comparison and scaling methods for performance ... - Aalto Math

2 downloads 0 Views 522KB Size Report
iscU£ ssio¤¥. The stability analysis presented in this section can be extended to more general admission control policies, where the input rate to the first node is.
Helsinki University of Technology, Institute of Mathematics, Research Reports Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja Espoo 2005

COMPARISON AND SCALING METHODS FOR PERFORMANCE ANALYSIS OF STOCHASTIC NETWORKS

Lasse Leskela¨

AB

TEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D’HELSINKI

A491

Helsinki University of Technology, Institute of Mathematics, Research Reports Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja Espoo 2005

A491

COMPARISON AND SCALING METHODS FOR PERFORMANCE ANALYSIS OF STOCHASTIC NETWORKS

Lasse Leskela¨

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Engineering Physics and Mathematics for public examination and debate in Auditorium E at Helsinki University of Technology (Espoo, Finland) on 2 December 2005 at 12 noon.

Helsinki University of Technology Department of Engineering Physics and Mathematics Institute of Mathematics

      "!#$$ %&!#'()*"$ +,.-/10%2!43567-5"35 4$ ' -89$ )*:;! '5072!#/??'@$A-5/?BC#D;!9EGFHIKJMLON7PLRQSNLUTVH5WXJYLUZ\[^]9_a`bHc dN7]IU]9e9[9fGgXNJ=ZML*ZMh7Z=Hi]9_jlkZMdHm4kZMLKc5J5f noHJ=HkWYc dlnpH5q ]9WYZMJorpsVtu6vxwy9y z{(| }~€;9‚ƒ„…‡†‰ˆ Š ‹5Œ Ž(ˆ#"‹‘G’;ˆ=“Š” •ŽS” ’‘–— ˆ#ŒG’;–˜ ˆ#"‹™A–—ЉšG’2™KŽo›>Š”œˆ#”  l‹‘žGŠ“‘Žp1 A ’;ˆ=“ŸŠ”(•Žp“‘Š”— ™"¡‰«;1G¥&¨R’2”(›>Š” –—VG‹;’¬Aš­ŽYˆ5®G"™K"ˆ=¡¯Š›iŽ(ˆ Š ‹5Œ Ž(ˆ#"‹8A’;ˆ=“Š” •Ž9°SŒA’2™1¨AŠ”·™U¡ˆ#"‹™–—ЉšG’2™"KG¥G¢,£ŸŒA’»” ŽYˆ˜‹Ž(’²ŽYˆ# GšA1’2Ž ˆ ŒG’‘1–^¨ ‹;ˆoŠ›b1G‹;Š–^¨G™"’;ˆ#’Ÿ"A›>Š”(–˜ ˆ#KА^ˆ#Š.@¼ G’2 A’21A¥.A’;ˆ=“Љ”(•¶“‘Š”S–· G™Š”·‹2Š–l¨G™K’µÆ¨GŒ7¡‰Ž 1‹2™SA’;ˆ=“Š” •Ž^“‘"ˆ ŒÆ GG‹;’2”(ˆ#17ˆ=¡¢ÈǨG¨G”(Š9µ "–˜ ˆ#"АGŽ· Gš¯¨b’;”Y¹ ›>Š” –—G‹2’i®bŠ AGšGŽŸ®Ž(’2š½Š´’µG ‹;ˆ¦–©Vˆ(ŒA’2–— ˆ#"‹™R–—’ˆ#ŒGЉšGޏŒG9§’@ˆ#ŒG’4š § ˆ#¥’ ˆ Œ ˆpˆ#ŒG’¡˜’µ ¨G™"1‹2Uˆ ™"¡^ŽYˆ5 ˆ ’¦ˆ ŒG’Ÿˆ=¡ ¨R’iŠ ›³‹2"” ‹; G–^Ž(ˆ#G‹2’;ŽS”(’2¼ G1”(’2šl›>Š”œˆ#ŒG’‹2‹; G”# ‹;¡ Š › ˆ#ŒA’.’;Ž(ˆ 1–—ˆ ’2Ž2¢p£ŸŒG’.” ’;Ž  G™—’;”Á=AŽ(ˆ#Š’;”Ž Ž˜Ž ŠŠ”E !oŠˆ#ŒG™K•’8’2”¦”(†‰ˆ ‹5KŒG‹2™1–—’;Ž—"šA"ˆ ° ˆ#ŒG"ŽÂšA1Ž Ž(’2”Yˆ5 ˆ  A™C”(’2Ž(’”(‹5Œ¿ ˆ –—ŠŽ ¨GŒG’;” ’ ¢ Á4ˆ#ŒGG•ƍ ™1™S–¶¡¯‹2Š™"™K’¥ A’2Žl ˆ^ˆ#ŒA’´£&% % Á=GŽ(ˆ "ˆ#  ˆ#’´Š›¿   ˆ ŒG’2–— ˆ ¡Š°G”@!¾™K£Ÿ™ £Hˆ ŒG’·C¦’;ˆ#ŽŒA’1 G” ¥‹5ŽÂŒJˆ#ŒGIS’’2¡º7ˆ#Œ”(’§°’^Gˆ5 š¯ G¥ˆ#ŒGŒ7’Lˆ@–lK)  Š””¹ ˆ#’2‹5ŒG1A¥©–l’¶–—7¡´§ ™1  ®G™K’.ˆ ŒG1G¥Ži®RŠ Aˆ‘ˆ ŒG’¶›> GAš–l’27ˆ5™KŽÂŠ›œ–— ˆ#ŒG’;–˜ ˆ#"‹™ ™Š”@ˆ ŒG’— G–l’2”(K‹™oŽ "–· G™Š”Ÿ™"™#p~



6

1šlˆ#Š·Œ§’@6” ’;¥ G™1” ™U¡˜§ ”(¡‰1A¥¶ˆ5 1™êŠ›

 "!

+2

 D6 :,\  D¢ £ŸŒG’o›>Š™1™KŠ9“‘1A¥Â”(’2Ž  A™"ˆ#Ž”(’‹;АGŽ ’;¼ G’9G‹2’;Ž Š›@%4”#–˜Vˆ5+- Ž  k: Ž ’;’&g1G¥VŒ–²°b,4Š™1šGK’°VAš.£C’2 A¥’2™"Ž  7 ›>Š”aSˆ#’µ‰ˆ#®RŠ Š•Â’µ ¨RŠŽ X  - -?+ le"+54m+AIj.!s+.- -)sA57@)C2 57), #{ 9 ~ 9o2 6  D 6  ^T=% AkA, Q + 5MmB5  D )sAS jk57)4>A #@D"j5C),p… X A jkml54mB5 #{ AIJ Q &+ 9 M M Mr/X ™1"– Ž  A¨   D M O  - ™"1– Ž(n  G¨  Z  B Z M Oc‚ Z Z a&b a q m+ … D  D ;:I n b  D   A V 9+‚  - €2+ -?+ le"+.- AS2J I+  -€!s+5  DS2+ P#^ QV)4!*6 $# 

,±ƒ J " O$P E JK+5 Q +.ADt2 !s+#@"j5C),BAF X PTy% AkAR  Q + 54mB5r#{ AIJ Q B+ 9 M M Mr/>X=+)454m+ ™11– n Ž( G¨  ;:I  D 6M9 #{S!4! …~F9+2 Z Z a  - ;:I Z  D Z #{S!4! 2 L2 

“‘ŒG’2”(’   ˆ#ŒG’;Š” ’;– 

,±ƒ



$



%



(

%

$' 



*) ( .-

 0

&'

,+ 



/

 21

+ 



+ 



34

3

+  67' 8" :9

 ' 

+  *; "!

8"

(

5

' 

 ' 

+>' 

B

R

DC@ 1

( 

/

 '

™1"– n Ž  G¨  2 1 a

q m+

 -

A

+>' 

 ' 7



 

 

™"1–

%$%o

a

B

DC@ 0

+>' 

3 4 '

N

;:Š™1™KŠ9“‘Ž‘ˆ Œ ˆ‘ ™1Ž Š  "Ž‘ ¿”(•Š9§½¨G” Љ‹2’;Ž Ž;¢ ¾’;GŠˆ ’¾®7¡C—ˆ ŒG’@1šG’;7ˆ#"ˆ=¡—–— ˆ#”(Uµb°  Gš,™"’; ˆ ±G š  ®R’lˆ ŒG’l™1’;›xˆ¶Aš,” "¥Œ7ˆ.Ž ŒGŠ”(–



b4

9







6

nN6



6

  

6

 N6

  Gš



6



> 

¢¢

¢

¢

> 

6

  2  N \            ^/    2   /   2 3 ?M7R2

:  : N

3

2

 ”(’@¥"§’2½®7¡

l

/



 \

\

73

  

3



 



]nY2 

]n”(Š–‡’2¼ Vˆ#1А 9¤ GŽ "G¥.ˆ ŒG’¦–—’ˆ#ŒGЉš Š›RŽ  G‹;‹2’9Ž(Ž "§’ŸŽ  G®AŽ(ˆ#”(Š– ˆ#ŒA’¿®RŠ9§’²–—ЉšG’;™Š” – ’µ ¨G”(’2Ž Ž5"Š Aޏ›>Š”Sˆ#ŒA’¾¨b’;”(›>Š”(–© G‹2’¾¼  ˆ "ˆ Š” ‹;’Ÿ G–—’;” "‹™ Ž Š ¹ ™" Aˆ#KА6Š›Gˆ#ŒA’SŽ(ˆ# ˆ#KАG”(¡.šG"Ž(ˆ#”(K®G Aˆ#"А.Š › G  G ›>’Ž(1®G™K’ x›>Š”C’µA–l¨G™K’“‘"ˆ Œ 6 °   6  &6  6_A°ˆ ŒG’¶¥’2G’;”# ˆ Š”‘Šm› G ŒަŠ9§’2`” 8 ˜–—"™K™1KА²’27ˆ#”(1’21Ž ¢ ¾½ˆ#ŒG’ Š ˆ#ŒG’;”^ŒGš³°¤ˆ ŒG’½®RŠ9§’´¨R’2”(›>Š” –—VG‹;’½¼‰ G7ˆ#"ˆ K’2Ž·›>Š”6ˆ ŒG’´Ž(¡‰ŽYˆ#’2– “‘"ˆ#Œ¯”(’2¨ ‹5•7¹ "G¥˜”(’@” ’ šG1™U¡‹;Š–l¨G Aˆ#’;š´ GŽ "Go ¥  >¢¤£ŸŒG’@›>Š™K™1Š9“‘"G¥6ˆ#ŒA’2Š”(’2– ˆ Š¥’ˆ#ŒG’;”¸“‘"ˆ#Œ´AkA)C . -J Q !*)4"+. #@"j57), !"  †)454m (6 ? 0r   ? 3] 0 ƒ3"T

J -" O$P E A ) 3ê‚

 RQ T M O P

AkA +2



(

'

…m +1 + "   †



'

(

8

8

£ ŒG’¾Ž("ˆ   ˆ#KА—1ŽšG"Åb’2”(’27ˆ¸Š™K™1Š9“‘"G¥^ˆ#ŒG’;Š” ’;– šG’2Ž(‹2” "®b’;ަˆ ŒG’.GА7ˆ#”("§‰X  AkA + 5MmB5NT mBA k+,H!‡@!*6€I@6)4H5,)4!†)45Mm +S^'"+5  ;:2g7 T q m+ 54m+e#{!4!s )4H 54m1+k+0!*)1QV)45MA m!‡- A  V O  - V 9

 )  6 ” ¥’¹\¥”# 1´Ž ‹2™1"G¥>P?M#`?4#  ;:I V ONXe54m+   "m \    " \ V   " 2  <  ;:



8

8

 "!

8"

 



†)454m  r6 ! v \ :\ T  )4)4) \† –© ™



… ] x3 



?3   

8

80

 

 "!

8"8 

2

 1Žaˆ#ŒA’ i”–l’ Ž  G”(’".ˆ ŒG’S¥”(Š G¨¶Š›” Š ˆ5 ˆ ?A@B!"CEDF 4G*2H‚Sg Š AGšGŽ—Gš ’2” ”(Š”˜®bŠ GGšGŽ˜›>Š”˜¼ G’2 G’;1G¥ÈG’ˆ=“SŠ”(•AŽ;¢ %  JT I '+^TKOP+kA FT K?YX-08&08Z G 1RZ[+ Z]\_^$0N!"$&&O% [VWQ[4Ç ˆ#GšG’;– ¼ G’; G’6“‘"ˆ Œ¬Ž ’;”(§’2” Ž ™"Š“¸¹XšGŠ9“‘¿ Gš½®G™1Љ‹5•1G¥G¢ 9 5$IjkmBA5C),j E  -+!iA Y n °†7IzD8 ` 7=9;9SR9 °]9;_ RIzB;| 7:s R0N ` ‰ 

Suggest Documents