Cyclic Behavior of Mortarless Brick Joints with Different ... - MDPI

3 downloads 0 Views 7MB Size Report
Mar 4, 2016 - the frame was infilled with a mortarless brick (MB) panel. An MB .... The upper brick is fixed in the steel clamping plate, which is connected to ...
materials Article

Cyclic Behavior of Mortarless Brick Joints with Different Interlocking Shapes Hongjun Liu 1 , Peng Liu 1 , Kun Lin 1, * and Sai Zhao 2 1

2

*

Shenzhen Engineering Lab for Wind Environment and Technology, Shenzhen Key Lab of Urban & Civil, Engineering Disaster Prevention & Reduction, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China; [email protected] (H.L.); [email protected] (P.L.) Zhengzhou Architectural Design Institute, Zhengzhou 450052, China; [email protected] Correspondence: [email protected]; Tel.: +86-755-2603-4653

Academic Editor: Jung Ho Je Received: 26 January 2016; Accepted: 29 February 2016; Published: 4 March 2016

Abstract: The framed structure infilled with a mortarless brick (MB) panel exhibits considerable in-plane energy dissipation because of the relative sliding between bricks and good out-of-plane stability resulting from the use of interlocking mechanisms. The cyclic behaviors of MB are investigated experimentally in this study. Two different types of bricks, namely non-interlocking mortarless brick (N-IMB) and interlocking mortarless brick (IMB), are examined experimentally. The cyclic behavior of all of the joints (N-IMB and IMB) are investigated in consideration of the effects of interlocking shapes, loading compression stress levels and loading cycles. The hysteretic loops of N-IMB and IMB joints are obtained, according to which a mechanical model is developed. The Mohr–Coulomb failure criterion is employed to describe the shear failure modes of all of the investigated joints. A typical frictional behavior is observed for the N-IMB joints, and a significant stiffening effect is observed for the IMB joints during their sliding stage. The friction coefficients of all of the researched joints increase with the augmentation of the compression stress level and improvement of the smoothness of the interlocking surfaces. An increase in the loading cycle results in a decrease in the friction coefficients of all of the joints. The degradation rate (DR) of the friction coefficients increases with the reduction in the smoothness of the interlocking surface. Keywords: mortarless brick joints; interlocking shapes; cyclic loads; shear-compression behavior; experiment

1. Introduction Reinforced concrete (RC) frame structures with masonry panels are known for their economic feasibility and low technology requirement. However, their disadvantage in terms of seismic behavior is increasingly highlighted, especially in high seismic-prone regions [1–4]. To improve seismic behavior, a conceptually novel system for framed masonry panels was proposed in [5]. According to the concept, the frame was infilled with a mortarless brick (MB) panel. An MB panel can dissipate energy because of the relative sliding of each brick and avoid out-of-plane failure through the interlocking mechanism (see Figure 1). A series of experiments on an MB panel infilled frame was carried out by the authors, and the results indicated that the MB panel exhibits considerable energy dissipation during cyclic loading and can significantly improve the seismic behavior of the frame structure [5]. To evaluate the contribution of the energy dissipation and lateral resistance of the MB panel to the frame, an equivalent model was introduced in [6]; the authors found that the energy dissipation of the MB panel results from friction between bricks.

Materials 2016, 9, 166; doi:10.3390/ma9030166

www.mdpi.com/journal/materials

Materials 2016, 9, 166 Materials 2016, 9, 166 

2 of 12 2 of 12 

  Figure 1. Reinforcement concrete frame with a mortarless brick (MB) panel.  Figure 1. Reinforcement concrete frame with a mortarless brick (MB) panel.

Improvement  of  the  energy  dissipation  of  the  MB  panel  requires  some  knowledge  of  the  Improvement of the energy dissipation of the MB panel requires some knowledge of the particular particular  mechanical  properties  of  the  novel  component.  However,  previous  research  mainly  mechanical properties of the novel component. However, previous research mainly focused on the focused  on  the  shear  and  compression  behaviors  of  traditional  masonry  with  mortared  brick   shear and compression behaviors of traditional masonry with mortared brick units [7–12]; their units  [7–12];  their  results  are  unsuitable  for  dry  stack  masonry.  Studies  on  the  MB  panel  became  results are unsuitable for dry stack masonry. Studies on the MB panel became active only in the last active only in the last decade. However, these recent studies mainly focused on the cyclic behavior of   decade. However, these recent studies mainly focused on the cyclic behavior of non-interlocking non‐interlocking mortarless brick (N‐IMB) joints. Lourenco et al. [13,14] applied the couplet test to  mortarless brick (N-IMB) joints. Lourenco et al. [13,14] applied the couplet test to investigate the investigate the shear‐compression behavior of dry stack stone joints. According to their research, the  shear-compression behavior of dry stack stone joints. According to their research, the Mohr–Coulomb Mohr–Coulomb failure criterion can describe the characteristics of dry stone joints under different  failure criterion can describe the characteristics of dry stone joints under different compression stress compression  stress  levels;  the  friction  coefficients  of  the  dry  stone  joints  were  obtained  levels; the friction coefficients of the dry stone joints were obtained experimentally, and the cohesion experimentally, and the cohesion for the investigated joints could be neglected. Zuccarello et al. [15]  for the investigated joints could be neglected. Zuccarello et al. [15] applied the traditional triple test applied  the  traditional  triple  test  and  confirmed  that  the  shear‐compression  behaviors  of  N‐IMB  and confirmed that the shear-compression behaviors of N-IMB joints represent the Coulomb friction joints represent the Coulomb friction law. Lin et al. [16,17] proposed a new modified loading device,  law. Lin et al. [16,17] proposed a new modified loading device, which was improved through the which was improved through the traditional triple test, to study the cyclic behavior of N‐MIB joints.  traditional triple test, to study the cyclic behavior of N-MIB joints. However, the new loading device However, the new loading device induced additional bending moments on the contact surface; the  induced additional bending moments on the contact surface; the additional bending moments resulted additional bending moments resulted in a pinch phenomenon in the hysteretic loops. Therefore, the  in a pinch phenomenon in the hysteretic loops. Therefore, the proposed loading device should be proposed loading device should be improved to avoid the additional moments.  improved to avoid the additional moments. Different from the non‐interlocking mortarless brick (N‐IMB) panel, the interlocking mortarless  Different from the non-interlocking mortarless brick (N-IMB) panel, the interlocking mortarless brick  (IMB)  panel  exhibits  different  in‐plane/out‐of‐plane  behaviors,  damping  ratios  and  energy  brick (IMB) panel exhibits different in-plane/out-of-plane behaviors, damping ratios and energy dissipations [18–21]. Sturm et al. [22] and Rui et al. [23] studied the shear and compression behaviors  dissipations [18–21]. Sturm et al. [22] and Rui et al. [23] studied the shear and compression behaviors of  IMB  experimentally.  Their  results  indicated  that  the  cohesion  of  IMB  can  be  neglected,  and   of IMB experimentally. Their results indicated that the cohesion of IMB can be neglected, and pre‐compression  level  and  interlocking  shapes  are  both  important  to  the  shear‐compression  pre-compression level and interlocking shapes are both important to the shear-compression behavior behavior of the researched interlocking blocks. The cyclic behavior of IMB wall was investigated by   of the researched interlocking blocks. The cyclic behavior of IMB wall was investigated by Qu et al. [20]; Qu et al. [20]; severe damage was found at the bottom of the IMB walls because of large drift levels,  severe damage was found at the bottom of the IMB walls because of large drift levels, which indicate which indicate that the interlocking shapes need to be improved. Thanoon et al. [24–26] studied the  that the interlocking shapes need to be improved. Thanoon et al. [24–26] studied the effects of the effects  of  the  interlocking  shapes  of  blocks  on  the  compressive  and  out‐of‐plane  behaviors  of  interlocking shapes of blocks on the compressive and out-of-plane behaviors of mortarless block mortarless  block  masonry  through  numerical  simulations  and  experimental  tests;  however,  the  masonry through numerical simulations and experimental tests; however, the influence on the in-plane influence on the in‐plane behavior was not investigated.  behavior was not investigated. The  mechanical  behavior  of  the  contact  between  the  mortarless  bricks,  which  is  a  nonlinear  The mechanical behavior of the contact between the mortarless bricks, which is a nonlinear problem, can become highly sophisticated by considering the influence of interlocking shapes. Ensuring  problem, can become highly sophisticated by considering the influence of interlocking shapes. Ensuring accuracy  during  the  processing  and  installation  of  mortarless  bricks  in  practical  engineering  is  accuracy during the processing and installation of mortarless bricks in practical engineering is difficult difficult and causes a far less idealized contact between mortarless bricks under practical conditions  and causes a far less idealized contact between mortarless bricks under practical conditions than than those under laboratory test conditions. Moreover, the use of interlocking bricks aggravates the  those under laboratory test conditions. Moreover, the use of interlocking bricks aggravates the non‐idealized characteristics of the contact conditions for mortarless joints. Therefore, the frictional  non-idealized characteristics of the contact conditions for mortarless joints. Therefore, the frictional parameters (mainly the friction coefficient) and shear force‐displacement hysteretic loops obtained  parameters (mainly the friction coefficient) and shear force-displacement hysteretic loops obtained from from previously‐reported shear‐compression tests of N‐IMB joints are unsuitable for the characterization  previously-reported shear-compression tests of N-IMB joints are unsuitable for the characterization of of IMB joints. Obtaining in‐depth insights into the shear‐compression characteristics of IMB joints by  IMB joints. Obtaining in-depth insights into the shear-compression characteristics of IMB joints by considering the influence of different interlocking shapes is highly necessary.  considering the influence of different interlocking shapes is highly necessary. A comprehensive experimental investigation of the behavior of IMB joints with four different  interlocking shapes was carried out at Harbin Institute of Technology Shenzhen Graduate School.  The  present  study  aims  to  improve  knowledge  of  the  mortarless  masonry  structure  under  cyclic 

Materials 2016, 9, 166

3 of 12

A comprehensive experimental investigation of the behavior of IMB joints with four different interlocking shapes was carried out at Harbin Institute of Technology Shenzhen Graduate School. The present study aims to improve knowledge of the mortarless masonry structure under cyclic loading, which is of crucial importance in the evaluation of the energy dissipation of MB panels. Aside from those of interlocking shapes, the effects of compressive stress and loading cycles were also investigated and analyzed quantitatively. 2. Description of the Specimen 2.1. Design and Construction of the Brick Light aggregate concrete (LAC) bricks were selected for the cyclic test. According to the material standard for LAC [27], the mix proportion (cement:fly ash:ceramsite:sand) of LAC was determined to be 1:0.27:1.7:2.6, with a water cement ratio (w/c) of 0.42. Then, three specimens of different mix proportions were selected for minor adjustments. The corresponding apparent density and seven-day compressive strength for each specimen are listed in Table 1. The No. 3 mix proportion, which meets the provision of the strength standard, was selected for the LAC brick specimens investigated in the subsequent experiments. Table 1. Mix proportion design of bricks. w/c: Water cement ratio.

Specimen

Cement (kg/m3 )

Fly Ash (kg/m3 )

Ceramsite (kg/m3 )

Sand (kg/m3 )

Water-Reducing Admixture

w/c

14-Day Compressive Strength (MPa)

Apparent Density (kg/m3 )

1 2 3

300 300 280

50 50 70

430 500 560

780 650 600

1.2% 1.2% 1.2%

0.42 0.42 0.42

22.12 29.77 27.53

1843 1792 1700

As shown in Figure 2, the YAS-5000 compression-testing machine (Changchun Kexin Test Instrument Company, Changchun, China) was utilized to perform the uniaxial test to determine the compressive strength of LAC. The obtained 28-day compressive strength and material density for 18 LAC cubic specimens are listed in Table 2. The average density (ρ = 1746 kg/m3) and average Materials 2016, 9, 166  4 of 12  compressive strength (fc = 31.7 MPa) were obtained for LAC.

  Figure 2. YAS-5000 compression-testing machine. Figure 2. YAS‐5000 compression‐testing machine. 

2.2. Dimension and Interlocking Shapes of the Brick 2.2. Dimension and Interlocking Shapes of the Brick  Although IMB  IMB can  can improve  improve the  the out‐of‐plane  out-of-plane stability  stability of  of the  the MB  MB panel  panel effectively,  effectively, unsuitable Although  unsuitable  interlocking shapes dimensions would leadlead  to significant stress stress  concentration and potential damage interlocking  shapes oror  dimensions  would  to  significant  concentration  and  potential  for the MB panel [28–30]. damage for the MB panel [28–30]. 

In  this  study,  the  shear‐compression  characteristics  of  N‐IMB  joints  and  IMB  joints  with  three  interlocking  shapes,  namely  rectangular,  trapezoidal  and  circular,  were  investigated  through  the  cyclic loading tests. The designed bricks are shown in Figure 3. The length, width and height of the  bricks for the upper and bottom portions are 80 mm × 115 mm × 80 mm and 375 mm × 115 mm × 80 mm,  respectively,  as  shown  in  Figure  4.  The  interlocking  height  and  width  ratio  of  IMB  have  been  confirmed to be 0.3 and 0.4 according to previous research [28,29]. The dimensions and profiles of 

Materials 2016, 9, 166

4 of 12

Table 2. Density and compressive strength of bricks. Specimen

Materials 2016, 9, 166  Materials 2016, 9, 166 

Density (kg/m3 )

28-Day Compressive Strength (MPa)

4 of 12 

4 of 12  1-1 1779 33.2 1-2 1730 35.5 1-3 1799 32.5 2-1 1750 30 2-2 1756 30.8 2-3 1735 32.9 3-1 1754 32.3 3-2 1743 31.3 3-3 1728 30.5 4-1 1698 27.6 4-2 1706 32.8 4-3 1742 33.6 5-1 1777 31 5-2 1793 32.3   5-3 1759 31.1   Figure 2. YAS‐5000 compression‐testing machine.  6-1 1796 33.3 Figure 2. YAS‐5000 compression‐testing machine.  6-2 1699 30.4 2.2. Dimension and Interlocking Shapes of the Brick  6-3 1687 29 2.2. Dimension and Interlocking Shapes of the Brick  Average 1746 31.7 Although  IMB  can  improve  the  out‐of‐plane  stability  of  the  MB  panel  effectively,  unsuitable 

Bottom Brick

Bottom Brick

115

Bottom Brick 115

115

115

46 Brick Bottom Bottom Brick 115

28 46 28 46 28 46

24 24

Bottom Brick

80 80

46

Upper Brick 23 4623 46 23 4623

46 Brick Bottom

56 56

46

56 56

46

24 24

115 Upper Brick 28Brick Upper

80 80

115

115 Upper Brick

80 80

115

115 Upper Brick 46Brick Upper 24 24

Upper Brick

115

24 24

Upper Brick

80 80

115

Bottom Brick 115 115

115

56 56

115

80 80

Although  IMB  can  improve  the would  out‐of‐plane  stability  of  the  MB  panel  effectively,  interlocking  shapes  or  dimensions  lead  to  significant  stress  concentration  and unsuitable  potential  interlocking  shapes  or  dimensions  would  lead  to  significant  stress  concentration  potential  damage for the MB panel [28–30].  In this study, the shear-compression characteristics of N-IMB joints and IMBand  joints with three damage for the MB panel [28–30].  In  this  study,  the  shear‐compression  characteristics  of  N‐IMB were joints investigated and  IMB  joints  with  three  interlocking shapes, namely rectangular, trapezoidal and circular, through the cyclic In  this  study,  the  shear‐compression  characteristics  of  circular,  N‐IMB  joints  and  IMB  joints  with  three  interlocking  shapes,  namely  rectangular,  trapezoidal  and  were  investigated  through  the  loading tests. The designed bricks are shown in Figure 3. The length, width and height of the bricks interlocking  shapes,  namely  rectangular,  trapezoidal  and  circular,  were  investigated  through  the  cyclic loading tests. The designed bricks are shown in Figure 3. The length, width and height of the  for the upper and bottom portions are 80 mm ˆ 115 mm ˆ 80 mm and 375 mm ˆ 115 mm ˆ 80 cyclic loading tests. The designed bricks are shown in Figure 3. The length, width and height of the  mm, bricks for the upper and bottom portions are 80 mm × 115 mm × 80 mm and 375 mm × 115 mm × 80 mm,  respectively, as shown in Figure 4. The interlocking height and width ratio of IMB have been confirmed bricks for the upper and bottom portions are 80 mm × 115 mm × 80 mm and 375 mm × 115 mm × 80 mm,  respectively,  as  shown  in  Figure  4.  The  interlocking  height  and  width  ratio  of  IMB  have  been  to be confirmed to be 0.3 and 0.4 according to previous research [28,29]. The dimensions and profiles of  0.3 and 0.4 according previous research [28,29]. The dimensions andratio  profiles of the cross-section respectively,  as  shown toin  Figure  4.  The  interlocking  height  and  width  of  IMB  have  been  for the non-interlocking and interlocking bricks are shown in Figure 3. Figure 4 shows photos of the confirmed to be 0.3 and 0.4 according to previous research [28,29]. The dimensions and profiles of  the  cross‐section  for  the  non‐interlocking  and  interlocking  bricks  are  shown  in  Figure  3.  Figure  4  the  cross‐section  for  the  non‐interlocking  and  interlocking  bricks  are  shown  in  Figure  3.  Figure  4  test specimens of the bricks casted in-place in the laboratory. shows photos of the test specimens of the bricks casted in‐place in the laboratory.  shows photos of the test specimens of the bricks casted in‐place in the laboratory. 

   

Figure  3.  Dimensions  and  profiles  of  the  cross‐section  for  specimens  of  bricks  with  various  Figure 3. Dimensions and profiles of the cross-section for specimens of bricks with various interlocking Figure  3.  Dimensions  profiles  of  the (b)  cross‐section  specimens (c)  of circular  bricks  with  various  interlocking  shapes:  (a) and  non‐interlocking;  rectangular for  interlocking;  interlocking;   shapes: (a) non-interlocking; (b) rectangular interlocking; (c) circular interlocking; (d) trapezoidal interlocking  shapes:  (a)  non‐interlocking;  (b)  rectangular  interlocking;  (c)  circular  interlocking;   (d) trapezoidal interlocking. (Units: mm).  interlocking. (Units: mm). (d) trapezoidal interlocking. (Units: mm). 

(a)  (a) 

(b)  (b)  Figure 4. Cont.

   

Materials 2016, 9, 166 Materials 2016, 9, 166 

5 of 12 5 of 12 

Materials 2016, 9, 166 

5 of 12 

  (c) 

(c) 

(d) 

 

(d) 

Figure 4. Photos for specimens of the bricks with various interlocking shapes: (a) non‐interlocking; 

Figure 4. Photos for specimens of the bricks with various interlocking shapes: (a) non-interlocking; Figure 4. Photos for specimens of the bricks with various interlocking shapes: (a) non‐interlocking;  (b) rectangular interlocking; (c) circular interlocking; (d) trapezoidal interlocking.  (b) rectangular interlocking; (c) circular interlocking; (d) trapezoidal interlocking. (b) rectangular interlocking; (c) circular interlocking; (d) trapezoidal interlocking. 

3. Description of Testing Procedures 

3. Description of Testing Procedures 3. Description of Testing Procedures 

The test setup is shown in Figure 5. The upper brick is fixed in the steel clamping plate, which is 

connected to the support frame through a rigid drive rod. The bottom brick is fixed in the steel slot,  The test setup is shown in Figure 5. The upper brick is fixed in the steel clamping plate, which is The test setup is shown in Figure 5. The upper brick is fixed in the steel clamping plate, which is  which is bolted on the sliding plate of the loading device. The counter weights, which are employed  connected to the support frame through a rigid drive rod. The bottom brick is fixed in the steel slot, connected to the support frame through a rigid drive rod. The bottom brick is fixed in the steel slot,  to  apply  different  to  the  upper  brick,  are  fixed  on  the  top  of are the employed steel  which is bolted on thevertical  slidingcompression  plate of the levels  loading device. The counter weights, which which is bolted on the sliding plate of the loading device. The counter weights, which are employed  clamping plate through a steel rod. Both the support frame and loading device system are fixed on a  to to the are fixed to  apply apply  different different  vertical vertical  compression compression  levels levels  to  the  upper upper  brick, brick,  are  fixed  on on  the the  top top  of of  the the  steel steel  steel platform.  clamping plate through a steel rod. Both the support frame and loading device system are fixed on clamping plate through a steel rod. Both the support frame and loading device system are fixed on a  asteel platform.  steel platform.

(a) 

(b) 

Figure 5. Test setup: (a) entire view; (b) loading system. 

(b)  (a)  A linear motor, which can achieve real‐time control and provide cyclic horizontal displacement  with constant speed, was utilized as the loading equipment. The loading speed of the linear motor  Figure 5. Test setup: (a) entire view; (b) loading system.  Figure 5. Test setup: (a) entire view; (b) loading system. ranges from 1 to 500 mm/s, and the acceleration time is 0.1 s with a repositioning accuracy of 0.02 mm.  The  mass  of  each  counter  weight  is  5.098  kg.  The  axial  deformation  of  the  linked  drive  rod  A linear motor, which can achieve real‐time control and provide cyclic horizontal displacement  A linear motor, which can achieve real-time control and provide cyclic horizontal displacement caused by the horizontal right/left sliding of the bottom brick was measured with four strain gauges  with constant speed, was utilized as the loading equipment. The loading speed of the linear motor  with symmetrically plastered on the surface of the drive rod to avoid the effects of out‐of‐plane bending.  constant speed, was utilized as the loading equipment. The loading speed of the linear motor ranges from 1 to 500 mm/s, and the acceleration time is 0.1 s with a repositioning accuracy of 0.02 mm.  The  deformation  (strain) was  then  converted  to  axial force  the adrive rod, which  is  equal of to 0.02 the  mm. ranges from 1 to 500 mm/s, and the acceleration time is 0.1 s of  with repositioning accuracy The  mass  of  each  counter  weight joint  is  5.098  kg. upper  The  axial  deformation  of  the  linked  drive  rod  shear  force  of  the  sliding  mortarless  between  and  bottom  bricks.  Lastly,  the  frictional  The mass of each counter weight is 5.098 kg. The axial deformation of the linked drive rod caused by the horizontal right/left sliding of the bottom brick was measured with four strain gauges  coefficients, which are equal to shear force divided by the area of the contact surface, were obtained.  caused by the horizontal right/left sliding of the bottom brick was measured with four strain gauges symmetrically plastered on the surface of the drive rod to avoid the effects of out‐of‐plane bending.  The  resistance  and  sensitivity  coefficients  of  the  strain  gauge  are  120  ±  0.12  Ω  and  2.12  ±  0.12,  symmetrically plastered on the surface of the drive rod to avoid the effects of out-of-plane bending. respectively. The DH5929 data collection device (with a measuring range of −1000 to +1000 με and  The  deformation  (strain) was  then  converted  to  axial force  of  the  drive rod, which  is  equal  to  the  The deformation (strain) was then converted to axial force of the drive rod, which is equal to the sampling frequency range of 1 Hz to 20,000 Hz) was utilized to collect the deformation (stain) data of  shear  force  of  the  sliding  mortarless  joint  between  upper  and  bottom  bricks.  Lastly,  the  frictional  shearthe linked rod.  force of the sliding mortarless joint between upper and bottom bricks. Lastly, the frictional coefficients, which are equal to shear force divided by the area of the contact surface, were obtained.  coefficients, which are equal to shear force divided by the area of the contact surface, were obtained. The Prior to the test, the devices shown in Figure 5 were assembled together as an entire loading  The  resistance  and  sensitivity  coefficients  of  the  strain  gauge  are  120  ±  0.12  Ω  and  2.12  ±  0.12,  resistance and sensitivity coefficients of the strain gauge are 120 ˘ 0.12 Ω and 2.12 ˘ 0.12, respectively. system. The leveling adjustment for all loading devices was enhanced during the assembling process  respectively. The DH5929 data collection device (with a measuring range of −1000 to +1000 με and  to ensure that the brick slides in the same horizontal level all of the time. During the test process,  The DH5929 data collection device (with a measuring range of ´1000 to +1000 µε and sampling sampling frequency range of 1 Hz to 20,000 Hz) was utilized to collect the deformation (stain) data of  leveling  adjustment  of  the  loading  devices towas  carried  out  with  a  dial  indicator.  Real‐time  frequency range of 1 to 20,000 Hz) was utilized collect the deformation (stain) data of the linked rod. the linked rod.  monitoring of the deformation of two supporting screw rods was employed to ensure the symmetry  Prior to the test, the devices shown in Figure 5 were assembled together as an entire loading Prior to the test, the devices shown in Figure 5 were assembled together as an entire loading  and level of the dial indicator. All of these measures guarantee the accuracy of the measured force.  system. The leveling adjustment for all loading devices was enhanced during the assembling process system. The leveling adjustment for all loading devices was enhanced during the assembling process  to ensure that the brick slides in the same horizontal level all of the time. During the test process, to ensure that the brick slides in the same horizontal level all of the time. During the test process,  leveling adjustment of the loading devices was carried out with a dial indicator. Real-time monitoring leveling  adjustment  of  the  loading  devices  was  carried  out  with  a  dial  indicator.  Real‐time  monitoring of the deformation of two supporting screw rods was employed to ensure the symmetry  and level of the dial indicator. All of these measures guarantee the accuracy of the measured force. 

Materials 2016, 9, 166 

6 of 12 

This  test  involved  16  load  cases.  Four  types  of  interlocking  shapes  (i.e.,  non‐interlocking,  circular  interlocking,  trapezoidal  interlocking  and  rectangular  interlocking)  and  four  compression  stress levels  (i.e., 0.017, 0.028,  0.039 and  0.05  MPa)  were  investigated.  Four  loading  cycles  with  an  Materials 2016, 9, 166 6 of 12 amplitude of 250 mm were applied to each loading case. The loading speed was set to 1 mm/s, which  can be assumed as a quasi‐static test.  of the deformation of two supporting screw rods was employed to ensure the symmetry and level of 4. Experimental Results and Discussion  the dial indicator. All of these measures guarantee the accuracy of the measured force. This test involved 16 load cases. Four types of interlocking shapes (i.e., non-interlocking, circular 4.1. Hysteretic Loops  interlocking, trapezoidal interlocking and rectangular interlocking) and four compression stress levels Figure 6 shows the typical hysteretic loops of the N‐IMB and IMB joints. A mechanical model  (i.e., 0.017, 0.028, 0.039 and 0.05 MPa) were investigated. Four loading cycles with an amplitude of was established and is shown in Figure 7. The results indicate that the hysteretic loop can be divided  250 mm were applied to each loading case. The loading speed was set to 1 mm/s, which can be into  four asstages,  namely test. initial  loading  (Stage  a),  constant  loading  (Stage  b  and  Stage  d)  and  assumed a quasi-static unloading (Stage c). Compared to those of the N‐IMB joints, the initial and unloading stages of the  4. Experimental Results and Discussion IMB joints exhibit similar characteristics. However, for the constant stage, the N‐IMB and IMB joints  exhibit a significant difference.  4.1. Hysteretic Loops Unlike that in the N‐IMB joints, the shear force of the IMB joints exhibits stiffness hardening  behavior  in 6the  constant  loading  stage  (Stages  b  and  d);  this and behavior  varied  the  interlocking  Figure shows the typical hysteretic loops of the N-IMB IMB joints. Aas  mechanical model shape changed, shown as in Figure 6b–d. In consideration of the test process, it is concluded that the  was established and is shown in Figure 7. The results indicate that the hysteretic loop can be divided stiffness hardening behavior was caused by the loading direction being not parallel to the longitudinal  into four stages, namely initial loading (Stage a), constant loading (Stage b and Stage d) and unloading extension of the interlocking portion during the loading process. Therefore, additional compression  (Stage c). Compared to those of the N-IMB joints, the initial and unloading stages of the IMB joints stress  was  generated;  the  shear  force  of for the  joints stage, increased;  and  the  hardening  exhibit similar characteristics. However, theIMB  constant the N-IMB andstiffness  IMB joints exhibit behavior appeared.  a significant difference.

  (a) 

(b) 

(c) 

(d) 

  Figure 6. Typical hysteretic loops for the non‐interlocking mortarless brick (N‐IMB) and IMB joints  Figure 6. Typical hysteretic loops for the non-interlocking mortarless brick (N-IMB) and IMB joints under  four  cyclic cyclic experimental experimental  tests: tests:  (a) (a)  non-interlocking; non‐interlocking;  (b)  circular  interlocking; interlocking;  (c) (c)  trapezoidal trapezoidal  under four (b) circular interlocking; (d) rectangular interlocking.  interlocking; (d) rectangular interlocking.

Unlike that in the N-IMB joints, the shear force of the IMB joints exhibits stiffness hardening behavior in the constant loading stage (Stages b and d); this behavior varied as the interlocking shape changed, shown as in Figure 6b–d. In consideration of the test process, it is concluded that the stiffness hardening behavior was caused by the loading direction being not parallel to the longitudinal extension of the interlocking portion during the loading process. Therefore, additional compression stress was generated; the shear force of the IMB joints increased; and the stiffness hardening behavior appeared.

Materials 2016, 9, 166

7 of 12

Materials 2016, 9, 166 Materials 2016, 9, 166 

7 of 12 7 of 12 

  IMB joints. Figure 7. Mechanical model of the hysteric loops for the N-IMB and Figure 7. Mechanical model of the hysteric loops for the N-IMB and IMB joints.

Figure 7. Mechanical model of the hysteric loops for the N‐IMB and IMB joints.  4.2. Mohr–Coulomb Failure Criterion

The average value of the constant stage was selected to calculate shear and compression stresses 4.2. Mohr–Coulomb Failure Criterion 4.2. Mohr–Coulomb Failure Criterion  as follows: The average value of the constant stage was selected to calculate shear and compression stresses The average value of the constant stage was selected to calculate shear and compression stresses  F N as follows: as follows:  τ  F, σ  N (1) A τ “ ,σ “ A (1) FA NA   τ  , σ  (1)  where τ is the shear stress, σ is the normal stress, shear force that is equal to the average force A F isFthe where τ is the shear stress, σ is the normal stress, isAthe shear force that is equal to the average of the constant loading stages, N is the normal force that is equal to the vertical applied force caused force of the constant loading stages, N is the normal force that is equal to the vertical applied force where τ is the shear stress, σ is the normal stress, F is the shear force that is equal to the average force  by the gravity effects of the countered weights and A is the vertical projection contact area in caused by the gravity effects of the countered weights and A is the vertical projection contact area in of the constant loading stages, N is the normal force that is equal to the vertical applied force caused  the experiment. the the  experiment. by  gravity  effects  of  the  countered  stress weights  A  is  the  vertical  projection loading contact isarea  in   The shear stress versus compression forand  all specimens under four-cycle shown The shear stress versus compression stress for all specimens under four-cycle loading is shown in the experiment.  in Figure 8. As indicated by the figure, the relationship between shear stress and compression stress Figure 8. As indicated by the figure, the relationship between shear stress and compression stress for The shear stress versus compression stress for all specimens under four‐cycle loading is shown  for both N-IMB and IMB joints under all researched compression levels complies with the both N-IMB and IMB joints under all researched compression levels complies with the Mohr–Coulomb in Figure 8. As indicated by the figure, the relationship between shear stress and compression stress  Mohr–Coulomb failure criterion, namely, failure criterion, for  both  N‐IMB namely, and  IMB  joints  under  all  researched  compression  levels  complies  with  the    μσ (2) µσ (2) Mohr–Coulomb failure criterion, namely,  ττ“ cc00 ` where c00 denotes initial cohesion, which can be and τ assumed c0  μσ   as zero for both N-IMB and IMB joints, (2)  µ denotes the representation coefficient. The friction coefficients of both N-IMB and IMB joints with μ 0 denotes initial cohesion, which can be assumed as zero for both N‐IMB and IMB joints, and  where c different in Table Table 3. 3. interlocking shapes are listed in μ denotes the representation coefficient. The friction coefficients of both N‐IMB and IMB joints with  different interlocking shapes are listed in Table 3. 

(a)

(b)  

(a) 

Figure 8. Cont.

  (b) 

Materials 2016, 9, 166 Materials 2016, 9, 166 

8 of 12 8 of 12 

Materials 2016, 9, 166 

8 of 12 

  (c)  (c) 

 

  (d) 

 

(d) 

Figure 8. Experimental failure criteria for N-IMB and IMB joints under different compression Figure 8. Experimental failure criteria for N‐IMB and IMB joints under different compression stress levels:  stress levels: (a) non-interlocking; (b) circular interlocking; (c) trapezoidal interlocking; (a) non‐interlocking; (b) circular interlocking; (c) trapezoidal interlocking; (d) rectangular interlocking.  Figure 8. Experimental failure criteria for N‐IMB and IMB joints under different compression stress levels:  (d) rectangular interlocking. (a) non‐interlocking; (b) circular interlocking; (c) trapezoidal interlocking; (d) rectangular interlocking.  Table 3. Effect of compression stress on the friction coefficient.  Table 3. Effect of compression stress on the friction coefficient. Table 3. Effect of compression stress on the friction coefficient. 

Compression Stress 0.017 MPa 0.028 MPa 0.039 MPa 0.05 MPa  Compression Stress Compression Stress Interlocking Shape  Interlocking Shape Non‐interlocking  0.55 MPa 0.592  0.622  0.638  0.017 0.028 MPa 0.039 MPa 0.05 MPa 0.017 MPa 0.028 MPa 0.039 MPa 0.05 MPa  Non-interlocking 0.55 0.592 0.622 0.638 Circular  0.514  0.559  0.602  0.613  Non‐interlocking  0.55  0.592  0.622  0.638  Circular 0.514 0.559 0.602 0.613 Trapezoidal  0.512  0.535  0.568  0.581  Circular  0.514  0.559  0.602  0.613  Trapezoidal 0.512 0.535 0.568 0.581 Rectangular  0.502  0.55  0.562  0.576  Trapezoidal  0.512  0.535  0.568  0.581  Rectangular 0.502 0.55 0.562 0.576 Rectangular  0.502  0.55  0.576  role  in  the  According  to  Figure  9  and  Table  3,  compression  stress  level 0.562  plays  an  important  Interlocking Shape 

friction  coefficients  of  the  and  IMB  joints.  Regardless  of  the  interlocking  as  the  the  According toto Figure 9 and Table 3, compression stress level level  plays an important roleshapes,  in the According  Figure  9 N‐IMB  and  Table  3,  compression  stress  plays  an  important  role friction in  compression stress increases, the friction coefficient increases by more than 12.5%, and the variation  coefficients of the N-IMB and IMB joints. Regardless of the interlocking shapes, as the compression friction  coefficients  of  the  N‐IMB  and  IMB  joints.  Regardless  of  the  interlocking  shapes,  as  the  decreases. The maximum increment in the friction coefficient was observed for IMB with a circular  stress increases, the friction coefficient increases by more than 12.5%, and the variation decreases. compression stress increases, the friction coefficient increases by more than 12.5%, and the variation  shape (18%), and the minimum increment was achieved for IMB with a rectangular shape (12.5%).  The maximum increment in the friction coefficient was observed for IMB with a circular shape (18%), decreases. The maximum increment in the friction coefficient was observed for IMB with a circular  The friction coefficient is insensitive to the interlocking shape. Under the same compression stress,  and the minimum increment was achieved for IMB with a rectangular shape (12.5%). The friction shape (18%), and the minimum increment was achieved for IMB with a rectangular shape (12.5%).  when the interlocking shape varies, the variation range of the friction coefficients is less than 10%.  coefficient is insensitive to the interlocking shape. Under the same compression stress, when the The friction coefficient is insensitive to the interlocking shape. Under the same compression stress,  interlocking shape varies, the variation range of the friction coefficients is less than 10%. when the interlocking shape varies, the variation range of the friction coefficients is less than 10%. 

    Figure 9. Effects of compression stress level on the friction coefficients.  Figure 9. Effects of compression stress level on the friction coefficients. 

Figure 9. Effects of compression stress level on the friction coefficients. The effect of compression stress on the friction coefficients is primarily caused by the contact  degree between two bricks. The upper and bottom bricks do not have a tight contact, because of the  The effect of compression stress on the friction coefficients is primarily caused by the contact  The effect of compression onin the friction is primarily caused by contact existence  of  “micro  burrs”,  as stress shown  Figure  10. coefficients The  real  contact  area  between  the the upper  and  degree between two bricks. The upper and bottom bricks do not have a tight contact, because of the  degree between two bricks. The upper and bottom bricks do not have a tight contact, because of the bottom bricks varies as the compression changes. As the compression stress increases, more micro  existence  of  “micro  burrs”,  as  shown  in  Figure  10.  The  real  contact  area  between  the  upper  and  existence ofinto  “micro burrs”, as shown Figuresurface,  10. The resulting  real contact between the upper area  and bottom burrs  bite  one  another  on  the in contact  in area an  additional  contact  and  an  bottom bricks varies as the compression changes. As the compression stress increases, more micro  bricks varies as the compression changes. As the compression stress increases, more micro burrs bite increment in the shear force of the mortarless joints. Furthermore, with the increase in compression  burrs  bite  into  one  another  on  the  contact  surface,  resulting  in  an  additional  contact  area  and  an  stress, the bite force is overcome during sliding, which also contributes to the increment in shear force.  increment in the shear force of the mortarless joints. Furthermore, with the increase in compression 

stress, the bite force is overcome during sliding, which also contributes to the increment in shear force. 

Materials 2016, 9, 166

9 of 12

into one another on the contact surface, resulting in an additional contact area and an increment in the shear force of the mortarless joints. Furthermore, with the increase in compression stress, the bite force Materials 2016, 9, 166  9 of 12  is overcome during sliding, which also contributes to the increment in shear force.

Cyclic displacement

Upper Brick

Bottom Brick

  Figure 10. Sketch of the contact status for the MBs.  Figure 10. Sketch of the contact status for the MBs.

4.3. Effect of Loading Cycles  4.3. Effect of Loading Cycles The effects effects of of loading loading cycles cycles on on the the MB MB joints’ joints’ behavior behavior were were investigated investigated by by comparing comparing the the  The experimental results after four and 36 cycles. Both the friction coefficient and wear condition on the  experimental results after four and 36 cycles. Both the friction coefficient and wear condition on the contact surface were investigated, and a constant compression stress level (0.05 MPa) was selected.  contact surface were investigated, and a constant compression stress level (0.05 MPa) was selected. The friction coefficients for N‐IMB and IMB joints under different loading cycles are listed in Table 4.  The friction coefficients for N-IMB and IMB joints under different loading cycles are listed in Table 4. Table 4. Effects of loading cycles on the friction coefficients.  Table 4. Effects of loading cycles on the friction coefficients.

Interlocking Shape  Interlocking Shape

Non‐interlocking  Non-interlocking Circular  Circular Trapezoidal Trapezoidal  Rectangular Rectangular 

Loading Cycles Loading Cycles 4 Cycles 36 Cycles 4 Cycles 36 Cycles 0.638  0.502  0.638 0.502 0.613  0.497  0.613 0.497 0.581 0.405 0.581  0.405  0.576 0.369 0.576  0.369 

Degradation Rate (DR) (%)  Degradation Rate (DR) (%)

21%  21% 19%  19% 30% 30%  36% 36% 

The degradation rate (DR) of the friction coefficients was introduced to analyze the influence of  The degradation rate (DR) of the friction coefficients was introduced to analyze the influence of the loading cycles quantitatively. DR can be calculated as:  the loading cycles quantitatively. DR can be calculated as: ˇ μ μ ˇ DR ˇ µ 36´ µ 4ˇ  100%   DR “ ˇˇ 36 μ 4 ˇˇ ˆ 100% µ44

(3)  (3)

where μ  and μ where µ44and µ3636 are the friction coefficients obtained after four and 36 cycles, respectively. The DR  are the friction coefficients obtained after four and 36 cycles, respectively. The DR for for IMB with a circular interlocking shape has the minimum value (19%), which is close to the value  IMB with a circular interlocking shape has the minimum value (19%), which is close to the value of the of  the  joints N‐IMB  joints Meanwhile, (21%).  Meanwhile,  the  DRs  for  IMB  with  rectangular  and interlocking trapezoidal  N-IMB (21%). the DRs for IMB joints with joints  rectangular and trapezoidal interlocking shapes are much larger (with an average of 33%). The results indicate that DR increases  shapes are much larger (with an average of 33%). The results indicate that DR increases with the with the decrease in the smoothness of the interlocking surface.  decrease in the smoothness of the interlocking surface. The wear conditions of the MB joints after four and 36 cycles are marked in Figure 11. For the  The wear conditions of the MB joints after four and 36 cycles are marked in Figure 11. For the specimens of N‐IMB, the wear area was almost all around the contact surface (see Figure 11a) after  specimens of N-IMB, the wear area was almost all around the contact surface (see Figure 11a) after performing four four cycles cycles of of loading; loading; only only aa slight slight increase increase in in wear wear was was observed observed after after 36 36 cycles cycles of of  performing loading,  as  shown  in  Figure  11b.  For  the  specimens  of  IMB,  as  shown  in  Figure  11c–h,  almost  no  loading, as shown in Figure 11b. For the specimens of IMB, as shown in Figure 11c–h, almost no wear was observed on the interlocking portion after four cycles of loading. However, as the loading  wear was observed on the interlocking portion after four cycles of loading. However, as the loading cycles increased from four cycles to 36 cycles, more wear occurred. Compared to the research on DR,  cycles increased from four cycles to 36 cycles, more wear occurred. Compared to the research on DR, the newly‐produced wear has a positive correlation with the DR of the friction coefficient, namely,  the newly-produced wear has a positive correlation with the DR of the friction coefficient, namely, when more wear occurs, a larger degradation ratio is obtained.  when more wear occurs, a larger degradation ratio is obtained.

  (a) 

(b) 

performing  four  cycles  of  loading;  only  a  slight  increase  in  wear  was  observed  after  36  cycles  of  loading,  as  shown  in  Figure  11b.  For  the  specimens  of  IMB,  as  shown  in  Figure  11c–h,  almost  no  wear was observed on the interlocking portion after four cycles of loading. However, as the loading  cycles increased from four cycles to 36 cycles, more wear occurred. Compared to the research on DR,  the newly‐produced wear has a positive correlation with the DR of the friction coefficient, namely,  Materials 2016, 9, 166 10 of 12 when more wear occurs, a larger degradation ratio is obtained. 

Materials 2016, 9, 166 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g)  4‐cycles 

(h)  36‐cycles 

 10 of 12 

 

 

 

Figure  11. Photos Photos  wear  condition  for  N‐IMBs  and  IMBs  after  loading different  loading  cycles.   Figure 11. of of  thethe  wear condition for N-IMBs and IMBs after different cycles. (a) N-IMBs (a) N‐IMBs after four cycles; (b) N‐IMBs after 36 cycles; (c) circular IMBs after four cycles; (d) circular  after four cycles; (b) N-IMBs after 36 cycles; (c) circular IMBs after four cycles; (d) circular IMBs after trapezoidal  IMBs  after  36  cycles;   IMBs  after  cycles;  (e) IMBs trapezoidal  IMBs  after (f)four  cycles;  (f)  36 cycles; (e)36  trapezoidal after four cycles; trapezoidal IMBs after 36 cycles; (g) rectangular (g) rectangular IMBs after four cycles; (h) rectangular IMBs after 36 cycles.  IMBs after four cycles; (h) rectangular IMBs after 36 cycles.

5. Conclusions  5. Conclusions (1) A series of cyclic tests was carried out to investigate the compression‐shear behavior of MB  (1) A series of cyclic tests was carried out to investigate the compression-shear behavior of MB joints.  In  these  tests,  four  different  interlocking  shapes,  four  compression  stress  levels  and  two  joints. In these tests, four different interlocking shapes, four compression stress levels and two loading loading  cycles  were  investigated.  A  novel  loading  test  methodology,  which  is  convenient  and  cycles were investigated. A novel loading test methodology, which is convenient and accurate for accurate for cyclic tests, was applied.  cyclic tests, was applied. (2) The hysteretic loops of the N‐IMB and IMB joints under the shear‐compression cyclic tests  (2) The hysteretic loops of the N-IMB and IMB joints under the shear-compression cyclic tests were were  obtained.  A  typical  Mohr–Coulomb  frictional  behavior  was  observed  in  the  N‐IMB  joints.   obtained. A typical Mohr–Coulomb frictional behavior was observed in the N-IMB joints. A significant A significant stiffness hardening effect was found for the IMB joints; the effect was mainly caused by  stiffness hardening effect was found for the IMB joints; the effect was mainly caused by the loading the  loading  direction  being  not  parallel  to  the  longitudinal  extension  of  the  interlocking  portion  direction being not parallel to the longitudinal extension of the interlocking portion during loading. during loading.  (3) Compression stress level plays an important role in the friction coefficients of the N-IMB and (3) Compression stress level plays an important role in the friction coefficients of the N‐IMB and  IMB joints. Regardless of the interlocking shapes, as the compression stress increases, the friction IMB  joints.  Regardless  of  the  interlocking  shapes,  as  the  compression  stress  increases,  the  friction  coefficient increases by more than 12.5%, and the variation decreases. The friction coefficients are coefficient  increases  by  more  than  12.5%,  and  the  variation  decreases.  The  friction  coefficients  are  insensitive to the interlocking shapes. Under the same compression stress, when the interlocking shape insensitive  to  the  interlocking  shapes.  Under  the  same  compression  stress,  when  the  interlocking  varies, the variation range of the friction coefficients is less than 10%. The influence of compression shape varies, the variation range of the friction coefficients is less than 10%. The influence of compression  stress on the friction coefficients is primarily caused by the contact degree between two bricks. stress on the friction coefficients is primarily caused by the contact degree between two bricks.  (4) The influence of loading cycles was examined by comparing the experimental results after (4) The influence of loading cycles was examined by comparing the experimental results after  four and 36 cycles. The wear condition was studied, and the degradation rate of the friction coefficient four  and  36  cycles.  The  wear  condition  was  studied,  and  the  degradation  rate  of  the  friction  coefficient was defined. The results showed that as the loading cycle increases, the wear becomes  increasingly severe. Wear condition has a positive correlation with the DR of the friction coefficient,  which means that when more wear occurs, a larger DR is obtained.  (5) The circular IMB is the preferred choice for the MB panels. Firstly, the circular IMBs can be  constructed easily in the engineering application; secondly, the circular IMB joints can absorb more 

Materials 2016, 9, 166

11 of 12

was defined. The results showed that as the loading cycle increases, the wear becomes increasingly severe. Wear condition has a positive correlation with the DR of the friction coefficient, which means that when more wear occurs, a larger DR is obtained. (5) The circular IMB is the preferred choice for the MB panels. Firstly, the circular IMBs can be constructed easily in the engineering application; secondly, the circular IMB joints can absorb more in-plane energy dissipation and exhibit better out-of-plane behavior during the seismic action compared to the rectangular and trapezoidal IMB joints because of the maximum friction coefficient and the minimum DR of the friction coefficient due to the increase of loading cycles are obtained. Acknowledgments: The authors are grateful for the financial support from the National Natural Science Foundation of China (NSFC-51178153), the China Postdoctoral Science Foundation (2013M541387) and the Shenzhen Technology Innovation Program-Technology Development Projects (Grant No. CXZZ20140904154839135). Author Contributions: Hongjun Liu, Kun Lin and Peng Liu conceived of and designed the experiments. Hongjun Liu provided the research references and suggestions. Kun Lin, Sai Zhao and Peng Liu performed the experiments. Kun Lin and Sai Zhao analyzed the data. Hongjun Liu wrote the paper. Kun Lin polished the paper and improved the logic. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

11. 12. 13. 14. 15. 16.

Yuen, Y.P.; Kuang, J.S. Nonlinear seismic responses and lateral force transfer mechanisms of RC frames with different infill configurations. Eng. Struct. 2015, 91, 125–140. [CrossRef] Jiang, H.; Liu, X.; Mao, J. Full-scale experimental study on masonry infilled RC moment-resisting frames under cyclic loads. Eng. Struct. 2015, 91, 70–84. [CrossRef] Cavaleri, L.; Trapani, F.D. Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling. Soil Dyn. Earthq. Eng. 2014, 65, 224–242. [CrossRef] Cavaleri, L.; Fossetti, M.; Papia, M. Infilled frames: Developments in the evaluation of cyclic behaviour under lateral loads. Struct. Eng. Mech. 2005, 21, 469–494. [CrossRef] Lin, K.; Liu, H.J.; Totoev, Y.Z. Quasi-static experimental research on dry-stack masonry infill panel frame. J. Build. Struct. 2012, 33, 119–127. Lin, K.; Liu, H.J.; Totoev, Y.Z. Lateral bearing capacity and simplified equations of dry-stack in-filled reinforcement concrete frame structure. J. Civ. Archit. Environ. Eng. 2013, 35, 21–27. Basha, S.H.; Kaushik, H.B. Evaluation of Nonlinear Material Properties of Fly Ash Brick Masonry under Compression and Shear. J. Mater. Civ. Eng. 2015, 8, 04014227. [CrossRef] Cai, Y.; Shi, J.L.; Yang, W.C.; Lv, X.Y.; Li, D.J. Research of Masonry Shear Strength under Shear-Compression Action. Adv. Mater. Res. 2014, 1065–1069, 1309–1318. [CrossRef] Chai, T.; Guo, Z.; Hu, Y.; Li, G.; Yin, T. Experimental research on shear behavior of stone masonry joint under shear and compression loading. Ind. Constr. 2011, 41, 63–66. Lumantarna, R.; Biggs, D.T.; Ingham, J.M. Compressive, Flexural Bond, and Shear Bond Strengths of In Situ New Zealand Unreinforced Clay Brick Masonry Constructed Using Lime Mortar between the 1880s and 1940s. J. Mater. Civ. Eng. 2014, 26, 559–566. [CrossRef] Rahman, A.; Ueda, T. Experimental Investigation and Numerical Modeling of Peak Shear Stress of Brick Masonry Mortar Joint under Compression. J. Mater. Civ. Eng. 2014, 9, 04014061. [CrossRef] Lourenço, P.B.; Barros, J.O.; Oliveira, J.T. Shear testing of stack bonded masonry. Constr. Build. Mater. 2004, 18, 125–132. [CrossRef] Lourenco, P.B.; Ramos, L.F. Characterization of Cyclic Behavior of Dry Masonry Joints. J. Struct. Eng. 2004, 130, 779–786. [CrossRef] Vasconcelos, G.; Lourenço, P.B. Experimental characterization of stone masonry in shear and compression. Constr. Build. Mater. 2009, 23, 3337–3345. [CrossRef] Zuccarello, F.A.; Milani, G.; Olivito, R.S.; Tralli, A. A numerical and experimental analysis of unbonded brickwork panels laterally loaded. Constr. Build. Mater. 2009, 23, 2093–2106. [CrossRef] Lin, K.; Liu, H.J.; Totoev, Y.Z. Behavior of mortar-less masonry joint under cyclic shear-compression loading. J. Harbin Inst. Technol. 2012, 44, 6–10.

Materials 2016, 9, 166

17. 18. 19.

20. 21. 22. 23. 24. 25.

26.

27. 28.

29.

30.

12 of 12

Lin, K.; Totoev, Y.Z.; Liu, H.J.; Wei, C.L. Experimental Characteristics of Dry Stack Masonry under Compression and Shear Loading. Materials 2015, 8, 8731–8744. [CrossRef] Anand, K.B.; Ramamurthy, K. Development and Performance Evaluation of Interlocking-Block Masonry. J. Archit. Eng. 2014, 6, 45–51. [CrossRef] Sanada, Y.; Yamauchi, N.; Takahashi, E.; Nakano, Y.; Nakamura, Y. Interlocking block infill capable of resisting out-of-plane loads. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. Qu, B.; Stirling, B.J.; Jansen, D.C.; Bland, D.W.; Laursen, P.T. Testing of flexure-dominated interlocking compressed earth block walls. Constr. Build. Mater. 2015, 83, 34–43. [CrossRef] Ali, M.; Briet, R.; Chouw, N. Dynamic response of mortar-free interlocking structures. Constr. Build. Mater. 2013, 42, 168–189. [CrossRef] Sturm, T.; Ramos, L.F.; Lourenco, P.B. Characterization of dry-stack interlocking compressed earth blocks. Mater. Struc. 2015, 48, 3059–3074. [CrossRef] Rui, A.S.; Soares, E.; Oliveira, D.V.; Miranda, T.; Cristelo, N.M.; Leitão, D. Mechanical characterisation of dry-stack masonry made of CEBs stabilised with alkaline activation. Constr. Build. Mater. 2015, 75, 349–358. Thanoon, W.A.M.; Alwathaf, A.H.; Noorzaei, J.; Jaafar, M.S.; Abdulkadir, M.R. Finite element analysis of interlocking mortarless hollow block masonry prism. Comput. Struct. 2008, 86, 520–528. [CrossRef] Thanoon, W.A.M.; Alwathaf, A.H.; Noorzaei, J.; Jaafar, M.S.; Abdulkadir, M.R. Nonlinear finite element analysis of grouted and ungrouted hollow interlocking mortarless block masonry system. Eng. Struct. 2008, 30, 1560–1572. [CrossRef] Thanoon, W.A.M.; Jaafar, M.S.; Noorzaei, J.; Abdulkadir, M.R.; Fares, S. Structural Behaviour of MortarLess Interlocking Masonry System Under Eccentric Compressive Loads. Adv. Struct. Eng. 2007, 10, 11–24. [CrossRef] China Standards Publication. Standard for the Test Method of Basic Mechanics Properties of Masonry; GB/T 50129–2011; China Architecture & Building Press: Beijing, China, 2011. Liu, H.J.; Lin, K.; Liu, P.; Totoev, Y.Z. 3D Numerical Analysis of Out-of-Plane Behavior of Masonry Panel Built with Topological Interlocking Brick. In Proceedings of the 6th World Conference on Structural Control and Monitoring, Barcelona, Spain, 15–17 July 2014. Lin, K.; Liu, H.J.; Liu, P.; Huang, Y.H. Out-of-plane behaviour of unreinforced masonry walls with topological interlocking brick. In Proceedings of the 13th International Symposium on Structural Engineering (ISSE-13), Hefei, China, 24–27 October 2014. Totoev, Y.; Wang, Z. In-plane and out-of-plane tests on steel frame with SIM infill. In Proceedings of the 12th Canadian Masonry Symposium, Vancouver, BC, Canada, 2–5 June 2013. © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).