Nov 22, 2004 - Primary Examiner * Daniel Mariam. Issued? Aug- 11' 2009. (74) Attorney, Agent, or Firm * Frommer Lawrence
USO0RE43 873E
(19) United States (12) Reissued Patent
(10) Patent Number:
Hidai et a]. (54)
US RE43,873 E
(45) Date of Reissued Patent:
DEVICE AND METHOD FOR DETECTING
Dec. 25, 2012
OTHER PUBLICATIONS
OBJECT AND DEVICE AND METHOD FOR
X-
iangrongi
Ch
en e
t 1, “L a . I
-
t t-
earning represen a lVe
1
0C3.
1 f m ea
res
f
or
face detection” Proceedings 2001 IEEE Conference on Computer _
.
.
.
.
_
Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec.
(75) Inventors gaegelclrltloggéabgé?ongpl%25:21:12‘; Toky’o (JP) -
’
_
8-14, 2001, Proceedings of the IEEE Computer Conference on Com ’
puter Vision and Pattern Recognition, Los Alamitos, CA, IEEE Comp. Soc, US, vol. vol. 1 of 2, Dec. 8, 2001 (Dec. 8, 2001), pp.
.
1126-1131, XP010583872 ISBN: 0-7695-1272-0.
(73)
Asslgnee' Sony corporatlon’ Tokyo (JP)
(21)
Appl' NO" 13/208’123
ColmenareZ A J et al: “Face detection with information-based maxi
_ .
(22) R .
mum discrimination” Proceedings. 1997 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Cat. No.
_
97CB36082) IEEE Comput. Soc Los Alamitos, CA, USA, Jun. 1997
Flledf
Aug- 11’ 2011
(Jun. 1997), pp. 782-787, XP002312941 ISBN: 0-8186-7822-4.
Related US. Patent Documents
(Continued)
e1ssue 0 :
(64)
Patent No.: Issued?
7,574,037 Aug- 11’ 2009
Primary Examiner * Daniel Mariam (74) Attorney, Agent, or Firm * Frommer Lawrence &
APP1- NOJ
10/994,942
Haug LLP; William S. Frommer
Filed:
Nov. 22, 2004
(57) (
30
)
F
'
Al't'
P"tDt
orelgn PP lea Ion non y
Nov. 25 2003
a a
(JP) ............................... .. 2003-394556
(51) Int_ CL G06]; 9/62
gradation image~ A Scaling Section generates Scaled images
by sealing down a gradation image input from an image output section. A scanning section sequentially manipulates the scaled images and cutting out window images from them
(200601) (200601)
G06]; 9/00
ABSTRACT
An object detecting device for detecting an object in a given
and a discriminator judges if each window image is an object
(52)
us. Cl. ...................................... .. 382/159' 382/103
Or 110‘- The discn'minator includes a Plurality of Weak dis
(58)
Field of Classi?cation Search
382/103
criminators that are learned in a group by boosting and an
218 224’
adder for making a weighted majority decision from the out puts of the weak discriminators. Each of the weak discrimi
382/118
See application ?le for comp’lete gearcil hist’ory ’ '
(56)
nators outputs an estimate of the likelihood of a window
References Cited
image to be an object or not by using the difference of the luminance values between two pixels. The discriminator sus
pends the operation of computing estimates for a window image that is judged to be a non-object, using a threshold
US. PATENT DOCUMENTS 6,711,279 B1
3/2004 HamZa et al.
7,050,607 B2 * 7,054,489 B2 *
5/2006 5/2006
2002/0102024 A1
value that is learned in advance.
Li et al. ....................... .. 382/118 Yamaoka et al. ........... .. 382/203
72 Claims, 18 Drawing Sheets
8/2002 Jones et a1.
1
image output section
\L Scaling sec?on
1 Scanning section
1
Referring to
Gruup learning machine
Discriminator
~2
Next scaled image
US RE43,873 E Page 2 OTHER PUBLICATIONS
Comp. Soc, US, V01. V01. 1 of 2, Dec. 8, 2001, pp. 1126-1131,
Marcel S et al: “Biometric face authentication using pixel-based
XP010583872 ISBN: 0-7695-1271-0. ColmenareZ A J et al: “Face detection With information-based maxi
Weak classi?ers” Biometric Authentication. ECCV 2004 Interna
tional Workshop, BioaW 2004. Proceedings (Lecture Notes in
Comput. Sci. vol. 3087) Springer-Verlag Berlin, Germany, May 2004 (May 2004), pp. 24-31, XP002312942 ISBN: 3-540-22499-8. Xiangrong Chen et al: “Learning representative local features for face detection” Proceedings 2001 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001, Proceedings of the IEEE Computer Conference on Com
puter Vision and Pattern Recognition, Los Alamitos, CA, IEEE
mum discrimination” Proceedings. 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CAT. No. 97CB36082) IEEE Comput. Soc Los Alamitos, CA, USA, Jun. 1997, pp. 782-787, XP002312941 ISBN: 0-8186-7822-4. Marcel S et a1: “Biometric face authentication using pixel-based Weak classi?ers” Biometric Authentication. ECCV 2004 Interna
tional Workshop, BioaW 2004. Proceedings (Lecture Notes in
Comput. Sci. vol. 3087) Springer-Verlag Berlin, Germany, May 2004, pp. 24-31, XP002312942 ISBN: 3-540-22499-8.
* cited by examiner
US. Patent
Dec. 25, 2012
Sheet 1 0f 18
US RE43,873 E
US. Patent
Dec. 25, 2012
Sheet 2 0f 18
US RE43,873 E
1548
,1 548-2
RELATED ART
US. Patent
Dec. 25, 2012
E
Sheet 4 0f 18
E
N:
w: 3
w:
US RE43,873 E
.wdE
US. Patent
Dec. 25, 2012
Sheet 5 0f 18
US RE43,873 E
“E@982“ N);
c$3om52a:?5"0
v) a
2
5.3m
a
52 8 2“58m50g
mGE
US. Patent
Dec. 25, 2012
Sheet 6 0f 18
US RE43,873 E
wecu5mowr?iucmwoE
0. -“
US. Patent
Dec. 25, 2012
Sheet 7 0f 18
10A
FIG.7
US RE43,873 E
US. Patent
5
Dec. 25, 2012
Sheet 8 0f 18
US RE43,873 E
xEzn3ig;ma
g is
“a528r%e.“;?
1LaBE3W>w,Mu mm
iEN»E;.
(s2%;
wdE
US. Patent
Dec. 25, 2012
Sheet 9 0f 18
US RE43,873 E
Luminance value 11
321 Luminance value I z
Inter-pixel difference characteristic = I 1 - I2
US. Patent
Dec. 25, 2012
Sheet 10 0f 18
US RE43,873 E
Threshold value Th
yi =\_1
—>
>
FIG ° 1 0A
g
1i
a2
l/
I)
LL-
‘yr’
,
,1’
,_
\\
Y1 = 1
\\\
/\\
Inter-pixel difference characteristic Formula 3
FlG.1 OB
FIG.1OC
vi=1
A. V
Formula 5 ———————————— —-
Distribution of non-object data
( yi : '1)
Distribution of object data ( vi = 1)
US. Patent
Dec. 25, 2012
FIG.11A
Sheet 11 0f 18
US RE43,873 E
3a.zwc2o"v. inter-pixel difference characteristic --—-------—--- Distribution of non-object data
( yi : "1)
Distribution of object data ( vi =
FIG.11B Inter-pixel difference characteristic
US. Patent
Dec. 25, 2012
Sheet 12 0f 18
US RE43,873 E
TUEN
US. Patent
Dec. 25, 2012
(
Sheet 13 0f 18
Start learning
US RE43,873 E
)
Initialize data weight of ieaminz sample
Select a weak discriminator
~82
l Compute discrimination error
of weak discriminator
Compute weight (reliability of weak discriminator) of weighted majority decision
l Update data weight of learning sample
l Compute detection suspension threshold value
N / o
Predatermined number of times K of learning session (predetermined number K of weak discriminators)
\
over? Yes End
FIG.13
ivS6
87
US. Patent
Dec. 25, 2012
C
Sheet 14 0f 18
Start learning of weak discriminator >
US RE43,873 E
)
i
Randomly select two pixels l, ,l, M 81 1
Determine interpixel difference characteristic for all learning samples and compute frequency distribution
~3|2
I
Compute threshold value T“, of weak discriminator for producing minimum value e mi. of weighted error
~$13
l
Compute threshold value Tm, of weak discriminator for producing minimum value cm of weighted error
~$14
l
Determine pixel positions and threshold value for them
emu(em':S‘ em