DEVELOPMENT OF EMPIRICAL RIB PILLAR ... - Open Collections

291 downloads 2047 Views 9MB Size Report
than 80 literature case histories of hard rock pillars in room and p i l l a r mining. ..... (figures 1 and 2, note C) and drill drives (figure 1, note. D) or overcuts (figure 2 ... pillar design can seriously affect the recovery of this ore. A pillar that does ..... post-blast clean-up and development rehabilitation, development of blast induced ...
DEVELOPMENT OF E M P I R I C A L R I B P I L L A R DESIGN

CRITERION

FOR OPEN STOPE MINING By MARTIN RAYMOND HUDYMA B.A.Sc,

The U n i v e r s i t y o f B r i t i s h C o l u m b i a ,

1986

A THESIS SUBMITTED I N P A R T I A L FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF A P P L I E D

SCIENCE

in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF MINING AND MINERAL PROCESS We a c c e p t t h i s t h e s i s a s to the

required

conforming

standard

THE UNIVERSITY OF B R I T I S H September

ENGINEERING

COLUMBIA

1988

M a r t i n Raymond Hudyma,

1988

In presenting

this thesis in partial fulfilment

of the

requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department

or

by

his

or

her

representatives.

It

is

understood

that

copying

or

publication of this thesis for financial gain shall not be allowed without my written permission.

Department The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3

DE-6(3/81)

ABSTRACT

The many

design

empirical

verified in

the

rib

with

The

methods,

"pillar

of

determined

the by

and p i l l a r

intact

none

of

has

the

This thesis to

been

done

using

has

been

methods uses data

develop

open, s t o p e m i n i n g .

collected

an

empirical

The m e t h o d

is

graph".

in

the

method

material,

modelling,

The g r a p h has

been

histories

are: the

the

the

average

pillar

pillar

width

r e f i n e d w i t h the of hard

compressive load

and

use

of

rock p i l l a r s

the more

i n room

mining.

to

examine

in

open

s t a b i l i t y g r a p h and t h e p i l l a r

the

stope

rib

strength

useful

under but

pillar

conditions

formulas

and B i e n i a w s k i

(1983)

Guidelines, the

for

by H e d l e y are not

using

temporary

open s t o p e r i b

design.

The

the

design

investigation

open

pillars.

stope

design

(1972),

Obert

of

found

(1980)

open

may be

stope

and D u v a l l

the

rib

(1967)

applicable.

pillar of

the

used

commonly u s e d

c u r v e s d e v e l o p e d b y Hoek a n d Brown

some

for

data base are

a p p l i c a b i l i t y o f e m p i r i c a l methods

pillar

stable

for

pillar

case

pillars

Design Study"

numerical

The p i l l a r

proposed

Mine

stability

literature

pillars

but

variables

height.

80

rib

a design survey.

design

strength

stope

d e s i g n method

c a l l e d the

pillar

open

"Integrated

pillar

than

of

stability

permanent rib

open

pillars,

and

graph stope

method, rib

failing

are

pillars, temporary

iii TABLE OF CONTENTS PAGE ABSTRACT

i i

L I S T OF TABLES

v i i

L I S T OF FIGURES

viii

ACKNOWLEDGEMENT

xiii

CHAPTER 1:

INTRODUCTION

1.1

Contents

1.2

Open S t o p e M i n i n g 1 . 2 . 1 D e f i n i t i o n o f Open S t o p i n g 1 . 2 . 2 A p p l i c a b i l i t y o f t h e Open S t o p i n g 1 . 2 . 3 D e s c r i p t i o n o f T y p i c a l Open S t o p e M i n i n g Methods

2 3 4

R o l e o f R i b P i l l a r s i n Open S t o p e M i n i n g

9

1.3

of the

1 Thesis

CHAPTER 2 : R I B P I L L A R F A I L U R E 2 . 1 F a i l u r e Mechanisms and C h a r a c t e r i s t i c s 2 . 1 . 1 Rock F r a c t u r i n g 2.1.2 P i l l a r Load-Deformation Curve 2 . 1 . 3 Loss o f Load B e a r i n g C a p a c i t y 2.2

S i g n i f i c a n t V a r i a b l e s i n Open S t o p e P i l l a r Stability 2 . 2 . 1 I n t a c t Rock S t r e n g t h 2 . 2 . 2 P i l l a r Load 2 . 2 . 3 P i l l a r Shape and C o n f i n e m e n t 2.2.4 Structural Features i n P i l l a r s 2 . 2 . 5 E f f e c t o f P i l l a r Volume 2.2.6 Effect of B a c k f i l l 2.2.7 Effect of Blasting

2 . 3 Chapter

Summary

CHAPTER 3 : REVIEW OF P I L L A R DESIGN METHODS 3.1 E m p i r i c a l D e s i g n Methods 3.1.1 P i l l a r Strength Determination 3 . 1 . 1 . 1 E m p i r i c a l Strength Formulas 3 . 1 . 1 . 2 Salamon's Formula

1

5

11 11 14 17 19 23 23 23 24 25 26 27 30 31 32 32 34 35 38

iv 3.1.1.3 3.1.1.4 3.1.1.5 3.1.2 P i l l a r 3.1.2.1 3.1.2.2 3.1.3 Safety 3.2

H e d l e y ' s Formula O b e r t a n d D u v a l l Shape E f f e c t F o r m u l a . Hoek a n d Brown P i l l a r S t r e n g t h C u r v e s . Load T r i b u t a r y Area Theory Numerical Modelling Factor

. .

N u m e r i c a l D e s i g n Methods 3 . 2 . 1 Types o f N u m e r i c a l Methods 3 . 2 . 2 I n t e r p r e t a t i o n o f Boundary Element R e s u l t s in Mining 3.2.2.1 Post-Processing Failure C r i t e r i o n . . . . 3.2.2.2 Interactive Failure Criterion 3 . 2 . 2 . 3 P r i n c i p a l S t r e s s Magnitude 3.2.3 L i m i t a t i o n s o f Boundary Element M o d e l l i n g . . . 3 . 2 . 3 . 1 M o d e l l i n g a Rock Mass 3 . 2 . 3 . 2 Computational Assumptions

CHAPTER 4 : OPEN STOPE R I B P I L L A R DATA BASE

40 41 43 45 45 51 51 53 53 57 57 60 63 63 63 66 68

4 . 1 G e n e r a l Data Base I n f o r m a t i o n

68

4.2

Background Data

69

4.3

P i l l a r Assessment

73

CHAPTER 5 : BOUNDARY ELEMENT METHODS I N R I B P I L L A R DESIGN.

.

78

5.1

Boundary Element Codes Used 5 . 1 . 1 BITEM 5 . 1 . 2 MINTAB 5 . 1 . 3 BEAP

79 79 81 84

5.2

Open S t o p e R i b P i l l a r M o d e l l i n g 5 . 2 . 1 D e f i n i n g t h e Open S t o p e G e o m e t r y 5.2.2 D e f i n i n g the Average P i l l a r S t r e s s

84 86 86

5.3

2D M o d e l l i n g o f 3D S t o p e G e o m e t r i e s 5.3.1 Plane S t r a i n S o l u t i o n 5 . 3 . 2 C o m p a r i s o n o f 2D a n d 3D N u m e r i c a l M o d e l l i n g Results

91 92

5.4

5.5

D i s p l a c e m e n t D i s c o n t i n u i t y M o d e l l i n g o f 3D S t o p e Geometries 5 . 4 . 1 Seam T h i c k n e s s L i m i t a t i o n s 5.4.2 Comparison of Displacement D i s c o n t i n u i t y a n d 3D N u m e r i c a l M o d e l l i n g Pillar

Load C a l c u l a t i o n s f o r the

Open

Stope

93 97 97 99

V

Data Base 5.5.1 Assumptions 5.5.2 P i l l a r Load R e s u l t s 5.5.3 Numerical Model Comparison U s i n g the Histories 5.6

102 103 103

Case

107

C h a p t e r Summary

CHAPTER 6 :

110

DEVELOPMENT OF A P I L L A R DESIGN METHOD

6.1

C h o i c e o f V a r i a b l e s f o r Open S t o p e P i l l a r D e s i g n 6 . 1 . 1 A p p l i c a b i l i t y o f S t a t i s t i c a l Methods 6.1.2 Design V a r i a b l e s 6.1.3 Discounted Variables 6 . 1 . 3 . 1 P i l l a r Volume 6.1.3.2 Structural Discontinuities

6.2

Pillar 6.2.1 6.2.2 6.2.3 6.2.4

6.3

Data from L i t e r a t u r e 6 . 3 . 1 D a t a f r o m C a n a d i a n Room a n d P i l l a r M i n i n g . 6 . 3 . 2 D a t a f r o m a B o t s w a n a Room a n d P i l l a r M i n e . 6 . 3 . 3 D a t a f r o m an A u s t r a l i a n Open S t o p e M i n e . . 6 . 3 . 4 Summary o f A l l t h e D a t a

114 .

.

115 115 117 118 119 120

S t a b i l i t y Graph G r a p h i c a l Data A n a l y s i s I n f l u e n c e o f P i l l a r Load A p p r o x i m a t i o n s . . . . Importance o f Y i e l d i n g P i l l a r Case H i s t o r i e s . L i m i t a t i o n s of the P i l l a r S t a b i l i t y Graph. . .

122 122 126 128 130

. . .

. . .

131 131 134 139 143

6.4

Comparison A g a i n s t Other D e s i g n Methods 6.4.1 H e d l e y ' s P i l l a r S t r e n g t h Formula 6 . 4 . 2 Hoek a n d Brown P i l l a r S t r e n g t h C u r v e s 6 . 4 . 3 P i l l a r Shape E f f e c t F o r m u l a s

143 146 151 152

6.5

C h a p t e r Summary

158

CHAPTER 7:

DESIGNING R I B P I L L A R S FOR OPEN STOPE M I N I N G .

.

.

160

7.1

Permanent P i l l a r s

162

7.2

Temporary P i l l a r s 7 . 2 . 1 S t a b l e Temporary 7 . 2 . 2 F a i l e d Temporary

163 165 166

7.3

Pillars Pillars

Case Example: T r a n s v e r s e R i b P i l l a r s a t N o r i t a . 7 . 3 . 1 G e o l o g y and M i n i n g M e t h o d 7 . 3 . 2 Back A n a l y s i s U s i n g the P i l l a r S t a b i l i t y Graph 7 . 3 . 3 Comments C o n c e r n i n g t h e P i l l a r D e s i g n

.

.

167 167 170 173

vi CHAPTER 8: SUMMARY AND CONCLUSIONS

174

8.1 Summary 8.1.1 Open Stope R i b P i l l a r F a i l u r e 8.1.2 C u r r e n t P i l l a r Design Methods 8.1.3 I d e n t i f i c a t i o n and Q u a n t i f i c a t i o n o f t h e Design V a r a i b l e s 8.1.4 Development o f t h e P i l l a r S t a b i l i t y Graph. . .

174 174 175

8.2 C o n c l u s i o n s 8.2.1 A p p l i c a b i l i t y o f t h e Method 8.2.2 L i m i t a t i o n s o f t h e Method 8.2.3 Design o f Open Stope R i b P i l l a r s

179 179 179 180

8.3 F u t u r e Work

181

176 177

REFERENCES

183

APPENDIX 1

190

vii L I S T OF TABLES PAGE TABLE 1. Constants proposed by v a r i o u s authors f o r t h e s i z e e f f e c t formula ( a f t e r Babcock, Morgan and Haramy 1981).

36

TABLE 2. Constants proposed by v a r i o u s authors f o r t h e shape e f f e c t formula ( a f t e r Babcock, Morgan and Haramy 1981).

37

TABLE 3. Constants proposed by v a r i o u s authors f o r t h e shape e f f e c t formula ( a f t e r Babcock, Morgan and Haramy 1981).

37

TABLE 4. The s a f e t y f a c t o r s proposed by v a r i o u s authors f o r e m p i r i c a l p i l l a r d e s i g n i n e n t r y mining methods.

52

TABLE 5. Background data f o r a l l t h e p i l l a r case histories.

70

TABLE 6. Comparison o f BEAP and BITEM f o r f o u r s e t s o f d i f f e r e n t orebody geometries.

94

TABLE 7. Comparison of BEAP and MINTAB f o r t h e f o u r different tests.

98

TABLE 8. P i l l a r l o a d i n f o r m a t i o n f o r a l l t h e open stope r i b p i l l a r case h i s t o r i e s u s i n g BITEM, MINTAB and t h e T r i b u t a r y Area Theory.

105

TABLE 9. Comparison o f MINTAB and BITEM r e s u l t s , when both programs l i m i t a t i o n s a r e s a t i s f i e d .

107

TABLE 10. Comparison o f BITEM and MINTAB, when t h e MINTAB 108 l i m i t a t i o n i s met, but the BITEM l i m i t a t i o n i s not met. TABLE 11. Comparison between good BITEM and poor MINTAB 111 geometries shows t h e average p i l l a r s t r e s s v a r y i n g up t o ± 25%. TABLE 12. Data used by Von Kimmelmann e t a l . (1984) i n the development o f a p i l l a r f a i l u r e c r i t e r i o n .

136

TABLE 13. Comparison o f t h e v a l u e o f ore f o r mines u s i n g 161 temporary p i l l a r s a g a i n s t mines u s i n g permanent p i l l a r s .

viii L I S T OF FIGURES PAGE FIGURE 1. The elements o f an i d e a l i z e d l o n g i t u d i n a l longhole open s t o p i n g method showing t h e b l a s t i n g , mucking and b a c k f i l l i n g o p e r a t i o n s .

6

FIGURE 2. The elements o f an i d e a l i z e d t r a n s v e r s e b l a s t h o l e open s t o p i n g method showing t h e d r i l l i n g , b l a s t i n g , mucking and b a c k f i l l i n g o p e r a t i o n s .

7

FIGURE 3a. P a r a l l e l f r a c t u r i n g and s p a l l i n g due t o a l a c k of confinement a t the p i l l a r w a l l s .

16

FIGURE 3b. I n t e r n a l s p l i t t i n g and a x i a l c r a c k i n g o f a p i l l a r due t o deformable p i l l a r l a y e r s o r t h e propagation of p a r a l l e l wall f r a c t u r e s .

16

FIGURE 3c. Diagonal c r u s h i n g f r a c t u r e s may occur i n c o n f i n e d o r massive p i l l a r s .

16

FIGURE 4. A h y p o t h e t i c a l l o a d - d e f o r m a t i o n curve can be used t o d e s c r i b e t h e s t r e s s - s t r a i n c h a r a c t e r i s t i c s o f a pillar.

18

FIGURE 5. Wagner (1974) d i d a s e r i e s o f i n s i t u l o a d deformation t e s t s on c o a l p i l l a r s u s i n g h y d r a u l i c j a c k s . The graph on t h e t o p shows t h e l o a d - d e f o r m a t i o n c h a r a c t e r i s t i c s o f the p i l l a r i n g e n e r a l . The o b l i q u e diagrams g i v e t h e r e l a t i v e l o a d on each o f t h e 25 j a c k s at f o u r stages o f p i l l a r compression.

20

FIGURE 6. The s t r e s s - s t r a i n curves f o r l a b o r a t o r y specimens loaded under i n c r e a s i n g c o n f i n i n g p r e s s u r e s show an i n c r e a s e i n peak l o a d and an i n c r e a s e i n t h e post-peak l o a d b e a r i n g c a p a c i t y .

22

FIGURE 7. There i s a very l a r g e i n f l u e n c e o f specimen s i z e on t h e s t r e n g t h o f i n t a c t rock, f o r s m a l l specimen diameters.

28

FIGURE 8. S t r e n g t h t e s t i n g o f samples o f i n c r e a s i n g specimen l e n g t h shows a d e c r e a s i n g i n f l u e n c e o f s i z e .

28

FIGURE 9. Histogram o f t h e s a f e t y f a c t o r s f o r s t a b l e and f a i l e d p i l l a r case h i s t o r i e s i n South A f r i c a n bord and p i l l a r c o a l mining.

39

ix FIGURE 10. The estimated s t r e s s and s t r e n g t h f o r case h i s t o r i e s o f p i l l a r s i n room and p i l l a r mining i n t h e E l l i o t l a k e uranium mining d i s t r i c t .

42

FIGURE 11. Hoek and Brown (1980) proposed a s e r i e s o f p i l l a r s t r e n g t h curves based on t h e t h e o r e t i c a l d i s t r i b u t i o n o f rock mass f a i l u r e i n a p i l l a r .

44

FIGURE 12. The analogy o f s t r e a m l i n e s i n a smoothly f l o w i n g stream o b s t r u c t e d by b r i d g e p i e r s i s o f t e n used to d e s c r i b e t h e c o n c e n t r a t i o n o f s t r e s s i n p i l l a r s .

47

FIGURE 13. The t r i b u t a r y area theory, f o r average p i l l a r load c a l c u l a t i o n , applied t o several d i f f e r e n t p i l l a r layouts.

47

FIGURE 14. Salamon (1974) showed t h e v a r i a t i o n i n p i l l a r s t r e s s caused by i n c r e a s i n g t h e number o f p i l l a r s (N) i n a mining p a n e l . The graph shows a d i s t i n c t i n f l u e n c e o f the l o c a t i o n o f a p i l l a r and t h e number o f p i l l a r s on the s t r e s s induced.

49

FIGURE 15. A study u s i n g two dimensional boundary element numerical m o d e l l i n g shows t h e i n f l u e n c e o f p i l l a r shape and t h e number o f p i l l a r s on t h e average s t r e s s .

50

FIGURE 16. An i d e a l i z e d s k e t c h showing t h e p r i n c i p l e o f numerical m o d e l l i n g o f underground e x c a v a t i o n s .

54

FIGURE 17. An e m p i r i c a l f a i l u r e c r i t e r i o n has been a p p l i e d t o t h e two dimensional s t r e s s d i s t r i b u t i o n o f a s t a b l e open stope r i b p i l l a r .

59

FIGURE 18. The t h e o r e t i c a l d i s t r i b u t i o n o f f a i l e d r o c k i s much g r e a t e r i n t h i s p i l l a r .

59

FIGURE 19. The peak s t r e n g t h , deformation c h a r a c t e r i s t i c s , and e f f e c t o f l o c a t i o n used f o r i n v e s t i g a t i n g a p i l l a r case h i s t o r y w i t h a displacement d i s c o n t i n u i t y program.

61

FIGURE 20. The normal s t r e s s and t h e f a i l e d r e g i o n s e s t i m a t e d w i t h t h e displacement d i s c o n t i n u i t y program f o r a s i l l p i l l a r case h i s t o r y .

61

FIGURE 21. The d i s t r i b u t i o n o f normal s t r e s s i n a mining b l o c k was e s t i m a t e d f o r two d i f f e r e n t mining sequences t o determine t h e b e s t stope e x t r a c t i o n sequence.

64

FIGURE 22. T h i s f i g u r e shows t h e g e o m e t r i c a l d e f i n i t i o n f o r t h e stope and p i l l a r dimensions used i n t h i s t h e s i s .

72

X

FIGURE 23. I s o m e t r i c view o f an opening t h a t i s l o n g i n one d i r e c t i o n and t h e d i s c r e t i z a t i o n o f t h e boundary used i n two d i m e n s i o n a l m o d e l l i n g .

80

FIGURE 24. O b l i q u e view o f t h e MINTAB seam geometry and the s t r e s s a p p l i e d l o c a l l y on each element i n t h e r e e f .

83

FIGURE 25. A t y p i c a l BEAP geometry showing t h e boundary of t h e e x c a v a t i o n s d e f i n e d by two d i m e n s i o n a l q u a d r a t i c , non-conforming elements i n a t h r e e d i m e n s i o n a l s t r e s s field.

85

FIGURE 26. T h i s f i g u r e d e f i n e s t h e dimensions f o r stopes and p i l l a r s , and t h e o r i e n t a t i o n f o r t h e i n s i t u s t r e s s regime f o r t h i s t h e s i s .

87

FIGURE 27a. A r i b p i l l a r i n a h o r i z o n t a l seam loaded by the weight o f the overburden.

88

FIGURE 27b. The d i r e c t i o n o f l o a d i n g on a p i l l a r i n a v e r t i c a l orebody.

88

FIGURE 28. The mid-height p l a n e and c e n t e r l i n e f o r t a l l open stope geometries.

90

FIGURE 29. The shaded p l a n e has t h e g r e a t e s t i n f l u e n c e on the mid-height a s t r e s s .

94

FIGURE 30. O v e r e s t i m a t i o n o f average p i l l a r l o a d by t h e 2D "BITEM" boundary element method f o r t h e 12 runs i n the f o u r t e s t s .

96

FIGURE 31. The dimensions and geometry comparison t e s t s .

98

v

o f t h e MINTAB/BEAP

FIGURE 32. The d i f f e r e n c e between t h e average p i l l a r 101 s t r e s s p r e d i c t e d by MINTAB and t h e average p i l l a r s t r e s s p r e d i c t e d by BEAP f o r t h e comparison t e s t s . FIGURE 33. O v e r e s t i m a t i o n o f average p i l l a r l o a d by t h e 2D "BITEM" boundary element method f o r t h e comparison t e s t s and 3 case h i s t o r i e s .

109

FIGURE 34. The d i f f e r e n c e between t h e average p i l l a r 112 s t r e s s p r e d i c t e d by MINTAB and t h e average p i l l a r s t r e s s p r e d i c t e d by BEAP f o r t h e comparison t e s t s and 13 case histories. FIGURE 35. The p i l l a r s t a b i l i t y graph showing t h e open stope r i b p i l l a r data base.

123

FIGURE 36. The p i l l a r s t a b i l i t y graph showing t h e s t a b l e and f a i l e d zones and t h e t r a n s i t i o n a r e a .

125

FIGURE 37. The p i l l a r s t a b i l i t y graph w i t h t h e p i l l a r l o a d reduced f o r a l l t h e data p o i n t s by t h e maximum amount l i s t e d i n T a b l e 8.

127

FIGURE 38. The p i l l a r s t a b i l i t y .graph w i t h a l l t h e case h i s t o r i e s o f t h e 13 y i e l d i n g p i l l a r s j o i n e d by s o l i d lines.

129

FIGURE 39. The p i l l a r s t a b i l i t y graph showing t h e d a t a from room and p i l l a r mining p u b l i s h e d by Hedley and Grant (1972) i n t h e i r study on t h e development o f a p i l l a r s t r e n g t h formula.

133

FIGURE 40. A p l a n view o f room and p i l l a r mining a t BCL L i m i t e d , showing t h e use o f l o n g p i l l a r s and square pillars.

137

FIGURE 41. The p i l l a r s t a b i l i t y graph showing t h e l o n g p i l l a r data p r e s e n t e d by Von Kimmelmann e t a l . (1984).

138

FIGURE 42. The square p i l l a r data p r e s e n t e d by Von Kimmelmann e t a l . (1984) i s p l o t t e d on t h e s t a b i l i t y graph u s i n g an e f f e c t i v e width i n t h e H/W r a t i o .

140

FIGURE 43. The f i v e stages o f t h e S86 p i l l a r i n an open stope p i l l a r t e s t a t Mt. I s a ( a f t e r Brady 1977).

142

FIGURE 44. The t h i r d , fourth, and f i f t h s t a g e s o f t h e S86 open stope r i b p i l l a r , p r e s e n t e d by Brady (1977), a r e shown on t h e p i l l a r s t a b i l i t y graph.

144

FIGURE 45. The p i l l a r s t a b i l i t y graph showing t h e open stope r i b p i l l a r data and t h e l i t e r a t u r e d a t a .

145

FIGURE 46. The range o f r i b p i l l a r dimensions seen i n 17 Canadian open stope mines. FIGURE 47. Comparison o f t h e p i l l a r s t a b i l i t y Hedley's formula f o r two s a f e t y f a c t o r s .

148

graph and

150

FIGURE 48. Three o f the Hoek and Brown (1980) p i l l a r s t r e n g t h curves p l o t t e d on t h e p i l l a r s t a b i l i t y graph.

153

FIGURE 49. Comparison between t h e p i l l a r s t a b i l i t y graph and t h e Obert and Duval1 (1967) shape e f f e c t formula a p p l i e d w i t h a s a f e t y f a c t o r o f 1.0.

155

xii FIGURE 5 0 . The s h a p e e f f e c t f o r m u l a p r o p o s e d b y B i e n i a w s k i (1983) a p p l i e d w i t h t h r e e d i f f e r e n t s a f e t y f a c t o r s i s compared a g a i n s t t h e p i l l a r s t a b i l i t y g r a p h .

157

FIGURE 5 1 . The r a n g e o f t e m p o r a r y r i b p i l l a r u s e d i n 14 C a n a d i a n o p e n s t o p e m i n e s .

164

FIGURE 5 2 . Isometric view of transverse stoping at N o r i t a .

dimensions

b l a s t h o l e open

168

FIGURE 5 3 . A l o n g i t u d i n a l s e c t i o n o f t h e b l a s t h o l e open s t o p i n g b l o c k at N o r i t a showing the p i l l a r case h i s t o r i e s ( 1 0 - 6 , 1 0 - 7 , and 10-8) u s e d i n t h i s c a s e history analysis.

171

FIGURE 5 4 . The p i l l a r s t a b i l i t y g r a p h s h o w i n g t h e l o c a t i o n o f t h e s t a b l e and f a i l e d t r a n s v e r s e p i l l a r case h i s t o r i e s at N o r i t a .

172

ACKNOWLEDGEMENT The author wishes t o acknowledge Noranda Research, F a l c o n b r i d g e L i m i t e d , t h e N a t u r a l S c i e n c e s and E n g i n e e r i n g Research C o u n c i l and t h e Cy and Emerald Keyes s c h o l a r s h i p fund f o r f i n a n c i a l support d u r i n g t h e p r o j e c t . Thanks a r e extended t o t h e employees o f t h e mines and groups which p r o v i d e d time and i n f o r m a t i o n t o t h e study: - Algoma S t e e l Corp. L i m i t e d - G.W. Macleod Mine - B a r r i c k Resources - Camflo Mine - BP Canada Inc. - Mines S e l b a i e - Cambior - Niobec Mine - C o r p o r a t i o n o f F a l c o n b r i d g e Copper - Corbet Mine, Lac S h o r t t Mine - Dome Mines L i m i t e d - F a l c o n b r i d g e L i m i t e d - E a s t Mine, F r a s e r Mine, Kidd Creek, Lockerby Mine, Mining Technology D i v i s i o n , Onaping Mine, S t r a t h c o n a Mine - Hudson Bay Mining and Smelting - C e n t e n n i a l Mine, C h i s e l Lake Mine, F l i n F l o n Mine, Spruce P o i n t Mine - Inco L i m i t e d - L i t t l e S t o b i e Mine, Mine Research D i v i s i o n , S t o b i e Mine, Thompson D i v i s i o n - Kiena Gold Mines - Noranda M i n e r a l s I n c . - Brunswick M i n i n g and Smelting, Chadbourne Mine, Geco Mine, Golden G i a n t Mine, Lyon Lake Mine, M a t t a b i Mine, Mattagami Lake Mine, Mines Gaspe, Mining Technology D i v i s i o n , N o r i t a Mine - Pamour Porcupine Mines L i m i t e d - Ross Mine, No. 1 Mine - S h e r r i t t Gordon - Ruttan Mine - Westmin Resources L i m i t e d . A l s o , thanks t o Dr. H.D.S. M i l l e r f o r h i s e f f o r t s i n s e t t i n g up the I n t e g r a t e d Mine Design P r o j e c t . his the for

S i n c e r e g r a t i t u d e i s expressed t o P r o f e s s o r A l a n Reed f o r comments and h e l p i n w r i t i n g t h e t h e s i s and t h e members o f Department o f Mining and M i n e r a l Process E n g i n e e r i n g a t UBC h e l p and support d u r i n g t h e p r o j e c t .

S p e c i a l thanks t o my p a r t n e r Mr. Yves P o t v i n . His technical c o n t r i b u t i o n s and a d v i c e have had an immeasurable i n f l u e n c e on t h i s t h e s i s and my understanding o f mining and rock mechanics. F i n a l l y , and most o f a l l , I wish t o express my thanks t o Harry and N e l l i e Hudyma f o r t h e i r continuous encouragement and support d u r i n g a l l my endeavors.

1 CHAPTER 1 INTRODUCTION

Open

stope

1930's.

mining

The d e s i g n

has been p r a c t i c e d o f open

determining the l a r g e s t pillars.

Systematic

separating

stable

methods

"rib"pillars

Canadian

open

Sciences

and

Research

stope

"Integrated University

mining

Design

of B r i t i s h

H.D.S. M i l l e r .

t o design

i s centered

open

not been

conditions. Research

Falconbridge

Mine

mines

since the

stopes and t h e optimum

have

Engineering

and

stope

i n Canada

Columbia

confirmed

a

under

size for and t h e i r

i n typical

In 1986, t h e N a t u r a l

Council

Limited

Project",

stopes

around

(NSERC),

agreed

to

research

Noranda

sponsor

project

the

a t the

t h e s u p e r v i s i o n o f Dr.

The g o a l o f t h e study was t o i n v e s t i g a t e

open

stope mine d e s i g n methods by c o n f i r m i n g t h e v a l i d i t y o f e x i s t i n g stope

and

rib pillar

e m p i r i c a l methods.

design

methods

or

by

developing

new

T h i s t h e s i s i s a c o m p i l a t i o n and a n a l y s i s o f

the i n f o r m a t i o n and data c o l l e c t e d f o r t h e d e s i g n o f r i b p i l l a r s i n open stope mining. The

first

contents

describing

1.1

of

of the t h e s i s .

introduce

pillars

section

t h e problem open

stope

this

chapter

The

remainder

o f d e s i g n i n g open mining,

i n open stope mining.

Contents o f t h e T h e s i s

is a

o f the

of the chapter stope

and d i s c u s s i n g f

summary

r i b pillars the r o l e

will by

of r i b

2 This role

study

of

rib

begins

pillars

characteristics the

factors

Chapter

3

that

collected

element open

a

rib

base p i l l a r s i s

the

In

2,

the

discussed

and

s t a b i l i t y are

the

empirical

rib pillars.

Integrated

Mine

and

Design

methods

to

determine

pillars.

The

load

estimated

in this

the

average

induced

on

is

boundary

stress

of

the

in data

the

S t a b i l i t y G r a p h " , based on g r a p h i c a l a n a l y s i s o f t h e

rib

of

a new e m p i r i c a l

and d a t a

from

section.

all

pillar

Project

Chapter 5 d i s c u s s e s the use o f

pillar

literature.

It

Chapter

7 briefly

discusses

A summary a n d c o n c l u s i o n o f t h e t h e s i s

Open S t o p e Open

a l s o compares t h e

the

mining

is

a

general

v a r i e d m i n i n g method. up

features. applicability, from

new

f o r open s t o p e

rib

application of

the

rib

pillars.

i s found i n Chapter

8.

Mining

stope

make

largely

numerical

The r i b

s t a b i l i t y g r a p h f o r t h e d e s i g n o f open s t o p e

highly

identified.

d e s i g n method c a l l e d

pillars.

that

the

Chapter

f a i l u r e are

method w i t h e x i s t i n g e m p i r i c a l d e s i g n methods

1.2

and

the

data

pillar

mining

C h a p t e r 6 shows

development

pillar

of

stope

mining.

pillar

review

i n Chapter 4.

stope

stope

f o r open s t o p e

in

numerical

"Pillar

open

influence r i b p i l l a r

contains

presented

in

d e s c r i b i n g open

of progressive

d e s i g n methods u s e d data

by

the The and

method,

name

There are

and

following description

many

variations

an u n p u b l i s h e d paper

open

to

describe

many i m p o r t a n t

discussion of

used

of stope

on o p e n s t o p e

on the

a

features

each

of

the

definition,

mining mining

is

taken

methods,

3

w r i t t e n a t U.B.C. (Hudyma 1988a).

1.2.1

D e f i n i t i o n o f Open S t o p i n g

Three

characteristics,

common t o a l l open s t o p i n g methods,

make i t d i s t i n c t from o t h e r mining methods. i ) Open

stoping

is a

non

e n t r y mining

method.

Once

stope

p r o d u c t i o n has s t a r t e d , a l l a c t i v i t i e s r e q u i r i n g miners done from the p e r i p h e r y of the stope.

The

are

open stope does

not need t o be entered and a t no time are miners exposed t o the p r o d u c t i o n f a c e , ii)

It

is

generally

(although

a

naturally

some a r t i f i c i a l

supported

support

mining

i s occasionally

N a t u r a l l y supported means t h a t displacement and of

method used).

deformation

the rock mass i s l i m i t e d t o e l a s t i c o r d e r s of magnitude.

The

underground

stable

and

methods) . unstable

structures

created

self-supporting Mining

r e l e a s e of

is

done

energy

(in in

a

due

are

designed

opposition manner

t o mining

to

to

to

be

caving

ensure

does not

that occur

(from Brady 1981). iii)

Stopes

are

opened

stabilizing f i l l

These

three

to

to

and

enter

full

dimensions

before

a

i s introduced.

characteristics

a l l o t h e r underground methods. pillar

their

distinguish Cut and f i l l ,

open

stoping

from

l o n g w a l l , room and

shrinkage are a l l e n t r y methods t h a t r e q u i r e workers the

production

f a c e of the

stope.

Block

caving

and

4

sublevel

caving

induce

large,

unstable

movements

of

rock

and

i n c l u d e the c o n t i n u a l d i s s i p a t i o n of energy

as mining

proceeds,

so

supported

methods.

they

can

Methods such to

not

be

considered

as AVOCA, which i n t r o d u c e s f i l l

prevent stope i n s t a b i l i t y ,

the

stope

naturally

full

of

broken

extraction

or shrinkage s t o p i n g , which keeps

ore,

are

because the stope i s never f u l l y

1.2.2

during

excluded

from

open s t o p i n g

open.

A p p l i c a b i l i t y of Open S t o p i n g

There

are

some orebody

and

a p p l i c a t i o n o f open s t o p i n g .

geological

limitations

to

the

M o d i f i c a t i o n s o f open s t o p i n g can

be made t o mine a wide v a r i e t y of o r e b o d i e s , but some c o n d i t i o n s present d i f f i c u l t Open

stoping

dipping.

Stopes

angle of repose gravity be

30°)

about

i s best

suited

to

orebodies

but

that

are

steep

i n the orebody must d i p s u f f i c i e n t l y above the of the broken

ore

(above

50°

t o 55°)

flow of the ore t o the stope bottom.

successful

than

problems.

i n shallow d i p p i n g o r e b o d i e s the

orebody

must

be

15 metres i n t r u e t h i c k n e s s ) .

t o permit

Open s t o p i n g can

(approximately

quite thick

less

( g r e a t e r than

I f an orebody i s not steep

d i p p i n g o r t h i c k and f l a t , open s t o p i n g can not be

used.

For mining a steep d i p p i n g orebody, the orebody o u t l i n e must be f a i r l y 5

r e g u l a r and the orebody needs t o be g r e a t e r than

metres

in

delineate

and

width. mine.

w a l l r o c k d i l u t i o n due

Irregular

orebodies

G e n e r a l l y , a t widths to d r i l l

are

less

about

difficult than

5

to

metres,

h o l e d e v i a t i o n and b l a s t damage

5

becomes t o o g r e a t t o use open s t o p i n g e f f e c t i v e l y . The

r o c k mass s t r e n g t h of the

country

rock

i s very

the rock, the

important

orebody

and

the

i n open s t o p i n g .

l a r g e r the stopes can be made, and

surrounding The

stronger

consequently,

the more p r o d u c t i v e the method w i l l be.

At the l e a s t ,

fair

mass s t r e n g t h i s needed

w a l l rock t o

guarantee

i n the ore and

rock

t h a t t h e open stopes w i l l be n a t u r a l l y s u p p o r t i n g . A

final

restriction

reasonably l a r g e . (because

open

advantage justify

of

on

open s t o p i n g i s the orebody must

T h i s i s necessary t o get a few working

stoping the

is

large

often

scale

a of

cyclical the

method),

mining

faces

to

method,

be

take

and

to

the c o s t of the development a s s o c i a t e d w i t h open stope

mining.

1.2.3

D e s c r i p t i o n of T y p i c a l Open Stope M i n i n g Methods

Open s t o p i n g methods are so dependent on the orebody shape, size

and

Most

open

basic

orientation

that

stope mining

stages:

s t o p i n g has

a large

two

activities

pre-mining

development u s u a l l y - sublevel

no

(figures

be

exactly

the

same.

generalized into

and

production.

development.

two Open

Typical

includes: such

horizon

1 and

are

amount of pre-mining

accesses

drilling

can

development

as ramps, man-way r a i s e s

note A), and s u b l e v e l d r i f t s - a

mines

which

2, note C)

(figure

1,

( f i g u r e s 1 and 2, note B), includes

and d r i l l

D) or o v e r c u t s ( f i g u r e 2, note E ) ,

stope drives

access

drifts

( f i g u r e 1,

note

3

LEGEND A - MAN WAY-RAISE - SUBLEVEL DRIFT STOPE ACCESS DRIFT C D - DRILL DRIFTS

B

F H I L

-

FOOTWALL HAULAGE DRIFT DRAWPOINT COLLECTION CONE RING DRILL PATTERN

FIGURE 1. The elements o f an I d e a l i z e d l o n g i t u d i n a l l o n g h o l e open s t o p i n g method showing t h e b l a s t i n g , mucking and b a c k f i l l i n g o p e r a t i o n s ( a f t e r Hudyma 1988a).

LEGEND B C E F

-

SUBLEVEL DRIFT STOPE ACCESS DRIFT FULL STOPE OVERCUT FOOTWALL HAULAGE DRIFT

G H J K

-

FULL STOPE UNDERCUT DRAWPOINT SLOT RAISE PARALLEL DRILL HOLES

FIGURE 2. The elements o f an i d e a l i z e d t r a n s v e r s e b l a s t h o l e open s t o p i n g method showing t h e d r i l l i n g , b l a s t i n g , mucking and b a c k f i l l i n g o p e r a t i o n s ( a f t e r Hudyma 1988a).

8 - a mucking h o r i z o n , which may i n c l u d e : - a f o o t w a l l haulage d r i f t

( f i g u r e s 1 and 2, note F ) ,

- stope access undercuts ( f i g u r e 2, note G) o r drawpoints

( f i g u r e s 1 and 2, note H),

- stope undercut scrams, V - c u t s o r c o l l e c t i o n

cones

( f i g u r e 1, note I ) , - t h e opening

of a s l o t

raise

( f i g u r e 2, note J) by s t a g i n g ,

drop r a i s i n g , Alimak r a i s e c l i m b e r o r by r a i s e b o r e r . P r o d u c t i o n mining

involves:

- using p a r a l l e l to

d r i l l holes t o slash ore into the s l o t

form an expansion s l o t which

the

raise

i s opened t h e f u l l width o f

stope,

- drilling ring

production holes i n p a r a l l e l

patterns

(figure

1, note

b l a s t o r e i n t o t h e expansion Generally,

t h e expansion s l o t

and

ore i s slashed

the

production face.

the

orebody,

The h o l e s a r e used t o

slot.

i s opened a t one end o f t h e stope

into the s l o t This

L) .

( f i g u r e 2, note K) o r

causing a gradual r e t r e a t of

retreat

may be l o n g i t u d i n a l

(along

as i n f i g u r e 1) o r t r a n s v e r s e (across t h e orebody,

as i n f i g u r e 2 ) . As a stope i s b l a s t e d , o r e i s removed from t h e bottom stope. trackless system. or

The

o r e i s almost

load-haul-dump There

always

equipment,

removed

with

and taken

of the

t h e use o f

t o an

orepass

a r e a few mines u s i n g s l u s h e r / s c r a p e r equipment

c o n t i n u o u s mining

equipment t o move t h e muck t o an orepass,

but t h e s e o p e r a t i o n s a r e q u i t e r a r e .

The o r e pass system moves

9 the muck t o a c e n t r a l c o l l e c t i o n p o i n t f o r t r a n s p o r t out of the mine.

When the stope

i s completely b l a s t e d ,

w i t h waste r o c k o r c l a s s i f i e d of

pillars

filling

1.3

left

mill

between stopes

i t may

be

t a i l i n g s t o permit

(both f i g u r e s

1 and

filled

recovery

2 show the

of s t o p e s ) .

R o l e o f R i b P i l l a r s i n Open Stope M i n i n g The

entire full

most

economic

orebody

i n one

lens

mining

open

stope

longitudinal

creates

major

backfill

l i k e l y be needed.

stope

mining

is

to

stope

the

instability, will

method stope.

I f the use

potential

support

provide

i n v o l v e s mining

such

for as

of

serious

rib

to

a

this stope

pillars

The r o l e of r i b p i l l a r s

stability

the

mining

and

i n open

block

by

l i m i t i n g r o c k mass displacements and r e s t r i c t i n g the exposure

of

the r o c k mass i n the stope back and w a l l s . In had

the p a s t ,

t o be

left

improvements

i f full

to maintain

i n mining

the sequencing

l e n s mining was overall

technology

mine s t a b i l i t y . have caused

of e x t r a c t i o n so t h a t p i l l a r s

even i n v e r y l a r g e o r e b o d i e s .

pillars

to

separate

stopes

v a r i e d i n s i z e from about 2000 m factors

pillars

Recently,

a t r e n d towards

are never c r e a t e d ,

However, o f the 34 Canadian

stope mines i n v e s t i g a t e d i n t h i s study rib

not p o s s i b l e ,

(from 1986-1988), 27

i n the orebody. 3

These

up t o 150,000 m , 3

open used

pillars

depending

on

such as: the orebody geometry, the type of open s t o p i n g

method, and

the mining

sequence.

The dimensions

i n the data base are g i v e n i n Chapter 4.1

o f the

pillars

(Table 5, page 70).

10 It role.

is

important

that

rib pillars

Mines u s i n g r i b p i l l a r s

may

d e s i g n can s e r i o u s l y

- l o s s of p i l l a r - the

need

consequences of poor A

cause:

sloughing,

pillar

recovery,

access,

for

remedial

r e h a b i l i t a t i o n or a r t i f i c i a l - low

The

i t s intended r o l e may

- e x c e s s i v e stope or p i l l a r and expensive

designed

a f f e c t the r e c o v e r y of t h i s ore.

p i l l a r t h a t does not perform

- difficult

their

l e a v e as much as h a l f of the

orebody r e s e r v e s i n temporary p i l l a r s . pillar

perform

productivity,

- or t h e l o s s of ore r e s e r v e s .

measures support,

such

as

development

11 CHAPTER 2 RIB PILLAR FAILURE

The f i r s t pillar

step

stability

i n quantifying the v a r i a b l e s that i s t o describe

pillar

failure.

stope r i b p i l l a r f a i l u r e has n o t been deeply the

principles

rock

masses

objective istics and

of f a i l u r e

i n intact

are applicable

of t h i s

chapter

While

researched, rock,

stope

soft

open

some of rock and

rib pillars.

The

i s to b r i e f l y discuss the character-

of p i l l a r i n s t a b i l i t y

documentation o f f a i l u r e

these

t o open

hard

influence

and compare i n open stope

them

to

observations

rib pillars.

Using

i d e a s about p i l l a r f a i l u r e , t h e f a c t o r s t h a t i n f l u e n c e the

s t a b i l i t y o f open stope p i l l a r s w i l l be

identified.

2.1 F a i l u r e Mechanisms and C h a r a c t e r i s t i c s Rib

pillar

failure

progressive

(stable)

Progressive

failure

mass

i n a slow,

violent rock.

can be

failure

broken

and b u r s t i n g

r e f e r s t o gradual

non-violent

into

manner.

two

basic

(unstable)

modes: failure.

d e t e r i o r a t i o n of a Bursting

failure

r e l e a s e o f energy c a u s i n g t h e instantaneous

rock

i s the

fracture of

Although t h e c o n d i t i o n s a s s o c i a t e d w i t h each may be very

different,

both modes o f f a i l u r e c r e a t e s e r i o u s d i f f i c u l t i e s f o r

mining. T h i s t h e s i s w i l l d e s c r i b e and q u a n t i f y p r o g r e s s i v e

failure.

P r o g r e s s i v e f a i l u r e i s r e l a t e d t o t h e i n s i t u rock p r o p e r t i e s o f the

p i l l a r and mine,

and t h e s t a t i c

underground

stress

field.

12 Both of these f a c t o r s are q u a n t i f i a b l e w i t h r e a s o n a b l e accuracy. Bursting

failure

i s also

related

to

in situ

rock

properties.

However, i t i s a l s o dependent upon f a c t o r s such as l o c a l concentration, changes

the

i n the

investigate

and

the

unstable

dynamic

these

technology reason,

energy

released

stress

factors

budget

thesis

as

they

not

the

I t i s not

are

for

attempt

to

not

this to

mining

and

intended

to

quantifiable study.

describe

with

For or

this

quantify

failure.

Although

rib pillar

failure

uncommon, i t i s r a r e l y w e l l of

field.

available

will

due

stress

documentation

pillars

is

i s that

difficult

in

i n open

stope

documented.

visual open

A reason

observation stope

mining

mining

and

i s not

f o r the

lack

monitoring

and

there

is

of no

t universal

method t o d e s c r i b e

rib p i l l a r failure. documentation considered

Another p o t e n t i a l reason f o r the absence of

i s that

an

methods

using

pillar

failure

often

serious

Consequently, not

be

the

immediate

mining

are

enough

failure

backfill. does to

of

problem,

not

until

rib pillars

especially In

cause

warrant

the o p e r a t i o n a l

experienced

the c h a r a c t e r i s t i c s and e f f e c t s of

the

with

primary

operational

changing

i s often

the

mining

rib

problems

that

mining

starts.

stope

mining,

e f f e c t s of r i b p i l l a r

pillar

open

not

sequence.

failure This

may

failure

o f t e n r e s u l t s i n low p r o d u c t i v i t y , waste d i l u t i o n , h i g h e r mining c o s t s and p o s s i b l y l o s t ore. Several

signs

indicating p i l l a r

stope r i b s have been i d e n t i f i e d .

stability

problems i n open

These s i g n s of p i l l a r d i s t r e s s

13 are: - c r a c k i n g and s p a l l i n g o f rock i n r i b p i l l a r development and

raises,

- a u d i b l e n o i s e heard i n t h e p i l l a r s

or microseismic

events

l o c a t e d w i t h m o n i t o r i n g systems, - deformed o r plugged d r i l l

holes causing d r i l l

rods t o be

s t u c k and c a u s i n g problems i n l o a d i n g h o l e s , - overdraw from primary stopes w i t h t h e " f r e e " muck b e i n g u n b l a s t e d , o v e r s i z e m a t e r i a l from p i l l a r w a l l s , - s t r e s s r e d i s t r i b u t i o n from r i b p i l l a r s pillars

a f f e c t i n g nearby

and hanging w a l l and f o o t w a l l d r i f t s

- h o u r g l a s s i n g and c r a c k i n g o f p i l l a r s

seen

and r a i s e s ,

from

development, - major displacements

and changes i n s t r e s s shown by

instrumented m o n i t o r i n g systems such as s t r e s s meters and No

single

sign

sloughmeters.

necessarily

denotes

pillar

s i g n s a r e commonly r e p o r t e d d u r i n g p i l l a r Progressive p i l l a r may be minor a t f i r s t , and

deterioration

existing

structural

structurally influence

controlled

of geological

predominant. related

can

extensometers,

failure

failure,

failure.

i s a gradual process.

but g e t worse w i t h time. occur

but these

through

intact

discontinuities. failures

occur

Problems

Pillar rock

and

Although

in pillars,

f r a c t u r e s appears

along purely

the o v e r a l l

s t r u c t u r e i n open stope p i l l a r s

Stress, p i l l a r

damage

i s not

l o a d i n g and development o f s t r e s s

t o be predominant.

Consequently,

the

14 d i s c u s s i o n of r i b p i l l a r pillar

loading,

and

the

failure will

focus

on r o c k f r a c t u r i n g ,

subsequent l o s s of p i l l a r

load

bearing

ability.

2.1.1

Rock F r a c t u r i n g Rock f r a c t u r i n g i s a primary i n d i c a t o r of p i l l a r

i s the u l t i m a t e pillar

reason f o r the l o s s of l o a d b e a r i n g

disintegration.

fracturing

as

"...

the

rock m a t e r i a l .

new

surfaces."

the

Brady formation

I t involves

the

As

pillar

and

(1985)

define

separation

of bonds t o

central

parts

of

and

Soder

p i l l a r mines.

walls

the

pillar

and

the

size

and and

increases.

(1987)

The

in

form

f r a c t u r e s propagate

defined

6

f a i l u r e based on v i s u a l o b s e r v a t i o n

i n room and

ability

t o the l a c k of confinement of

f a i l u r e progresses,

i n t e n s i t y of e x i s t i n g f r a c t u r e s Krauland

breaking

and

F r a c t u r i n g g e n e r a l l y s t a r t s a t the p i l l a r

p i l l a r material. in

Brown

of p l a n e s of

the

where the r o c k mass i s weakest due

develop

and

failure

stages

to

classify

of p i l l a r f r a c t u r i n g

stages d e f i n e d

are:

"0) No f r a c t u r e s . 1) S l i g h t s p a l l i n g of p i l l a r c o r n e r s and p i l l a r w a l l s , w i t h s h o r t f r a c t u r e lengths i n r e l a t i o n t o p i l l a r h e i g h t , s u b p a r a l l e l to p i l l a r walls. 2) One or a few f r a c t u r e s near s u r f a c e , d i s t i n c t s p a l l i n g . 3) F r a c t u r e s appear a l s o i n c e n t r a l p a r t s o f the p i l l a r . 4) One or a few f r a c t u r e s occur through c e n t r a l p a r t s of the p i l l a r , d i v i d i n g i t i n t o two or s e v e r a l p a r t s , w i t h rock f a l l s from the p i l l a r . F r a c t u r e s may be p a r a l l e l t o p i l l a r w a l l s or d i a g o n a l , i n d i c a t i n g emergence of an hour-glass-shaped p i l l a r . 5) D i s i n t e g r a t i o n of the p i l l a r . Major b l o c k s f a l l out and/or the p i l l a r i s cut o f f by w e l l d e f i n e d f r a c t u r e s . A l t e r n a t i v e l y , a w e l l developed h o u r - g l a s s shape may emerge, w i t h c e n t r a l p a r t s completely crushed."

15 Krauland

and Soder a l s o

pillar

failure

was

inhomogeneities,

the

remained best

noted highly

basic

that

although

variable pattern

due

of

f a i l u r e mechanism. approach

to

and

definition

to

failure

constant f o r progressive f a i l u r e .

documentation

t h e appearance o f

o f an

geological propagation

T h i s i s perhaps the actual

mine

pillar

Use o f t h e Krauland and Soder o b s e r v a t i o n a l

classify

open

stope

pillars

p o s s i b l e due t o t h e l a c k o f v i s u a l a c c e s s .

i s not g e n e r a l l y However, t h e mode o f

f a i l u r e d e s c r i b e d above i s s i m i l a r t o t h a t seen by t h e author i n several mines

open stope mines and i s documented i n a few open

(Falmagne 1986; Bray

was a v a i l a b l e .

1967) where s u f f i c i e n t v i s u a l

stope access

The o n l y o b s e r v a t i o n o f Krauland and Soder t h a t

t h i s author has not seen i n open stope mining i s t h e d i v i s i o n o f pillars

into

distinct

r e g i o n s due t o f r a c t u r i n g .

the mechanism i s not l i k e l y potential

f o r a fracture

This part of

t o occur i n open stope p i l l a r s .

t o completely

sever a p i l l a r

The

i s much

lower i n open stope mining than i n room and p i l l a r mining due t o the l a r g e r s c a l e o f open stope p i l l a r s .

F r a c t u r e s would have t o

be v e r y continuous, f l a t and p l a n a r t o t r a n s e c t and d i v i d e open stope

pillars.

From p e r s o n a l o b s e r v a t i o n and l i t e r a t u r e d e s c r i p t i o n s , of

t h e most

common types

of fracturing

found

i n mine

some

pillars

are: i) the 1987)

surface fracturing

first

location

and

often a

and s p a l l i n g

(figure

o f f r a c t u r e development r e s u l t of

lack of

3a) i s u s u a l l y

(Krauland and Soder

p i l l a r wall

confinement

original pillar surface

FIGURE 3a. P a r a l l e l f r a c t u r i n g and s p a l l i n g due t o a l a c k o f confinement a t t h e p i l l a r w a l l s ( a f t e r Brady and Brown 1985). -soft partings

- i n t e r n a l splitting

FIGURE 3b. I n t e r n a l s p l i t t i n g and a x i a l c r a c k i n g o f a p i l l a r due t o deformable p i l l a r l a y e r s o r the p r o p a g a t i o n o f p a r a l l e l w a l l f r a c t u r e s ( a f t e r Brady and Brown 1 9 8 5 ) .

FIGURE 3c. Diagonal c r u s h i n g f r a c t u r e s may occur i n c o n f i n e d o r massive p i l l a r s ( a f t e r Brady and Brown 1985)

17 ( F a i r h u r s t and Cook 1966). ii)

internal axial

highly wall

deformable

rock

cracking

layers

(Brady

( f i g u r e 3b) may be caused by

between

and Brown

the p i l l a r

1985) o r may

and t h e

adjacent

be p a r a l l e l

surface

f r a c t u r e s t h a t propagate o r develop i n t h e c e n t r e (Agapito

1974).

iii)

diagonal

in confined

2.1.2

of the p i l l a r

crushing

f r a c t u r e s ( f i g u r e 3c) a r e o f t e n found

o r massive p i l l a r s

(Coates 1981).

P i l l a r Load-deformation Curve P i l l a r l o a d i n g can be h y p o t h e t i c a l l y d e s c r i b e d u s i n g a l o a d -

deformation is p

( s t r e s s - s t r a i n ) curve

loaded,

max'

t

n

i t compresses a c c o r d i n g maximum

e

Beyond t h i s

point,

pillar

point

"...

of f a i l u r e

load.

capacity

bearing

This

At a load

i s reached.

constant

will

Bieniawski

will

be taken as

(1987)

states,

i s a s t a t e a t which t h e r o c k specimen

changes from a g r a d u a l l y

to a

OA.

capacity

peak l o a d

in a pillar.

the ultimate strength

or t h e p i l l a r

load

t o the l i n e

As a p i l l a r

p o s t - f a i l u r e deformation o f t h e p i l l a r

occur but a t a reduced the

(see f i g u r e 4) .

or gradually

increasing decreasing

load-bearing load-bearing

capacity." Determining t h e a c t u a l load-deformation c h a r a c t e r i s t i c s o f a hard

r o c k mine p i l l a r

rock l a b o r a t o r y small

i n situ

Bieniawski

and

i s not p o s s i b l e .

specimens a r e e a s i l y coal

pillars

Curves f o r s m a l l

determined

have been

Van Heerden 1975), but

developed

hard

and curves f o r (Wagner 1974;

i t i s not e x p e r i m e n t a l l y

18

FIGURE 4 . A h y p o t h e t i c a l load-deformation curve can be used to d e s c r i b e the s t r e s s - s t r a i n c h a r a c t e r i s t i c s o f a p i l l a r . The p i l l a r e x h i b i t s l i n e a r e l a s t i c deformation (along l i n e OA) u n t i l the maximum l o a d i s reached ( P )• Pillar deformation c o n t i n u e s (along l i n e AB), but w i t h a d e c r e a s i n g l o a d b e a r i n g c a p a c i t y ( a f t e r S t a r f i e l d and F a i r h u r s t 1968). m a x

19 practical

t o conduct load-deformation t e s t s on

jointed

rock

deformation concept, and

(Brady

curve

i t is a

1977).

of

a hard

pillar does

rock

load bearing not

Agapito

(1974),

the

load-

a theoretical pillar

failure

capacity.

Capacity

capacity.

study

main reason f o r l o s s of

However, the

signify

in his

as

describe

f r a c t u r i n g i s the

necessarily

leaves

rock mine p i l l a r

load bearing

Loss o f Load Bearing Ultimately,

this

convenient method t o

the l o s s o f p i l l a r

2.1.3

While

l a r g e samples of

that of

the

onset of f r a c t u r i n g pillar

o i l shale

has

pillars,

failed.

found

that

f r a c t u r i n g s t a r t e d as minor s p a l l i n g i n the p i l l a r p e r i m e t e r occurred

a t s t r e s s l e v e l s w e l l below the u l t i m a t e

of a p i l l a r . outer

He

shell

of

a l s o noted t h a t as the

concentrations

built

monitored

in

the

pillar, up

situ

in

stress

capacity

f r a c t u r i n g occurred

monitoring the

load

pillar

showed core.

in

that

more

the

stress

Wagner

distribution in

and

(1974)

than

30

underground c o a l p i l l a r s u s i n g a s e r i e s of h y d r a u l i c j a c k s .

He

found

of

the

that

at

pillar

central

carried

core

the

load

the

pillar

of the

bearing and

by the p i l l a r After surface

several

stages

of

relatively pillar

capacity

compression, little

stress

( f i g u r e 5) . of

a pillar

the

He

perimeter

compared

to

noted t h a t most

i s found

i n the

i s l a r g e l y dependent on the confinement

core

the of of

provided

shell.

failure

of

fracturing),

the

pillar

(due

to

serious

internal

Wagner (1974) found t h a t a c o n f i n e d

and

pillar

Pillar compression (mm)

2

FIGURE 5 . Wagner (1974) d i d a s e r i e s of i n s i t u l o a d deformation t e s t s on coal p i l l a r s using hydraulic jacks. For t h i s case, 2 5 jacks were put i n a 5X5 pattern i n a square p i l l a r . The graph on the top shows the l o a d deformation c h a r a c t e r i s t i c s o f the p i l l a r i n general. The oblique diagrams give the r e l a t i v e load on each o f the 25 jacks a t four stages of p i l l a r compression. The diagrams show that with i n c r e a s i n g compression and i n c r e a s i n g average p i l l a r s t r e s s , the core of the p i l l a r c a r r i e s an i n c r e a s i n g percentage of the load, while the unconfined periphery of the p i l l a r c a r r i e s l e s s load. Diagram four shows that the p i l l a r core c a r r i e s a s i g n i f i c a n t load despite the f a c t that the p i l l a r i s l o s i n g i t s o v e r a l l load bearing capacity (redrawn from Wagner 1974).

core

had

Soder post

a

considerable

(1987) wrote failure

slenderness also

range of of

the

supported

demonstrated

is

bearing

pillar

the

that

loading

and

the

laboratory

if

the

depends l a r g e l y upon

the

presence of

t e s t i n g of

confining

capacity

i n open

will

peel

fill.

rock

and

This

is

specimens

in

Fairhurst

pressure

on

a

capacity

on

the p o s t

detached

failure

prevent

from

backfill,

pillar

starts,

of

walls

the

the can

fractured

confinement

the

leaving

p o s s i b l e to provide has

considerable core had

fractured

pillar.

installation

and

of

the

seen

open

wall

be

very

wall

pillar

These

of

material

methods

artificial

stopes

full

of

broken

some confinement t o the

several

load bearing

examples o f capacity.

failed

by b a c k f i l l

from the p i l l a r

walls.

before

i t had

large.

core,

and

There

are

becoming

the

such ore

core.

material

from

include

support

pillars

pillar

use

as as

long

rib pillars

In t h e s e cases,

the o p p o r t u n i t y

with

the

of

cable

p i l l a r walls.

remained c o n f i n e d because the f r a c t u r e d p i l l a r

confined

is

failure

i n open stope r i b

confinement

stope mining

o f f , preventing

to

(1968)

sample

r e s u l t i n g i n complete p i l l a r d i s i n t e g r a t i o n .

methods

and

in

Starfield

dependent

progressive

finally

load

Krauland

c a p a c i t y i s g r e a t l y enhanced (see f i g u r e 6).

Once

was

of

machines.

highly

However,

author

loss

l o s s of l o a d b e a r i n g

also

bolts,

capacity.

the peak l o a d c a p a c i t y i n c r e a s e s and

load bearing The

bearing

pillars

by

"stiff-testing"

increased,

that

load

as The a

pillar

material t o slough

22

FIGURE 6. The s t r e s s - s t r a i n c u r v e s f o r l a b o r a t o r y specimens l o a d e d under i n c r e a s i n g c o n f i n i n g pressures show an i n c r e a s e i n peak l o a d and an i n c r e a s e i n t h e post-peak l o a d bearing c a p a c i t y ( a f t e r S t a r f i e l d and F a i r h u r s t 1968) .

23 2.2

S i g n i f i c a n t V a r i a b l e s i n Open Stope P i l l a r

Stability

Based on t h e f a i l u r e c h a r a c t e r i s t i c s d e s c r i b e d are

several variables that

rib pillars. potential

2.2.1

of p i l l a r s ,

Strength

fracturing playing

i s an important

most common index is

the

uniaxial

strength

standardized

diameter

conditions.

sample core).

found

i n a report

in pillar

compressive

(UCS) drill

i s the

core

strength.

The

o f d i f f e r e n t rock

test.

The

maximum

load

can s u s t a i n

under

uniaxial that

a

uniaxial

The UCS i s v a r i a b l e upon specimen s i z e , so

diameter

drill

factor

f o r comparing t h e s t r e n g t h

compressive

the

a large r o l e i n the s t a b i l i t y

the resistance of the p i l l a r material t o f r a c t u r i n g

crushing

loading

i n t h e d e s i g n of

influence.

I n t a c t Rock

types

there

T h i s s e c t i o n w i l l d e s c r i b e t h e v a r i a b l e s and t h e i r

With r o c k

and

c o u l d be important

above,

i s standardized

Further

information

t o about

54 mm

(NX s i z e

about t h e u n i a x i a l t e s t can be

by an I n t e r n a t i o n a l

Commission

on standard-

i z a t i o n o f l a b o r a t o r y t e s t s (ISRM Commission 1979).

2.2.2

Pillar Pillar

fracturing pillar

may

Load

load

i s a primary f a c t o r i n p i l l a r deformation,

and p i l l a r have

a

failure.

to

determine

stress

The d i s t r i b u t i o n o f s t r e s s i n a

significant

s t a b i l i t y of the p i l l a r .

rock

effect

on t h e performance and

However, t h e r e i s no c o n c l u s i v e method

in a pillar

and t h e r e

i s no s i n g l e

value

24 that

can

used

to

describe

state

of

stress

the

complete l o a d i n g

condition

of

a

pillar. The

the

stress

a p p l i e d t o the p i l l a r as w e l l as the l o c a t i o n i n s i d e the

pillar.

The

stress

field and

and

applied the

to

a

pillar

a p i l l a r varies

s i z e and

other p i l l a r s .

in

The

stress

p r o x i m i t y of e x c a v a t i o n s and points

stress

in

kept

a

in

pillar

on

upon

the

pre-mining

stress

l o c a t i o n of stopes, underground workings i n s i d e the

upon areas of weakness such as

these

varies

the

mind,

with

geological

i s dependent

discontinuities,

f r a c t u r i n g i n the p i l l a r .

determining

a

pillar

high

degree

the

the With

distribution

of

precision

to

find

of

is

not

possible. For

this

represent

the

thesis,

it

load

a

on

average

stress

height

centerline,

techniques.

The

normal s t r e s s e s first

found

necessary

pillar.

The

several

i s that

This

using

was

along

a

value

taken

the

numerical

i s frequently

to

as

pillar

t h i s l o c a t i o n has

i n the p i l l a r , and

area of f a i l u r e .

load

points

determined

reason

w i l l be d i s c u s s e d

2.2.3

at

was

the mid-

modelling the

highest

observed as

c h o i c e of s t r e s s a n a l y s i s

the

location

i n more d e t a i l i n Chapter 5.2.2.

P i l l a r Shape Chapter

stability

2.1.3

and

the

described load

the

bearing

role

of

confinement

capacity.

Pillar

huge i n f l u e n c e on confinement o f the p i l l a r c o r e . - the

load-convergence

c h a r a c t e r i s t i c s of

in

pillar

shape has

a

It affects:

pillars

at

failure

25 (Hudson e t a l . 1971; S t a r f i e l d and F a i r h u r s t 1968), - t h e p o s t - f a i l u r e deformation modulus o f p i l l a r s al.

(Hudson e t

1971; Wagner 1974),

- the s t r e s s d i s t r i b u t i o n i n a p i l l a r

( S t a r f i e l d and F a i r h u r s t

1968; Wagner 1974), - and

the

effect

of geological

p i l l a r s t i f f n e s s and f a i l u r e This

confirms

pillar

2.2.4

pillar

and

fracturing

on

significant variable

in

(Sarkka 1984).

shape

as a

stability.

Structural Discontinuities i n P i l l a r s

The

effect

upon whether as

that

structure

of g e o l o g i c a l

the structure

f a u l t s and

structure

involves

on r i b p i l l a r s

depends

major d i s c o n t i n u i t i e s such

shear zones o r minor d i s c o n t i n u i t i e s l i k e

joint

sets.

P i l l a r s i n t e r s e c t e d by a major s t r u c t u r e must be analyzed

based

on

strength

the

o f the major

stability. structure

However,

structure i n open

The

will

stoping,

orientation

play

and

a dominant

shear

role in

i n t e r s e c t i o n o f a major

i s not a common problem and d e s i g n o f such p i l l a r s i s

an e x c e p t i o n rib

specific situation.

rather

pillars

are

than a r e g u l a r located

to

occurrence.

avoid

When p o s s i b l e ,

intersection

by

major

geological discontinuities. Less

prominent d i s c o n t i n u i t i e s such as

fracturing, The

a r e a much more common problem

influence

o f minor

upon t h e o r i e n t a t i o n ,

j o i n t i n g and

local

in pillar

design.

d i s c o n t i n u i t i e s on r i b p i l l a r s

depends

continuity,

frequency and shear

strength

of

the

structures.

At

the

minor d i s c o n t i n u i t i e s on triaxial

state

joints.

of

Archibald

stability

i s small

e f f e c t of the

confinement prevents rock movement a l o n g

the

Geological

pillar

the

because

d i s c o n t i n u i t i e s have

e f f e c t on i n s t a b i l i t y and

p i l l a r c e n t r a l core,

i n unconfined r e g i o n s

(1981),

Page

and

a

more s i g n i f i c a n t

of p i l l a r s .

Brennan

(1981),

Allcott and

Von

Kimmelmann (1984) mention s t r u c t u r a l l y c o n t r o l l e d wedge f a i l u r e s from

pillar

walls.

confinement influence

the

of

stability analysis

of

One

expect

to

find

rock near p i l l a r w a l l s .

structure

analyses. is

would

An

described

by

is

best

Potvin

method

et

al.

or

no

Consequently,

accounted

excellent

little

for

for

using

wall

(1988a).

the wall

stability The

method

q u a n t i f i e s the i n f l u e n c e of g e o l o g i c a l s t r u c t u r e , mining induced stress,

and

surface

of

pillar

dimensions t o

open stope. the

predict

When the

the

of

analysis predicts a

e f f e c t o f minor s t r u c t u r e

r i b p i l l a r s w i l l be

stability

on

the

each

stable

stability

of

separated

by

small.

E f f e c t o f P i l l a r Volume Pillars

n a t u r a l and pillar

the

are

made

of

blocks

of

intact

mining induced d i s c o n t i n u i t i e s .

volume

variables: and

an

wall,

unfractured

2.2.5

stope

the

on

stability

is

volume e f f e c t on

influence

of

the

number

really the of

rock So the

a

strength

influence

function of

of

of two

i n t a c t rock,

s t r u c t u r a l defects

in

the

pillar. L a b o r a t o r y compressive t e s t i n g o f s m a l l samples has

shown an

i n f l u e n c e o f specimen s i z e on t h e compressive s t r e n g t h o f i n t a c t rock

(see f i g u r e

7) .

However,

testing

of

large

intact

rock

specimens has found t h a t above a " c r i t i c a l " volume, t h e s t r e n g t h does not decrease s i g n i f i c a n t l y asymptotic Herget

(see f i g u r e 8 ) .

T h i s concept of

specimen s t r e n g t h i s r e p o r t e d by B i e n i a w s k i

e t a l . (1984),

and P r a t t

e t a l . (1972).

(1975) ,

These authors

found t h e c r i t i c a l volume t o be l e s s than one c u b i c metre. the volume larger

o f b l o c k s i n open stope p i l l a r s

than

this

critical

volume,

there

With

u s u a l l y b e i n g much is a

very

limited

i n f l u e n c e o f the volume e f f e c t o f i n t a c t rock. The depend

number upon

of s t r u c t u r a l

the volume

discontinuities

o f the p i l l a r .

in a pillar

Hoek and Brown

will (1980)

suggest t h a t t h i s i n f l u e n c e can be q u a n t i f i e d through t h e use o f rock

mass

classification

Stephansson

(1985),

correction pillar

methods.

and

factors

to

other

account

authors

with

open

stope

and

Both

Agapito

have

for pillar

strength determination.

investigated

Hardy

of

rib pillar

(1977),

suggested

volume these case

be

that

used

in

ideas w i l l

be

histories

in

Chapter 6.1.3.

2.2.6 E f f e c t o f B a c k f i l l The mining

use

fill

methods.

(Campbell use

of

1987)

cemented

purpose o f

A

survey

found t h a t

fill

fill

i s very

is

to

important

by

the O n t a r i o M i n i s t r y

almost

stope

o f Labour

a l l O n t a r i o open stope mines

aid in pillar

used t o

i n c u r r e n t open

provide

recovery. overall

mine

The

general

stability,

Sp*>ol Book

T—t*d by

Harbta Umastona Granlta Basalt Basalt-andaslta Cabbro ftarbla Norita Cranlta Quartz d l o r l t a

O O V A

( e/«cS0) . o

H09I'" KolfMn " Bureharti at a l ' " Kolfa»n'" Nalakldla " llnlckaya " llnickaya " Blantawtkl'* Hosklns t H o r l n o P r a t t at a l ' * ' 1

lava

1

1

1

7

1 7 0

(50/d) -" 0

0.3

150

Specifwn

dlamtar

200

250

d

FIGURE 7. There i s a v e r y l a r g e i n f l u e n c e of specimen s i z e on t h e s t r e n g t h o f i n t a c t rock, f o r small specimen diameters ( a f t e r Hoek and Brown 1980). 150 100 70 50

Ix , • Iron ore

r

*

Johns (1966)

Oiorite

° Prott ^ ft ft W (D 25 H•0 H H> >-

20* H

ffi

Q hf UJ fl> I3 3 O S 8 Q a ft lit C C ^ tr cr O © ft (D a. O a t» (D UJ n < O ft» © (D zLd H n ft 3 0£ (J 3 * p. 0)

B

t-

-30*

CO

ft 0)

n

SEAM THICKNESS RATIO (LENGTH:BREADTH) • 3D TESTS

102 - using

the

average

of

several

elements

to

determine

average p i l l a r s t r e s s has the e f f e c t o f "smoothing

the

out" l a r g e

d i f f e r e n c e s a t i n d i v i d u a l elements i n the p i l l a r , - o r the open tests

are

modelling

stope r i b p i l l a r

much

simpler

than

the

and

geometries more

excavation

v e r i f i c a t i o n s by Crouch and

a n a l y z e d i n the

amenable

to

geometries

DD

numerical

analyzed

in

o f the comparison

r a t i o of three w i l l BEAP

for

influence

open

suggest

that

using a

the

seam t h i c k n e s s

g i v e v e r y good agreement between MINTAB and

stope

o f the

the

Brady.

While complex mining geometries have not been i n v e s t i g a t e d , results

12

rib

pillars.

Further

seam t h i c k n e s s r a t i o

will

be

checks

of

the

done i n Chapter

5.5 u s i n g case h i s t o r i e s from the d a t a base.

5.5 P i l l a r Load C a l c u l a t i o n s f o r t h e Open Stope Data Base There stress

i s no

or

Chapter

load

3,

elastic

can determine the

As

numerical

deteriorating

For

pillars

condition,

m o d e l l i n g may

load be

average

d i s c u s s e d above, m o d e l l i n g can

approximations o f the p r e - f a i l u r e

pillars.

numerical

i n a mine p i l l a r .

linear

consistent mine

a b s o l u t e method t h a t

that

give

load

i n hard

rock

a

sloughing

by

linear

a considerable overestimate.

the

r o c k f r a c t u r i n g and p i l l a r deformation. l i n e a r e l a s t i c load w i l l

conditions.

A failed

For f a i l e d

or

elastic

can be a t t r i b u t e d t o the l o c a l l o s s o f l o a d b e a r i n g c a p a c i t y to

in

often

have

determined

and

This due

pillars,

not be r e p r e s e n t a t i v e o f the s t r e s s

pillar will

have l o s t some, o r n e a r l y a l l

103 of i t s l o a d b e a r i n g into

nearby

linear

competent p i l l a r s

elastic

sloughing

capacity, r e s u l t i n g i n stress r e d i s t r i b u t i o n

modelling

o r abutments.

The i n a b i l i t y o f

t o determine an approximate

and e s p e c i a l l y f a i l e d p i l l a r s p r e s e n t s

developing

load f o r

difficulties in

a r e l i a b l e method o f p r e d i c t i n g p i l l a r

failure.

5.5.1 Assumptions In o r d e r conditions pillars

t o s e t a c o n s i s t e n t method f o r d e t e r m i n i n g

for a l l pillar are

infinitely

characteristics. load

bearing

assumption geometrical

elastic

i t will in

regardless

will

permit

conditions

will

of t h e i r

t e c h n i c a l l y accurate

deformation

not l o o s e

physical

their

condition.

t o t h e a c t u a l problem, t h i s

the i n v e s t i g a t i o n that

be assumed t h a t

their

T h i s means t h a t p i l l a r s

capacity

While n o t b e i n g

assessments,

loading

existed

of

before

the stress failure

and

and

a

rudimentary look a t t h e c o n d i t i o n s t h a t have r e s u l t e d i n f a i l u r e of for

open

stope p i l l a r s .

predicting

Ultimately,

conditions

that

i twill

provide

are

associated

and MINTAB

t o model

the basis

with

pillar

failure.

5.5.2 P i l l a r Load The

ability

Results of

BITEM

geometry i n t h e data base was e v a l u a t e d . adequately

account

f o r the excavations

conditions of the p i l l a r , situation

occurred

each

problem

I f a program c o u l d not affecting

the stress

numerical a n a l y s i s was n o t done.

f o r BITEM

when

t h e geometries

This

o f a l l the

104 significant the

excavations

problem.

pillar

c o u l d n o t be i n c l u d e d i n t h e plane o f

MINTAB was n o t used

geometry when en-echelon

to investigate

a stope and

stopes were p a r t o f t h e problem

geometry, o r t h e orebody had s i g n i f i c a n t changes i n t h i c k n e s s o r significant

changes i n d i r e c t i o n .

F o r each case h i s t o r y ,

Table

8 shows: - t h e pre-mining - the

limiting

applicability (the

s t r e s s normal t o t h e orebody, geometrical o f MINTAB

ratios

associated

with

the

(the seam t h i c k n e s s r a t i o ) and BITEM

stope h e i g h t t o l e n g t h r a t i o ) ,

- t h e average

s t r e s s p r e d i c t e d f o r t h e p i l l a r by each numerical

method and t h e b e s t estimate o f t h e average - the estimated

error

associated with

pillar

the best

stress,

load

due t o

assumptions a s s o c i a t e d w i t h m o d e l l i n g t h r e e d i m e n s i o n a l and

pillar

geometries

with

numerical

methods

that

stope

a r e not

three dimensional, - t h e average theory

pillar

load calculated

i n the t r i b u t a r y

n u m e r i c a l l y determined

based

area

(chapter 3.1.2.1),

- and t h e e r r o r

The

using the t r i b u t a r y

best

estimate

on t h e l i m i t i n g

area

load

compared t o t h e

load.

o f t h e average ratios

pillar

l o a d was

f o r BITEM and MINTAB.

chosen

I f a case

h i s t o r y had a h i g h stope l e n g t h t o stope width r a t i o ,

t h e BITEM

load

thickness

was used.

I f a case

history

r a t i o , t h e MINTAB l o a d was used.

had a h i g h

seam

I f t h e stope geometry d i d not

105



•"

PUBMINING STRESS (MPa)

PILLAR NUMBER

2 3 7 8 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

.

! !

39 39 46 46 14 14 16 40 40 17 17 17 17 17 17 12 12 12 12 12 12 15 15 15 15 15 15 55 55 55 55 23 23 23 23 15 15 15 23 18 18 30 30 30 30 30 35

BITEM HEIGHT: LOAD LENGTH (MPa) RATIO 1.4 1.4 4.5 4.5 2.6 1.8 4.0 2.0 1.7 2.9 4.0 3.5 1.4 3.5 0.9 3.0 3.0 NA 1.8 NA 0.9 5.0 5.0 6.3 2.5 1.5 2.5 5.0 5.0 5.0 5.0 2.1 2.1 1.5 1.5 NA NA NA NA 5.6 3.4 1.1 5.8 4.4 0.8 0.6 5.0

,

,

!

!

!

51 64 55 69 28 29 29 90 91 43 28 29 38 33 57 29 44 NA 26 NA 60 26 38 31 31 38 40 99 75 76 102 30 32 41 49 NA NA NA NA 43 44 59 38 40 72 82 70

MINTAB SEAM ! THICK, j LOAD RATIO | (MPa) 0.3 ; 0.3 j 0.6 | 0.6 | 1.5 | 1.7 ! 0.9 ! 3.0 | 3.3 ! 0.8 ! 0.7 j 0.7 j

1

0.7 | 0.8 ! 1.8 J 3.8 ! 1.1 ! 0.8 ; 1.7 | 3.8 ! 1.0 | 1.1 ! 1.2 !

i.o !

1.3 0.7 0.5 0.5 0.7 0.6 NA NA NA NA 3-3 7.0 4.6 0.7 3.0 3.0 0.4 0.2 0.2 0.2

! ', | j [ ; ; ! ; ; j ! ! ! ! i | ] ! !

N0.7 A

;

1

47 55 60 83 24 24 24 66 63 41 28 26 31 27 30 24 33 28 21 31 37 28 38 30 30 32 35 78 60 59 83 NA NA NA NA 31 39 48 36 46 46 48 46 45 54 53 NA

ESTIMATED AVERAGE PILLAR LOAD j Z ERROR (MPa) 51 ! 25-45Z 64 | 25-45Z 1.0 but