Document not found! Please try again

Current approaches to determine limit of detection and limit of ... - FP7

19 downloads 0 Views 410KB Size Report
RAFA 2009, 3 Nov 2009, Prague, Czech Republic. 1. Current approaches to determine limit of detection and limit of quantification. P. López, Sz. Szilágyi, ...
RAFA 2009, 3 Nov 2009, Prague, Czech Republic

Joint Research Centre (JRC)

Current approaches to determine limit of detection and limit of quantification P. López, Sz. Szilágyi, D. Lerda, T. Wenzl IRMM - Institute for Reference Materials and Measurements Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

1

Outline RAFA 2009, 3 Nov 2009, Prague, Czech Republic

1. Introduction ¾ Legislative references ¾ Definitions ¾ Procedures

2. Practical example – GC/MS ¾ Ion to use for LOD: quantifier or qualifier? ¾ Comparison of procedures ¾ Calibration requirements

3. Summary: points of concern

2

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

INTRODUCTION

3

Legislative requirements RAFA 2009, 3 Nov 2009, Prague, Czech Republic

4

Regulation (EC) No 882/2004 LOD and LOQ are criteria to characterize the methods of analysis

Commission Regulation (EC) No 333/2007 LOD/LOQ definitions

Benzo[a]pyrene (BaP) LOD = 0.3 µg/kg LOQ = 0.9 µg/kg

Commission Regulation (EC) No 1881/2006 Maximum levels of BaP (µg/kg wet weight) Oils and fats Smoked meats (products) Muscle meat of smoked fish (products) Muscle meat of fish Infant formula

2.0 5.0 5.0 2.0 1.0

Limit of detection. Definitions RAFA 2009, 3 Nov 2009, Prague, Czech Republic

5

Commission Regulation (EC) No 333/2007 LOD, smallest measured content, from which it is possible to deduce the presence of the analyte with reasonable statistical certainty. The limit of detection is numerically equal to three times the standard deviation of the mean of blank determinations (n > 20)

IUPAC

(IUPAC: Orange Book, p. 5)

The limit of detection, expressed as the concentration, cL , or the quantity, qL, is derived from the smallest measure, xL, that can be detected with reasonable certainty for a given analytical procedure. The value of xL is given by the equation

xL = x blank + k ∗ sblank

Where xblank is the mean of the blank measures, sblank is the standard deviation of the blank measures, and is a numerical factor chosen according to the confidence level desired.

ISO 11843:1 The true value of the net state variable, X, in the actual state that will lead with a probability of (1-ß) to the conclusion that the system is not in the basic state

Limit of detection. Definitions RAFA 2009, 3 Nov 2009, Prague, Czech Republic

6

α-error (type I): false positive ß-error (type II): false negative Default value at LOD: pα = pß = 0.05

LC = critical level LD = limit of detection

α=ß=0.05, at LD Commission Decision Figures from R. Boque and Y.V. Heyden, LCGC Europe,2002/657/EC 2009 (2) 82-85

Limit of detection. Definitions RAFA 2009, 3 Nov 2009, Prague, Czech Republic

7

European Pharmacopeia

2H S N= h

*

Background noise shall be determined at position of peak from blank material Width of noise area shall be 20 time peak width at half height Figures from R. Boque and Y.V. Heyden, LCGC Europe, 2009 (2) 82-85

Limit of quantification. Definitions RAFA 2009, 3 Nov 2009, Prague, Czech Republic

8

Commission Regulation (EC) No 333/2007 Limit of quantification (LOQ)

lowest content of the analyte which can be measured with reasonable statistical certainty. If both accuracy and precision are constant over a concentration range around the limit of detection, then the limit of quantification is numerically equal to six or 10 times the standard deviation of the mean of blank determinations (n > 20)

IUPAC minimum quantifiable value (LQ)

analyte (true) value that will produce estimates having a specified relative standard deviation (RSD), commonly 10%

Procedures RAFA 2009, 3 Nov 2009, Prague, Czech Republic

9

Approaches for the estimation of LOD and LOQ Calibration line method (ISO definition) According to ISO 11843-2 or the German standard DIN 32645 From the residual standard deviation of the calibration line Calculation from the 95% estimation interval of the calibration line

Blank procedures (IUPAC definition) DIN 32645

s LOD = 6 ∗ blank b s LOQ = 9 ∗ blank b

Regulation 333/2007 n=10 α=ß=0.01

LOD = 3 ∗ sblank

n=20 α=ß=0.05

LOQ = 6 ∗ sblank

S/N ratio (European Pharmacopeia definition)

sblank: standard deviation of the measurements at the blank level b: slope of the calibration curve

LOD = 3 x S/N LOQ = 10 x S/N

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

PRACTICAL EXAMPLES

10

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

11

Meat Spiking PAHs)

(13C-lab

Extraction (PLE) Evaporation Water elimination Filtration (5.0 µm)

GPC Evaporation

SPE Evaporation Addition injection standard

GC-MS (SIM)

Ion to use for LOD: quantifier or qualifier? RAFA 2009, 3 Nov 2009, Prague, Czech Republic

12

GC/MS in SIM (single ion monitoring)

Quantifier

Quantification Confirmation criterion: Ratio

Qualifier

Identification 252.0

Abundance

Benzo[a]pyrene

A126 = 13.1% ± %tolerance A252

9000 8000 7000 6000 5000

126.0

4000 3000 2000 1000

50.0

29.0 0 m/z--> 20

40

60

75.0 80

152.0

100.0 100

120

140

160

176.0 180

200.0 200

224.0 220

240

260

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

Guidance given by Commission Decision (EC) No 2002/657/EC

Identification criterion has to be fulfilled

13

Ion to use for LOD: quantifier or qualifier? RAFA 2009, 3 Nov 2009, Prague, Czech Republic

14

b) DhA (14.1%; 0.3 µg/kg) A

Abundance 3500

=

139

3000

13 . 5%

Ion 278.00

A

2500 2000

278

1500 1000 500 Time

|

|

-- >

36.00

36.10

36.20

36.30

36.40

Abundance

36.50

36.60

36.70

36.80

36.90

37.00

36.60

36.70

36.80

36.90

37.00

Ion 139.00

3500 3000

|

2500

|

2000 1500 1000 500 Time

-- >

36.00

36.10

36.20

36.30

36.40

36.50

c) CHR (10.9%; 2.5 µg/kg) A

= 0%

113 Abundance 20000

Ion 228.00

A 228

10000 0 Time -- >

18.40

18.60

18.80

19.00

19.20

Abundance

19.40

19.60

19.80

20.00

20.20

20.40

20.60

20.80

19.80

20.00

20.20

20.40

20.60

20.80

Ion 113.00

70000 60000 50000 40000 30000 20000 10000 0 Time -- >

18.40

18.60

18.80

19.00

19.20

19.40

19.60

Ion to use for LOD: quantifier or qualifier? RAFA 2009, 3 Nov 2009, Prague, Czech Republic

15

What if identification criterion is ignored?

Quantifier

µg/kg DIN 32645

Qualifier

Combination

LOD

LOQ

LOD

LOD

LOQ

Benzo[a]anthracene

BaA

0.11

0.19

0.23

0.23

0.23

Chrysene

CHR

0.11

0.20

>2.45

-

-

Benzo[a]pyrene

BaP

0.15

0.25

0.28

0.28

0.28

Dibenzo[a,h]anthracene

DhA

0.12

0.22

0.24

0.24

0.24

too optimistic

Comparison of procedures RAFA 2009, 3 Nov 2009, Prague, Czech Republic

16

Benzo[a]pyrene S/N ratio

LOD (µg/kg)

LOQ (µg/kg)

European Pharmacopeia

0.17

0.48

Blank procedure (IUPAC)

LOD (µg/kg)

LOQ (µg/kg)

0.15

0.47

LOD (µg/kg)

LOQ (µg/kg)

0.26 0.15 0.10 0.15

0.25 0.32 0.22

Blank standard deviation Calibration line ISO 11843:2 DIN 32645 Residuals 95% confidence interval

Comparison of procedures RAFA 2009, 3 Nov 2009, Prague, Czech Republic

17

S/N ratio approach

&

'

Ease of implementation Peak shape assumptions Subjective evaluation: manual integration Instability of the baseline over time

Blank procedures (blanks or fortified samples)

'

Inexistence of real blank matrices Dependence on spiking concentration

LOD/LOQ µg/kg

Spiked blank at 0.3 µg/kg

Non-spiked blank samples

BaA

0.16 / 0.48

0.05 / 0.15

Cyclopenta[cd]pyrene CPP

0.41 / 1.23

0.26 / 0.78

5-Methylchrysene

5MC

0.22 / 0.67

0.08 / 0.24

Dibenzo[a,l]pyrene

DlP

0.23 / 0.69

0.06 / 0.20

Benzo[a]anthracene

Comparison of procedures RAFA 2009, 3 Nov 2009, Prague, Czech Republic

18

Calibration line methods

&

More rigorous approach More accurate estimations of LOD/LOQ

' Computationally and experimentally more complex Comparison DIN 32645 vs ISO 11843-2 Matrix

Linearity

Homoscedascity

DIN 32645

X

X

X

ISO 11843-2

X

X

X

Heteroscedascity

Replicates I, J, L

X

I: Reference states used in calibration (3-5) J: Number of preparations for each reference state (J=2) K: Number of preparations for the actual state L: Number of repeated measurements per preparation

I, J, K, L

Calibration requirements RAFA 2009, 3 Nov 2009, Prague, Czech Republic

19

Calibration curve and blanks should be prepared in matrix LOD/LOQ (µg/kg) DIN 32645 Blank procedure

Matrix

Solvent

0.15 / 0.25 0.15 / 0.47

0.08 / 0.15 0.01 / 0.04

Individual preparations / pooled matrix extract LOD/LOQ (µg/kg) DIN 32645

Individual

Pooled extract

0.15 / 0.25

0.06 / 0.20

Calibration range close to LOD/LOQ values LOD/LOQ (µg/kg) DIN 32645

(0 - 2.5 µg/kg)

(2 – 15 µg/kg)

0.15 / 0.25

0.77 / 1.24

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

SUMMARY

20

Summary: points of concern RAFA 2009, 3 Nov 2009, Prague, Czech Republic

21

¾ LODs/LOQs: Differences due to estimation methodology methodology SHOULD be mentioned in the report ¾ LODs/LOQs MUST be determined in MATRIX and as INDIVIDUAL PREPARATIONS ¾ LODs/LOQs are likely to change over time Method has to be UNDER CONTROL ¾ Variability of blank signal frequently underestimated more than 1 sample more than 1 replicate

¾ LODs/LOQs should be verified in praxis ¾ Reporting LOD/LOQs: NEVER rounded down

Summary: points of concern RAFA 2009, 3 Nov 2009, Prague, Czech Republic

22

¾ Importance of LOD/LOQs: ‰ Fit for purpose: method feasibility to reach maximum levels of PAHs (BaP) in food (1 µg/kg) ‰ Risk assessment: estimation of exposure data

Thank you very much for your attention

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

23

Joint Research Centre (JRC)

Comparison of different approaches to estimate the limit of detection and limit of quantification of the15+1 EU priority polycyclic aromatic hydrocarbons (PAHs) in meat products P. López, Sz. Szilágyi, D. Lerda, T. Wenzl IRMM - Institute for Reference Materials and Measurements Geel - Belgium

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

Blank procedures

5g meat (n = 10 samples) 200 µL 35 ng/mL IS PAHs  1.4 µg/kg 200 µL 5.6 ng/mL PAHs  0.3 µg/kg ASE + GPC + SPE + GC/MS 1 injection/preparation Data treatment: DIN 32645 (software MVA)

24

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

25

Calibration procedures (5 g meat per preparation) Level 0

Level 1

200 µL

0

Level 2

Level 3

Level 4

1

2

3

4

5

IS PAHs 1.4 µg/kg

1.4 µg/kg

1.4 µg/kg

1.4 µg/kg

1.4 µg/kg

1.4 µg/kg

µg/kg

0.3 µg/kg

1.0 µg/kg

1.6 µg/kg

2.0 µg/kg

2.5 µg/kg

PAHs 0

Level 5

2 individual preparations per calibration level ASE + GPC + SPE + GC/MS 2 injection/preparation Data treatment: Excel macro (ISO 11843:2), Validata® (DIN 32645)

RAFA 2009, 3 Nov 2009, Prague, Czech Republic

26

S/N ratio Preparations used for the calibration approach ChemStation software (Agilent)

LOD (S/N = 3) LOQ (S/N = 10)

RMS (Pk-Pk) S/N (height)

1000

800

600

400

200

0 0.00

0.20

0.40

0.60

0.80

1.00

µg/kg BaP

1.20

1.40

1.60

1.80

Suggest Documents