, the injection rate) and estimate  concentration of the PAM solution and shear in  rate (and,to indesign  turn, the rate) and estimate the the  temperature  distribution  in  the  ground  order  the injection soil  remediation  process  and  calculate its efficiency.  the  temperature  distribution  the  ground  in to order  to  the design  soil  remediation  process  and  temperature distribution in thein ground in order design soil the  remediation process and calculate calculate its efficiency.  calculate its efficiency.  its efficiency. 8/13  8/13 

8/13 

Materials 2016, 9, 16

9 of 13

Materials 2016, 9, 16  4.4. Micromodel Tests

Materials 2016, 9, 16 

4.4. Micromodel Tests  Figure 11 shows a series of snapshots of micromodels upon the injection of 10 g/L PAM solution with 4.4. Micromodel Tests  additional one hundred times the PV after the first percolation through the micromodel. When Figure 11 shows a series of snapshots of micromodels upon the injection of 10 g/L PAM solution  with  additional  one  hundred  times  the  PV  first  percolation  through  the  micromodel.    that these images were analyzed, it was found thatafter  thethe  displacement ratio increased at flow rates Figure 11 shows a series of snapshots of micromodels upon the injection of 10 g/L PAM solution  When these images were analyzed, it was found that the displacement ratio increased at flow rates  ranged from 59.4% atone  0.3hundred  µL/min times  to 90.1% 50after  µL/min. Thepercolation  distribution of thethe  residual decane  did with  additional  the  at PV  the  first  through  micromodel.  that ranged from 59.4% at 0.3 μL/min to 90.1% at 50 μL/min. The distribution of the residual decane  not change significantly during the injection of a solution that had hundred times the PV, after the first When these images were analyzed, it was found that the displacement ratio increased at flow rates  did  not  change  significantly  during  the  injection  of  a  solution  that  had  hundred  times  the  PV,    percolation for all the cases tested. that ranged from 59.4% at 0.3 μL/min to 90.1% at 50 μL/min. The distribution of the residual decane  after the first percolation for all the cases tested. 

did  not  change  significantly  during  the  injection  of  a  solution  that  had  hundred  times  the  PV,    after the first percolation for all the cases tested. 

  Figure 11. Snapshots of 10‐g/L PAM solution injection into the micromodel. 

Figure 11. Snapshots of 10-g/L PAM solution injection into the micromodel.  

Figure  12  shows  the  values  of  the  displacement  ratios  with  respect  to  flow  rate.  While  the  Figure 11. Snapshots of 10‐g/L PAM solution injection into the micromodel.  displacement  ratio  of  values the  PAM  against  both  air  and  with decane  consistently  increases  Figure 12 shows the ofsolution  the displacement ratios respect to flow rate. with  While the increasing values of the flow rate, the effect of the flow rate is more prominent for decane. When the  displacement ratio of thethe  PAM solution both ratios  air and decane Figure  12  shows  values  of  the  against displacement  with  respect consistently to  flow  rate. increases While  the with displacement ratio is plotted with respect to the concentration of the solution (Figure 13), for both air  increasing values of the flow rate, the effect of the flow rate is more prominent for decane. When displacement  ratio  of  the  PAM  solution  against  both  air  and  decane  consistently  increases  with  and decane saturated systems, the displacement ratio clearly shows an increasing trend for solution  the displacement ratio is plotted with respect to the concentration of the solution (Figure 13), for increasing values of the flow rate, the effect of the flow rate is more prominent for decane. When the  concentrations  of  up  to  5  g/L.  However,  for  larger  concentrations,  the  relationship  is  not  both displacement ratio is plotted with respect to the concentration of the solution (Figure 13), for both air  airstraightforward but fluctuates slightly. The results (Figures 12 and 13) show that low flow rates and  and decane saturated systems, the displacement ratio clearly shows an increasing trend for low  concentrations of result  in  low  levels  of  displacement  ratios,  which  is  a  similar  trend  to  the  is not and decane saturated systems, the displacement ratio clearly shows an increasing trend for solution  solution concentrations up to 5 g/L. However, for larger concentrations, the relationship multiphase  flow  of  COto  2  and  brine,  as reported  by  Kuo  et 12 al. (2011)  [48].  The  displacement ratio  concentrations  of  up  5  g/L.  However,  for  larger  concentrations,  the  relationship  is is not  straightforward but fluctuates slightly. The results (Figures and 13) show that low flow rates and low higher for PAM solutions than deionized water; however, higher concentrations do not guarantee  straightforward but fluctuates slightly. The results (Figures 12 and 13) show that low flow rates and  concentrations result in low levels of displacement ratios, which is a similar trend to the multiphase higher  displacement  ratios.  may  be  cost ratios,  efficient  at  high  rates trend  but  with  low  concentrations  result  in  Soil  low  remediation  levels  of  displacement  which  is  a flow  similar  to  the  flow of moderate concentration levels (say, 5 g/L).  CO2 and brine, as reported by Kuo et al. (2011) [48]. The displacement ratio is higher for PAM multiphase  flow  of  CO2  and  brine,  as reported  by  Kuo  et  al. (2011)  [48].  The  displacement ratio  is 

solutions than deionized water; however, higher concentrations do not guarantee higher displacement higher for PAM solutions than deionized water; however, higher concentrations do not guarantee  ratios.higher  Soil remediation be cost at high ratesefficient  but with levels displacement may ratios.  Soil  efficient remediation  may flow be  cost  at moderate high  flow concentration rates  but  with  (say, 5moderate concentration levels (say, 5 g/L).  g/L).

  Figure  12.  Displacement  ratio  with  respect  to  flow  rate  in  (a)  an  air  saturated  model  and    (b) a decane saturated model. 

  9/13  Figure  12.  Displacement  ratio  with  respect  to  flow  rate  in  (a)  an  air  saturated  model  and    Figure 12. Displacement ratio with respect to flow rate in (a) an air saturated model and (b) a decane (b) a decane saturated model. 

saturated model.

9/13 

Materials 2016, 9, 16 Materials 2016, 9, 16 

10 of 13

  Figure13.  13.Displacement  Displacementratio  ratio with  with respect anan  airair  saturated model andand  (b) a  Figure  respect to to concentration concentration inin (a)(a)  saturated  model  decane saturated model. (b) a decane saturated model. 

4.5. Implication to Soil Remediation 4.5. Implication to Soil Remediation  When the logarithmic values of the viscosity number (Nm) and capillary number (N m ) and capillary number (N c ) both exceed When the logarithmic values of the viscosity number (N c) both exceed  a certain threshold, the flow has stable displacement and the displacement ratio is high (Figure 1).  a  certain  threshold,  the  flow  has  stable  displacement  and  the  displacement  ratio  is  high  (Figure  1).  In soil remediation using soil flushing, a higher displacement ratio indicates better remediation of In soil remediation using soil flushing, a higher displacement ratio indicates better remediation of  contaminationin  in soils.  soils. For solution system, in which the injected fluid fluid  is the PAM contamination  For an an air-PAM air‐PAM  solution  system,  in  which  the  injected  is  the solution PAM  and the defended fluid is air, Nm is higher when the viscosity of the injected PAM solution is higher solution and the defended fluid is air, N m is higher when the viscosity of the injected PAM solution  (see Equation (1)). The PAM solution is a non-Newtonian fluid, as seen in Figure 10. In fact, the is higher (see Equation (1)). The PAM solution is a non‐Newtonian fluid, as seen in Figure 10. In fact,  viscosity of biopolymer solutions, like that of other polymer solutions, is constant at low shear rate, the viscosity of biopolymer solutions, like that of other polymer solutions, is constant at low shear  decreases with increasing shear rate at the moderate level of shear rate, and constant again at high rate, decreases with increasing shear rate at the moderate level of shear rate, and constant again at  shear rate, whereas the viscosity of air is independent of the shear rate [49]. The viscosity of PAM high shear rate, whereas the viscosity of air is independent of the shear rate [49]. The viscosity of  solution is also sensitive to the temperature and liquid concentration; the viscosity is higher when the PAM solution is also sensitive to the temperature and liquid concentration; the viscosity is higher  temperature is lower (Figure 9), and the concentration is higher (Figure 8). As such, Nm is affected when the temperature is lower (Figure 9), and the concentration is higher (Figure 8). As such, N m is  by the injecting rate, and the concentration of PAM solution, and ground temperature. The effect affected  by  the  injecting  rate,  and  the  concentration  of  PAM  solution,  and  ground  temperature. of  three controlling values, liquid concentration, injecting rate, and temperature, on Nc in Equation (2) The effect of  three controlling values, liquid concentration, injecting rate, and temperature, on N c in  is not as straightforward, though. The liquid concentration itself affects the viscosity of the injecting Equation (2) is not as straightforward, though. The liquid concentration itself affects the viscosity of the  fluid (Figure 8), surface tension (Figure 7), and contact angle (Figure 6). The injecting rate affects the injecting fluid (Figure 8), surface tension (Figure 7), and contact angle (Figure 6). The injecting rate  viscosity and velocity of the injecting fluid (Figure 10), and the temperature influences the viscosity of affects the viscosity and velocity of the injecting fluid (Figure 10), and the temperature influences the  the injecting fluid (Figure 9). Thus, when designing a soil remediation process, one should be aware viscosity of the injecting fluid (Figure 9). Thus, when designing a soil remediation process, one should  that the efficiency the remediation cannot be enhanced by simply increasing or decreasing be  aware  that  the  of efficiency  of  the  remediation  cannot  be  enhanced  by  simply  increasing some or  controlling value such as the liquid concentration or injecting rate. The temperature may be more decreasing some controlling value such as the liquid concentration or injecting rate. The temperature  difficult to control; however, the seasonal and spatial variations of the ground temperature areground  certainly may  be  more  difficult  to  control;  however,  the  seasonal  and  spatial  variations  of  the  an important factor to consider. The discussion of decane-PAM solutions is more complicated because temperature are certainly an important factor to consider. The discussion of decane‐PAM solutions  phases are non-Newtonian fluids. Furthernon‐Newtonian  research needs to be conducted to determine better the is both more  complicated  because  both  phases are  fluids.  Further  research  needs  to  be  effect of controlling values and optimal design, including the effect of temperature on the displacement conducted to determine better the effect of controlling values and optimal design, including the effect  ratio, which is equivalent to the remediation efficiency. Thus far, the obtained results indicate that low of temperature on the displacement ratio, which is equivalent to the remediation efficiency. Thus far,  injecting rates and low concentrations result in low efficiency, and remediation can be cost-efficient the obtained results indicate that low injecting rates and low concentrations result in low efficiency,  with a high injection rate and moderate concentration levels, as the increase in concentration above  and remediation can be cost‐efficient with a high injection rate and moderate concentration levels,  5 g/L does not necessarily guarantee higher displacement. as the increase in concentration above 5 g/L does not necessarily guarantee higher displacement.  5. Conclusions 5. Conclusions  A PAM solution was tested for contact angle, surface tension, viscosity, and flow characteristics A PAM solution was tested for contact angle, surface tension, viscosity, and flow characteristics  (micromodels), and the implications to its applications were discussed. (micromodels), and the implications to its applications were discussed.  In air, the contact angle of distilled water on a silica surface is ~40˝ ; however, it increases linearly In air, the contact angle of distilled water on a silica surface is ~40°; however, it increases linearly  up to ~60˝ as the concentration of the PAM solution increases to 20 g/L. In decane, the contact angle up to ~60° as the concentration of the PAM solution increases to 20 g/L. In decane, the contact angle of 

distilled  water  is  ~71°;  however,  it  decreases  to  54°–59°  when  PAM  is  added.  The  surface  tension  10/13 

Materials 2016, 9, 16

11 of 13

of distilled water is ~71˝ ; however, it decreases to 54˝ –59˝ when PAM is added. The surface tension between the PAM solution and air decreases sharply with increasing concentrations up to ~5 mg/L; however, the rate of decrease subsequently becomes lesser. The viscosity of the PAM solution is highly dependent on the concentration of the solution, shear rate, and temperature, as are both Nm and Nc . Therefore, it is important to properly determine the concentration of the PAM solution and shear rate (and, in turn, the injection rate) and estimate the temperature distribution in the ground to design the soil remediation process and calculate the efficiency. The displacement ratio of the PAM solution against air and decane consistently increases with increasing values of flow rates. The effect of the flow rate is more prominent for decane. Low flow rates and low concentrations resulted in low levels of displacement ratios. The displacement ratio is higher for PAM solutions than for deionized water; however, higher concentrations do not guarantee higher displacement ratios. Soil remediation could be conducted cost-efficiently at high flow rates but with moderate concentration levels (~5 g/L). Further research needs to be conducted to better determine the effect of controlling values and optimal design, including the effect of temperature on the efficiency of remediation. Acknowledgments: This work was supported by the Fund for Innovative Engineering Research (FIER)—Round V grand award, and the Brain Korea 21 Plus Project in the Division of Creative Low Impact Development and Management for Ocean Port City Infrastructures. Author Contributions: Jongwon Jung and Jungyeon Jang conceived, designed, and performed the experiments. Jongwon Jung, Jungyeon Jang, and Jaehun Ahn analyzed the data and wrote the paper. All authors read and approved the final manuscript. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4.

5.

6.

7.

8. 9. 10.

Bate, B.; Zhao, Q.; Burns, S. Impact of organic coatings on frictional strength of organically modified clay. J. Geotech. Geoenviron. Eng. 2013, 140, 228–236. [CrossRef] Briscoe, W.H.; Klein, J. Friction and adhesion hysteresis between surfactant monolayers in water. J. Adhes. 2007, 83, 705–722. [CrossRef] Cabalar, A.; Canakci, H. Ground Improvement by Bacteria. In Proceedings of the 3rd Biot Conference on Poromechanics, Norman, OK, USA, 24–27 May 2005; pp. 707–712. Kang, J.; Sowers, T.D.; Duckworth, O.W.; Amoozegar, A.; Heitman, J.L.; McLaughlin, R.A. Turbidimetric determination of anionic polyacrylamide in low carbon soil extracts. J. Environ. Qual. 2013, 42, 1902–1907. [CrossRef] [PubMed] Kavazanjian, E., Jr.; Iglesias, E.; Karatas, I. Biopolymer soil stabilization for wind erosion control. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009; pp. 881–884. Martin, G.; Yen, T.; Karimi, S. Application of Biopolymer Technology in Silty Soil Matrices to form Impervious Barriers. In Proceedings of the 7th Australia-New Zealand Geomechanics Conference, Adelaide, Australia, 1–5 July 1996. Nugent, P.E.; Sullivan, M.; Cenko, S.B.; Thomas, R.C.; Kasen, D.; Howell, D.A.; Bersier, D.; Bloom, J.S.; Kulkarni, S.; Kandrashoff, M.T. Supernova sn 2011fe from an exploding carbon-oxygen white dwarf star. Nature 2011, 480, 344–347. [CrossRef] [PubMed] Yoshizawa, H.; Chen, Y.L.; Israelachvili, J. Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 1993, 97, 4128–4140. [CrossRef] Blokker, N. Analysis of Alginate-Like Exopolysaccharides for the Application in Enhanced Oil Recovery. Master Thesis, Delft University of Technology, Delft, The Netherlands, 18 September 2014. Hove, K.; Pedersen, O.; Garmo, T.H.; Hansen, H.S.; Staaland, H. Fungi: A major source of radiocesium contamination of grazing ruminants in Norway. Health Phys. 1990, 59, 189–192. [CrossRef] [PubMed]

Materials 2016, 9, 16

11.

12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.

30. 31. 32. 33. 34. 35.

12 of 13

Pollock, T.J.; Thorne, L.; Yamazaki, M.; Mikolajczak, M.J.; Armentrout, R.W. Mechanism of bacitracin resistance in gram-negative bacteria that synthesize exopolysaccharides. J. Bacteriol. 1994, 176, 6229–6237. [PubMed] Kosaric, N. Biosurfactants and their application for soil bioremediation. Food Technol. Biotechnol. 2001, 39, 295–304. Meuser, H. Contaminated Urban Soils; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 18. Daripa, P.; Pa¸sa, G. On capillary slowdown of viscous fingering in immiscible displacement in porous media. Transp. Porous Media 2008, 75, 1–16. [CrossRef] Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [CrossRef] [PubMed] Chai, J.C.; Miura, N. Field vapor extraction test and long-term monitoring at a PCE contaminated site. J. Hazard. Mater. 2004, 110, 85–92. [CrossRef] [PubMed] Cho, J.S.; Wilson, J.T.; DiGiulio, D.C.; Vardy, J.A.; Choi, W. Implementation of natural attenuation at a jp-4 jet fuel release after active remediation. Biodegradation 1997, 8, 265–273. [CrossRef] [PubMed] Tse, K.K.; Lo, S.L.; Wang, J.W. Pilot study of in-situ thermal treatment for the remediation of pentachlorophenol-contaminated aquifers. Environ. Sci. Technol. 2001, 35, 4910–4915. [CrossRef] [PubMed] Mulligan, C.N.; Eftekhari, F. Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 2003, 70, 269–279. [CrossRef] Knox, R.C.; Sabatini, D.A. Transport and Remediation of Subsurface Contaminants; American Chemical Society: Washington, DC, USA, 1992. Lee, M.; Kim, J.; Kim, I. In-situ biosurfactant flushing, coupled with a highly pressurized air injection, to remediate the bunker oil contaminated site. Geosci. J. 2011, 15, 313–321. [CrossRef] Khatami, H.R.; O’Kelly, B.C. Improving mechanical properties of sand using biopolymers. J. Geotech. Geoenviron. Eng. 2012, 139, 1402–1406. [CrossRef] Jafvert, C.T. Surfactants/Cosolvents; Ground-Water Remediation Technologies Analysis Center: Pittsburgh, PA, USA, 1996. Jawitz, J.W.; Annable, M.D.; Rao, P. Miscible fluid displacement stability in unconfined porous media: Two-dimensional flow experiments and simulations. J. Contam. Hydrol. 1998, 31, 211–230. [CrossRef] Lee, M.; Kang, H.; Do, W. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. Water Res. 2005, 39, 139–146. [CrossRef] [PubMed] Mulligan, C.; Yong, R.; Gibbs, B. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [CrossRef] Park, J.Y.; Kim, S.J.; Lee, Y.J.; Baek, K.; Yang, J.W. Ek-fenton process for removal of phenanthrene in a two-dimensional soil system. Eng. Geol. 2005, 77, 217–224. [CrossRef] Tsai, T.T.; Kao, C.M.; Yeh, T.Y.; Liang, S.H.; Chien, H.Y. Remediation of fuel oil-contaminated soils by a three-stage treatment system. Environ. Eng. Sci. 2009, 26, 651–659. [CrossRef] Zhou, W.; Fu, H.; Pan, K.; Tian, C.; Qu, Y.; Lu, P.; Sun, C.C. Mesoporous TiO2 /α-Fe2 O3 : Bifunctional composites for effective elimination of arsenite contamination through simultaneous photocatalytic oxidation and adsorption. J. Phys. Chem. C 2008, 112, 19584–19589. [CrossRef] Lake, P.S. Flow-Generated disturbances and Ecological Responses: Floods and Droughts. In Hydroecology and Ecohydrology: Past, Present and Future; Wiley Press: New York, NY, USA, 2008; pp. 75–92. Sorbie, K. Polymer-Improved Oil Recovery; Springer Science+Business Media: Berlin, Germany, 1991; Chapter 1; pp. 1–5. Lenormand, R. Liquids in porous media. J. Phys. Condens. Matter 1990, 2, SA79. [CrossRef] Lenormand, R.; Touboul, E.; Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 1988, 189, 165–187. [CrossRef] Buchgraber, M. An enhanced oil recovery micromodel study with associative and conventional polymers. Master Thesis, University of Leoben, Leoben, Austria, September 2008. Hayden, M.K.; Bonten, M.J.; Blom, D.W.; Lyle, E.A.; van de Vijver, D.A.; Weinstein, R.A. Reduction in acquisition of vancomycin-resistant enterococcus after enforcement of routine environmental cleaning measures. Clin. Infect. Dis. 2006, 42, 1552–1560. [CrossRef] [PubMed]

Materials 2016, 9, 16

36. 37. 38. 39.

40.

41.

42. 43.

44. 45.

46. 47. 48. 49.

13 of 13

Lenormand, R.; Zarcone, C.; Sarr, A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 1983, 135, 337–353. [CrossRef] Bruun, J.; Hicks-Bruun, M. Isolation of n-decane from petroleum by distillation and equilibrium melting. J. Res. Nat. Bur. Stand. 1932, 8, 583–589. [CrossRef] Fan, R.; Guo, S.; Li, T.; Li, F.; Yang, X.; Wu, B. Contributions of electrokinetics and bioremediation in the treatment of different petroleum components. Clean Soil Air Water 2015, 43, 251–259. [CrossRef] Fu, W.J.; Chi, Z.; Ma, Z.C.; Zhou, H.X.; Liu, G.L.; Lee, C.F.; Chi, Z.M. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl. Microbiol. Biotechnol. 2015, 99, 7481–7494. [CrossRef] [PubMed] Margesin, R.; Moertelmaier, C.; Mair, J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int. Biodeterior. Biodegrad. 2013, 84, 185–191. [CrossRef] Bertrand, E.M.; Keddis, R.; Groves, J.T.; Vetriani, C.; Austin, R.N. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents. Front. Microbiol. 2013, 4. [CrossRef] [PubMed] Zemo, D.A.; Bruya, J.E.; Graf, T.E. The application of petroleum hydrocarbon fingerprint characterization in site investigation and remediation. Ground Water Monit. Remediat. 1995, 15, 147–156. [CrossRef] Rayner, J.L.; Snape, I.; Walworth, J.L.; Harvey, P.M.; Ferguson, S.H. Petroleum-hydrocarbon contamination and remediation by microbioventing at sub-antarctic macquarie island. Cold Reg. Sci. Technol. 2007, 48, 139–153. [CrossRef] Nadim, F.; Hoag, G.E.; Liu, S.; Carley, R.J.; Zack, P. Detection and remediation of soil and aquifer systems contaminated with petroleum products: An overview. J. Pet. Sci. Eng. 2000, 26, 169–178. [CrossRef] Zyakun, A.; Nii-Annang, S.; Franke, G.; Fischer, T.; Buegger, F.; Dilly, O. Microbial activity and 13c/12c ratio as evidence of n-hexadecane and n-hexadecanoic acid biodegradation in agricultural and forest soils. Geomicrobiol. J. 2012, 29, 570–584. [CrossRef] Sinha, P.K.; Wang, C.Y. Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell. Electrochim. Acta 2007, 52, 7936–7945. [CrossRef] Barvenik, F.W. Polyacrylamide characteristics related to soil applications. Soil Sci. 1994, 158, 235–243. [CrossRef] Kuo, C.W.; Perrin, J.C.; Benson, S.M. Simulation studies of effect of flow rate and small scale heterogeneity on multiphase flow of CO2 and brine. Energy Procedia 2011, 4, 4516–4523. [CrossRef] Picout, D.R.; Ross-Murphy, S.B. Rheology of biopolymer solutions and gels. Sci. World J. 2003, 3, 105–121. [CrossRef] [PubMed] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents