Direct Flux and Torque Control of an Asymmetrical Six-phase

0 downloads 0 Views 883KB Size Report
[ u 14 ' @. 3 0% v52. $4 n , F @ H% *$ + X i) k. $ ' G. + X $4 ? , % r o F
‫ﺷﻤﺎﺭﻩ ﭘﻴﺎﭘﻲ ‪۶۲‬‬

‫ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪ ،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ‬ ‫ﺩﺍﻭﺩ ﻗﻨﺒﺮﻱ‪ ،۱‬ﺩﺍﻧﺸﺠﻮﻱ ﮐﺎﺭﺷﻨﺎﺳﻲ ﺍﺭﺷﺪ‪ ،‬ﻧﻮﻳﺪﺭﺿﺎﺍﺑﺠﺪﻱ‪ ،۲‬ﺍﺳﺘﺎﺩﻳﺎﺭ‪ ،‬ﻏﻼﻣﺮ ﺿﺎ ﻋﺮﺏ ﻣﺎﺭﮐﺪﻩ‪ ،۳‬ﺍﺳﺘﺎﺩﻳﺎﺭ‪ ،‬ﺟﻌﻔﺮﺳﻠﻄﺎﻧﻲ‪ ،۴‬ﺍﺳﺘﺎﺩ‬ ‫‪ -۱‬ﺩﺍﻧﺸﮑﺪﻩ ﻓﻨﻲ ﻣﻬﻨﺪﺳﻲ ‪ -‬ﺩﺍﻧﺸﮕﺎﻩ ﺷﻬﺮﮐﺮﺩ‪-‬ﺷﻬﺮﮐﺮﺩ‪-‬ﺍﻳﺮﺍﻥ‪[email protected] -‬‬ ‫‪ -۲‬ﺩﺍﻧﺸﮑﺪﻩ ﻓﻨﻲ ﻣﻬﻨﺪﺳﻲ ‪ -‬ﺩﺍﻧﺸﮕﺎﻩ ﺷﻬﺮﮐﺮﺩ‪-‬ﺷﻬﺮﮐﺮﺩ‪-‬ﺍﻳﺮﺍﻥ‪[email protected] -‬‬ ‫‪ -۳‬ﺩﺍﻧﺸﮑﺪﻩ ﻓﻨﻲ ﻣﻬﻨﺪﺳﻲ‪ -‬ﺩﺍﻧﺸﮕﺎﻩ ﺷﻬﺮﮐﺮﺩ‪-‬ﺷﻬﺮﮐﺮﺩ‪-‬ﺍﻳﺮﺍﻥ‪[email protected] -‬‬ ‫‪ -۴‬ﺩﺍﻧﺸﮑﺪﻩ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ‪ -‬ﺩﺍﻧﺸﮕﺎﻩ ﺁﺯﺍﺩ ﺍﺳﻼﻣﻲ‪ -‬ﻭﺍﺣﺪ ﺧﻤﻴﻨﻲ ﺷﻬﺮ‪-‬ﺧﻤﻴﻨﻲ ﺷﻬﺮ ‪-‬ﺍﻳﺮﺍﻥ‪[email protected]‬‬ ‫ﺍﺳﺘﺎﺩ ﺑﺎﺯﻧﺸﺴﺘﻪ ﺩﺍﻧﺸﮕﺎﻩ ﺻﻨﻌﺘﻲ ﺍﺻﻔﻬﺎﻥ‬ ‫ﭼﮑﻴﺪﻩ‪ :‬ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ‪ ١‬ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﻳﮑﻲ ﺍﺯ ﺭﻭﺵﻫﺎﻱ ﺑﺴﻴﺎﺭ ﮐﺎﺭﺁﻣﺪ ﺩﺭ ﮐﻨﺘﺮﻝ ﺍﻳﻦ ﻣﺎﺷﻴﻦ ﺍﻟﮑﺘﺮﻳﮑﻲ ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﺵ‬ ‫ﮐﻨﺘﺮﻝ ‪ DTC‬ﻣﺤﺪﻭﺩﻳﺖﻫﺎ ﻭ ﭘﻴﭽﻴﺪﮔﻲﻫﺎﻱ ﮐﻨﺘﺮﻝ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﮐﺎﻫﺶ ﺩﺍﺩ‪ .‬ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ‬ ‫ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﮏ ﺍﻳﻨﻮﺭﺗﺮ ﻣﻨﺒﻊ ﻭﻟﺘﺎﮊ ﺩﻭﺳﻄﺤﻲ ﺍﺭﺍﺋﻪ ﻣﻲﺷﻮﺩ‪ .‬ﺳﻴﻢ ﭘﻴﭽﻲ ﺍﺳﺘﺎﺗﻮﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ ﺍﺯ ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﺳﻴﻢ‬ ‫ﭘﻴﭻ ﺳﻪ ﻓﺎﺯ ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﻫﻢ ‪ ۳۰‬ﺩﺭﺟﻪ ﺍﺧﺘﻼﻑ ﻓﺎﺯ ﺩﺍﺭﻧﺪ ﺗﺸﮑﻴﻞ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﻣﺎﺷﻴﻦ ﺑﺮ ﺍﺳﺎﺱ ﻧﻈﺮﻳﻪ ﺗﺠﺰﻳﻪ ﺑﺮﺩﺍﺭ ﻓﻀﺎﻳﻲ‪ (VSD) ٢‬ﻣﺪﻟﺴﺎﺯﻱ ﺷﺪﻩ‬ ‫ﺍﺳﺖ‪ .‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻧﺘﺨﺎﺏ ﻣﻨﺎﺳﺐ ﺑﺮﺩﺍﺭﻫﺎﻱ ﮐﻠﻴﺪﺯﻧﻲ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺧﻮﺑﻲ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻣﻮﺗﻮﺭ ﺭﺍ ﮐﻨﺘﺮﻝ ﮐﺮﺩ‪ .‬ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﺍﻳﻦ ﺍﺩﻋﺎ ﺭﺍ ﺍﺛﺒﺎﺕ ﻣﻲ‪-‬‬ ‫ﮐﻨﺪ‪.‬‬

‫ﻭﺍﮊﻩﻫﺎﻱ‬

‫ﻛﻠﻴﺪﻱ‪ :‬ﻣﺎﺷﻴﻦ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ‪ ،‬ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ‪ ،‬ﺗﺠﺰﻳﻪ ﺑﺮﺩﺍﺭ ﻓﻀﺎﻳﻲ‬

‫‪Direct Flux and Torque Control of an Asymmetrical Six-phase‬‬ ‫‪Induction Motor‬‬ ‫‪Davood Ghanbari, Navid Reza Abjadi, Gholamreza Arab Markadeh, Jafar Soltani‬‬

‫‪Abstract: Direct flux and torque control (DTC) of induction‬‬

‫‪motor is one of the most effective methods in‬‬ ‫‪control of this electric machine. Using DTC the restrictions and complexities of vector control can be avoided. In‬‬ ‫‪this paper, the algorithm of direct torque control of an asymmetrical six-phase induction motor with a two-level‬‬ ‫‪voltage source inverter is presented. The stator winding of an asymmetrical six-phase induction motor consists of‬‬ ‫‪two three-phase winding sets which have 30 degrees phase displacement. The machine is modeled based on‬‬ ‫‪vector space decomposition (VSD) theory. Selecting suitable switching vectors the flux and torque of the motor‬‬ ‫‪are controlled properly. The simulation results prove this statement.‬‬

‫‪Keywords: Six-phase induction motor, direct torque control, vector space decomposition‬‬ ‫ﺗﺎﺭﻳﺦ ﺍﺭﺳﺎﻝ ﻣﻘﺎﻟﻪ‪۹۰/۵/۲۵ :‬‬ ‫ﺗﺎﺭﻳﺦ ﺍﺻﻼﺡ ﻣﻘﺎﻟﻪ‪۹۱/۴/۲۱ :‬‬ ‫ﺗﺎﺭﻳﺦ ﭘﺬﻳﺮﺵ ﻣﻘﺎﻟﻪ‪۹۱/۷/۲۶ :‬‬ ‫ﻧﺎﻡ ﻧﻮﻳﺴﻨﺪﻩﻱ ﻣﺴﺌﻮﻝ ‪ :‬ﺩﮐﺘﺮ ﻧﻮﻳﺪﺭﺿﺎ ﺍﺑﺠﺪﻱ‬ ‫ﻧﺸﺎﻧﻲ ﻧﻮﻳﺴﻨﺪﻩﻱ ﻣﺴﺌﻮﻝ‪ :‬ﺍﻳﺮﺍﻥ– ﺷﻬﺮﮐﺮﺩ– ﺩﺍﻧﺸﮕﺎﻩ ﺷﻬﺮﮐﺮﺩ‪ -‬ﺩﺍﻧﺸﮑﺪﻩ ﻓﻨﻲ ﻣﻬﻨﺪﺳﻲ‬

‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫‪ /۲‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫‪ -۱‬ﻣﻘﺪﻣﻪ‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫ﻣﺎﺷﻴﻦﻫﺎ ﺩﺭ ﺑﺮﺍﺑﺮ ﺭﻭﻱ ﺩﺍﺩﻥ ﺧﻄﺎ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ ﺩﺭ ﺑﺮﺧﻲ ﺩﻳﮕﺮ‬

‫ﺩﺭ ﺳﺎﻝﻫﺎﻱ ﺍﺧﻴﺮ‪ ،‬ﻣﻮﺗﻮﺭﻫﺎﻱ ﺍﻟﻘﺎﻳﻲ ﭼﻨﺪ ﻓﺎﺯﻩ )ﺑـﻴﺶ ﺍﺯ ﺳـﻪ‬

‫ﻣﺎﻧﻨﺪ ]‪ [۷ , ۵‬ﺑﻪ ﻣﺴﺌﻠﻪ ﺗﻐﺬﻳﻪ ﺍﻳﻦ ﻣﺎﺷﻴﻦﻫﺎ ﺑﻪ ﻭﻳﮋﻩ ﺑﺎ ﺗﮑﻨﻴﮏ‬

‫ﻓﺎﺯ( ﺑﻪ ﻭﺍﺳﻄﻪ ﻣﺰﺍﻳﺎﻳﻲ ﮐﻪ ﺩﺍﺭﻧﺪ ﺩﺭ ﺻﻨﻌﺖ ﮐﺎﺭﺑﺮﺩﻫﺎﻱ ﻓﺮﺍﻭﺍﻧﻲ ﻳﺎﻓﺘﻪﺍﻧـﺪ‬

‫ﻣﺪﻭﻻﺳﻴﻮﻥ ﭘﻬﻨﺎﻱ ﭘﺎﻟﺲ ﺑﺎ ﺑﺮﺩﺍﺭ ﻓﻀﺎﻳﻲ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﮐﻨﺘﺮﻝ‬

‫]‪ .[۱ , ۲‬ﺍﻭﻟﻴﻦ ﻛﺎﺭﺑﺮﺩﻫﺎﻱ ﺻﻨﻌﺘﻲ ﻣﻮﺗﻮﺭﻫﺎﻱ ﭼﻨﺪ ﻓﺎﺯﻩ ﺑﻪ ﺍﻭﺍﺧـﺮ ﺩﻫـﻪ‬

‫ﺑﺮﺩﺍﺭﻱ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﮐﻨﺘﺮﻝ ﻏﻴﺮﺧﻄﻲ ﻣﻮﺿﻮﻉ ﺑﺮﺧﻲ ﺩﻳﮕﺮ ﺍﺯ ﮐﺎﺭﻫﺎﻱ‬

‫ﻫﻔﺘﺎﺩ ﻗﺮﻥ ﺑﻴﺴﺘﻢ ﻣﻴﻼﺩﻱ ﺑﺎﺯ ﻣﻲﮔـﺮﺩﺩ‪ .‬ﺍﻭﻟـﻴﻦ ﻣﻮﺗﻮﺭﻫـﺎﻱ ﭼﻨـﺪ ﻓـﺎﺯﻩ‬

‫ﺗﺤﻘﻴﻘﺎﺗﻲ ﻣﻲﺑﺎﺷﺪ ]‪.[۸-۱۱‬‬

‫ﻣﻮﺗﻮﺭﻫﺎﻱ ﭘﻨﺞ ﻓﺎﺯ ﻭ ﻧﻴﺰ ﺷﺶ ﻓﺎﺯ )ﺳﻪ ﻓﺎﺯ ﺩﻭﺳﺘﺎﺭﻩ( ﺑﻮﺩﻧﺪ ﻛﻪ ﺑﻴﺸﺘﺮ ﺑـﻪ‬

‫ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ‪ ،‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﺸﮑﻼﺕ ﮐﻨﺘﺮﻝ ﺑﺮﺩﺍﺭﻱ ﻧﻈﻴﺮ ﻧﻴﺎﺯ ﺑﻪ‬

‫ﻋﻠﺖ ﻛﺎﻫﺶ ﮔﺸﺘﺎﻭﺭ ﺿﺮﺑﺎﻧﻲ ﻧﺴﺒﺖ ﺑﻪ ﻣﻮﺗﻮﺭﻫﺎﻱ ﺳـﻪ ﻓـﺎﺯ ﻣـﻮﺭﺩ ﺗﻮﺟـﻪ‬

‫ﺍﻧﺘﻘﺎﻝ ﻣﺘﻐﻴﺮﻫﺎ ﺑﻪ ﺩﺳﺘﮕﺎﻩ ﺳﻨﮑﺮﻭﻥ‪ ،‬ﺣﺴﺎﺳﻴﺖ ﺯﻳﺎﺩ ﺑﻪ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ‬

‫ﻗﺮﺍﺭ ﮔﺮﻓﺘﻨﺪ‪ .‬ﺍﺯ ﺁﻥ ﭘﺲ ﻛﺎﺭﺑﺮﺩ ﺍﻳﻦ ﻣﻮﺗﻮﺭﻫﺎ‪ ،‬ﺩﺭ ﺟﺮﻳﺎﻥﻫﺎﻱ ﺑـﺎﻻ ﻣﺎﻧﻨـﺪ‬

‫ﻣﺎﺷﻴﻦ ﻭ ﻣﺸﮑﻞ ﺗﻨﻈﻴﻢ ﮐﻨﺘﺮﻝ ﮐﻨﻨﺪﻩﻫﺎﻱ ﺟﺮﻳﺎﻧﻲ‪ ،‬ﻫﻤﭽﻨﻴﻦ ﻣﺸﮑﻼﺕ ﻭ‬

‫ﭘﻴﺸﺮﺍﻥﻫﺎﻱ ﻛﺸﺘﻲ ﻭ ﻗﻄﺎﺭ ﻭ ﺯﻳﺮﺩﺭﻳﺎﻳﻲ ﺭﻭﺯ ﺑﻪ ﺭﻭﺯ ﮔﺴﺘﺮﺵ ﻳﺎﻓﺘﻪ ﺍﺳﺖ‪.‬‬

‫ﻣﺤﺎﺳﺒﺎﺕ ﻧﺴﺒﺘ ﹰﺎ ﺳﻨﮕﻴﻦ ﺭﻭﺵﻫﺎﻱ ﮐﻨﺘﺮﻝ ﻏﻴﺮﺧﻄﻲ ﻭ ﻣﺪﻭﻻﺳﻴﻮﻥ‬

‫ﺩﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﭘﻴﺸﺮﺍﻥ ﺯﻳﺮﺩﺭﻳﺎﻳﻲ ﺧﺼﻮﺻﻴﺎﺗﻲ ﻫﻤﭽﻮﻥ ﺭﺍﻧﺪﻣﺎﻥ ﺯﻳﺎﺩ‪،‬‬

‫ﭘﻬﻨﺎﻱ ﭘﺎﻟﺲ‪ ،‬ﺑﻪ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻳﮏ ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ‬

‫ﻗﺎﺑﻠﻴﺖ ﺍﻃﻤﻴﻨﺎﻥ ﺑﺎﻻ ﻭ ﻧﻮﻳﺰ ﺻﻮﺗﻲ ﮐﻢ ﺍﺯ ﺍﻫﻤﻴﺖ ﻭﻳﮋﻩ ﺍﻱ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ‬

‫ﻧﺎﻣﺘﻘﺎﺭﻥ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺟﺪﻭﻝﻫﺎﻳﻲ ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﺍﺭﺍﺋﻪ ﺷﺪﻩ‬

‫ﻭ ﺍﻧﺘﺨﺎﺏ ﺳﺎﺧﺘﺎﺭ ﺁﻥ ﺍﺯ ﺟﻤﻠﻪ ﺗﻌﺪﺍﺩ ﻓﺎﺯ‪ ،‬ﻗﻄﺐ ﻭ ﻧﺤﻮﻩ ﮐﻨﺘﺮﻝ ﺗﺎ ﺣﺪ‬

‫ﺍﺳﺖ ]‪ [۱۲‬ﻭﻟﻲ ﺍﻳﻦ ﺟﺪﻭﻝﻫﺎ ﺑﺮﺍﻱ ﮔﺸﺘﺎﻭﺭﻫﺎﻱ ﻣﻨﻔﻲ ﻣﺸﮑﻼﺗﻲ ﺩﺍﺭﻧﺪ ﻭ‬

‫ﺯﻳﺎﺩﻱ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﺍﻳﻦ ﺧﺼﻮﺻﻴﺎﺕ ﺍﺳﺖ‪ .‬ﻣﻮﺗﻮﺭﻫﺎﻱ ﭼﻨﺪ ﻓﺎﺯﻩ ﻣﺰﺍﻳﺎﻱ‬

‫ﺟﻮﺍﺑﮕﻮ ﻧﻤﻲﺑﺎﺷﻨﺪ ﻫﻤﭽﻨﻴﻦ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺟﺪﻭﻝﻫﺎ‪ ،‬ﺩﺭ ﺑﻌﻀﻲ ﺍﺯ‬

‫ﺯﻳﺎﺩﻱ ﻧﻈﻴﺮ ﮐﺎﻫﺶ ﺩﺍﻣﻨﻪ ﻭ ﻣﻴﺰﺍﻥ ﺿﺮﺑﺎﻧﺎﺕ ﮔﺸﺘﺎﻭﺭ‪ ،‬ﮐﺎﻫﺶ ﺩﺍﻣﻨﻪ‬

‫ﺣﺎﻟﺖﻫﺎﻱ ﮔﺬﺭﺍ ﺷﺎﺭ ﻣﺎﺷﻴﻦ ﺑﻪ ﻃﻮﺭ ﻧﺎﮔﻬﺎﻧﻲ ﺍﻓﺖ ﻣﻲﮐﻨﺪ‪ .‬ﺩﺭ ﻣﻘﺎﻻﺕ‬

‫ﺟﺮﻳﺎﻥ ﻫﺮ ﻓﺎﺯ ﺑﺪﻭﻥ ﮐﺎﻫﺶ ﻭﻟﺘﺎﮊ ﺁﻥ‪ ،‬ﮐﺎﻫﺶ ﻫﺎﺭﻣﻮﻧﻴﮏﻫﺎﻱ ﺟﺮﻳﺎﻥ‬

‫ﻣﺘﻌﺪﺩﻱ ﻧﻈﻴﺮ ]‪ [۱۳-۱۵‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﮐﻨﺘﺮﻝ ﺑﺮﺩﺍﺭﻱ ﻳﺎ ﺗﮑﻨﻴﮏﻫﺎﻱ‬

‫ﻟﻴﻨﮏ ‪ DC‬ﻭ ﻗﺎﺑﻠﻴﺖ ﺍﻃﻤﻴﻨﺎﻥ ﺑﻴﺸﺘﺮ ﻧﺴﺒﺖ ﺑﻪ ﻣﻮﺗﻮﺭﻫﺎﻱ ﺳﻪ ﻓﺎﺯ ﺩﺍﺭﻧﺪ‬

‫ﮐﻨﺘﺮﻝ ﻏﻴﺮﺧﻄﻲ ﻣﺴﺌﻠﻪ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻣﺎﺷﻴﻦ ﻣﻄﺮﺡ ﺷﺪﻩ ﺍﺳﺖ؛‬

‫] ‪.[ ۳ , ۴‬‬

‫ﻭﻟﻲ ﺩﺭ ﻭﺍﻗﻊ‪ ،‬ﺑﺮﺧﻼﻑ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﮐﻼﺳﻴﮏ‪ ،‬ﺍﻳﻦ ﺭﻭﺵﻫﺎ‪،‬‬

‫ﺑﺎ ﺍﻓﺰﺍﻳﺶ ﺗﻌﺪﺍﺩ ﻓﺎﺯﻫﺎ ﻫﻤﭽﻨﻴﻦ ﻣﻲﺗﻮﺍﻥ ﻧﺴﺒﺖ ﮔﺸﺘﺎﻭﺭ ﺑﻪ ﺟﺮﻳﺎﻥ‬

‫ﺗﺮﮐﻴﺐ ﺭﻭﺵﻫﺎﻱ ﮐﻨﺘﺮﻟﻲ ﺑﺎ ﺗﮑﻨﻴﮏ ﻣﺪﻭﻻﺳﻴﻮﻥ ﭘﻬﻨﺎﻱ ﭘﺎﻟﺲ ﻣﻲﺑﺎﺷﻨﺪ‪.‬‬

‫ﻣﺆﺛﺮ ﺭﺍ ﺑﻪ ﻃﻮﺭ ﭼﺸﻤﮕﻴﺮﻱ ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩ‪ .‬ﺑﻪ ﺩﻟﻴﻞ ﺍﻓﺰﺍﻳﺶ ﺩﺭﺟﺎﺕ ﺁﺯﺍﺩﻱ‬

‫ﺩﺭ ]‪ [۱۶, ۱۷‬ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ ﻣﺘﻘﺎﺭﻥ ﻣﻄﺮﺡ‬

‫ﺩﺭ ﺍﻳﻦ ﻣﻮﺗﻮﺭﻫﺎ ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺗﺰﺭﻳﻖ ﻫﺎﺭﻣﻮﻧﻴﮏﻫﺎﻱ ﺧﺎﺹ ﺟﺮﻳﺎﻥ‪ ،‬ﮔﺸﺘﺎﻭﺭ‬

‫ﺷﺪﻩ ﺍﺳﺖ؛ ﺷﺎﻳﺎﻥ ﺫﮐﺮ ﺍﺳﺖ ﮐﻪ ﺗﺒﺪﻳﻼﺕ ﻭ ﺩﺭ ﻧﺘﻴﺠﻪ ﺑﺮﺩﺍﺭﻫﺎﻱ ﮐﻠﻴﺪ‬

‫ﺑﻴﺸﺘﺮﻱ ﺗﻮﻟﻴﺪ ﮐﺮﺩ ﻭ ﻳﺎ ﺑﺎ ﻳﮏ ﺳﻴﺴﺘﻢ ﺩﺭﺍﻳﻮ ﻣﺸﺘﺮﮎ ﭼﻨﺪﻳﻦ ﻣﻮﺗﻮﺭ ﺭﺍ‬

‫ﻼ ﻣﺘﻔﺎﻭﺗﻨﺪ ﻭ ﺭﻭﺵ‬ ‫ﺯﻧﻲ ﺩﺭ ﺳﻴﺴﺘﻢ ﺷﺶ ﻓﺎﺯ ﻣﺘﻘﺎﺭﻥ ﻭ ﻧﺎﻣﺘﻘﺎﺭﻥ ﮐﺎﻣ ﹰ‬

‫ﺗﺤﺮﻳﮏ ﻧﻤﻮﺩ‪ .‬ﺍﻣﺮﻭﺯﻩ‪ ،‬ﺍﻳﻦ ﻣﻮﺗﻮﺭﻫﺎ ﺑﻴﺸﺘﺮ ﺩﺭ ﺳﻴﺴﺘﻢ ﻣﺤﺮﮐﻪ ﮐﺸﺘﻲ ﻭ‬

‫ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺑﺮﺍﻱ ﻣﺎﺷﻴﻦ ﻣﺘﻘﺎﺭﻥ ﺑﺮﺍﻱ ﻧﻮﻉ ﻧﺎﻣﺘﻘﺎﺭﻥ ﻗﺎﺑﻞ ﺍﺳﺘﻔﺎﺩﻩ‬

‫ﺯﻳﺮﺩﺭﻳﺎﻳﻲ‪ ،‬ﻭﺳﺎﻳﻞ ﻧﻘﻠﻴﻪ ﻫﺎﻳﺒﺮﻳﺪ‪ ،‬ﮐﺎﺭﺑﺮﺩﻫﺎﻱ ﻫﻮﺍ ﻓﻀﺎ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﻧﺪ‪.‬‬

‫ﻧﻤﻲﺑﺎﺷﺪ‪.‬‬

‫ﺑﻌﻀﻲ ﺍﺯ ﻣﺰﺍﻳﺎﻱ ﻣﻮﺗﻮﺭﻫﺎﻱ ﭼﻨﺪﻓﺎﺯﻩ ﺍﺯ ﺟﻤﻠﻪ ﮐﺎﻫﺶ ﻫﺎﺭﻣﻮﻧﻴﮏ ﻭ‬

‫ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺟﺪﻭﻟﻲ ﺟﺪﻳﺪ ﺑﺮﺍﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻣﺎﺷﻴﻦ‬

‫ﮔﺸﺘﺎﻭﺭﻫﺎﻱ ﺿﺮﺑﻪ ﺍﻱ ﺍﺯ ﺁﻧﺠﺎ ﻧﺎﺷﻲ ﻣﻲﺷﻮﺩ ﮐﻪ ﻣﺎﺷﻴﻦﻫﺎﻱ ﭼﻨﺪﻓﺎﺯ ﺑﺮﺍﻱ‬

‫ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ ﺍﺭﺍﺋﻪ ﻣﻲﺷﻮﺩ ﻭ ﮐﺎﺭ ﺁﻳﻲ ﺁﻥ ﺩﺭ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ‬

‫ﺗﻐﺬﻳﻪ ﺑﺎ ﺍﻳﻨﻮﺭﺗﺮ ﻃﺮﺍﺣﻲ ﻣﻲﺷﻮﻧﺪ‪ .‬ﺑﻪ ﻋﺒﺎﺭﺗﻲ ﺍﺯ ﻫﻤﺎﻥ ﺍﺑﺘﺪﺍ ﺑﺮﺍﻱ ﻛﺎﺭ ﺑﺎ‬

‫ﺍﺯ ﻃﺮﻳﻖ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﺎﻣﭙﻴﻮﺗﺮﻱ ﺑﺮﺭﺳﻲ ﻣﻲﺷﻮﺩ‪ .‬ﺷﺎﻳﺎﻥ ﺫﮐﺮ ﺍﺳﺖ ﮐﻪ‬

‫ﺍﻳﻨﻮﺭﺗﺮ ﺳﺎﺯﮔﺎﺭ ﺷﺪﻩﺍﻧﺪ ﺍﻣﺎ ﻣﻌﻤﻮ ﹰﻻ ﺍﺳﺘﺎﻧﺪﺍﺭﺩﻫﺎﻱ ﺳﺎﺧﺖ ﻣﺎﺷﻴﻦﻫﺎﻱ‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻋﻠﻲ ﺭﻏﻢ ﺳﺎﺩﮔﻲ ﮐﻪ ﭘﻴﺎﺩﻩ ﺳﺎﺯﻱ ﺁﻥ ﺭﺍ ﺑﺴﻴﺎﺭ‬

‫ﺳﻪﻓﺎﺯ ﺑﺮﺍﻱ ﮐﺎﺭ ﺑﺎ ﺗﻐﺬﻳﻪ ﺑﺎ ﺑﺮﻕ ﺳﻴﻨﻮﺳﻲ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻋﻤﻠﻜﺮﺩ‬

‫ﺁﺳﺎﻥ ﻣﻲﮔﺮﺩﺍﻧﺪ ﻋﻤﺪﻩ ﻣﺸﮑﻼﺕ ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﺑﺮﺩﺍﺭﻱ ﺭﺍ ﻧﺪﺍﺭﺩ ]‪.[۱۸‬‬

‫ﺁﻥﻫﺎ ﺑﺎ ﺍﻳﻨﻮﺭﺗﺮ‪ ،‬ﻧﺴﺒﺖ ﺑﻪ ﻣﻮﺗﻮﺭﻫﺎﻱ ﭼﻨﺪﻓﺎﺯ ﺑﺪﺗﺮ ﺍﺳﺖ‪ .‬ﺳﺎﺧﺘﺎﺭﻱ ﮐﻪ ﺩﺭ‬

‫ﻋﻼﻭﻩ ﺑﺮ ﺍﻳﻦ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺮﺍﻱ ﮐﺎﻫﺶ ﺭﻳﭙﻞ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ‪ ،‬ﺍﺯ ﻣﻨﻄﻖ‬

‫ﺁﻥ ﺩﻭ ﺳﻴﻢﭘﻴﭻ ﻧﺴﺒﺖ ﺑﻪ ﻫﻢ ‪ ۳۰‬ﺩﺭﺟﻪ ﺷﻴﻔﺖ ﺩﺍﺭﻧﺪ ﻣﻌﻤﻮﻝﺗﺮ ﺍﺳﺖ‬

‫ﻓﺎﺯﻱ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﻭ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻓﺎﺯﻱ ﻣﺎﺷﻴﻦ ﺷﺶ‬

‫]‪ .[۵‬ﻣﻬﻢﺗﺮﻳﻦ ﺧﺼﻮﺻﻴﺖ ﺍﻳﻦ ﻣﻮﺗﻮﺭ ﺣﺬﻑ ﻫﺎﺭﻣﻮﻧﻴﮏ ﺷﺸﻢ ﺭﻳﭙﻞ‬

‫ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ ﻣﻄﺮﺡ ﻣﻲﺷﻮﺩ‪ .‬ﺗﺮﮐﻴﺐ ﺭﻭﺵﻫﺎﻱ ﻫﻮﺷﻤﻨﺪ ﻧﻈﻴﺮ ﻣﻨﻄﻖ‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﻣﻮﺗﻮﺭﻫﺎﻱ ﺳﻪﻓﺎﺯ ﺗﻐﺬﻳﻪﺷﺪﻩ ﺑﺎ ﺍﻳﻨﻮﺭﺗﺮ ﺍﺗﻔﺎﻕ ﻣﻲ‪-‬‬

‫ﻓﺎﺯﻱ‪ ،‬ﺷﺒﮑﻪ ﻫﺎﻱ ﻋﺼﺒﻲ ﻭ ‪ ...‬ﻣﻲﺗﻮﺍﻧﺪ ﺑﺎﻋﺚ ﺑﻬﺒﻮﺩ ﺭﻓﺘﺎﺭ ﺳﻴﺴﺘﻢ ﺣﻠﻘﻪ‬

‫ﺍﻓﺘﺪ‪ .‬ﺩﺭ ﻣﻘﺎﺑﻞ ﻣﻮﺗﻮﺭ ﺷﺶ ﻓﺎﺯ ﻣﺘﻘﺎﺭﻥ ﻗﺮﺍﺭ ﺩﺍﺭﺩ ﮐﻪ ﺩﺭ ]‪ [۶‬ﺑﻪ ﺁﻥ‬

‫ﺑﺴﺘﻪ ﮔﺮﺩﺩ ]‪.[۱۹, ۲۰‬‬

‫ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪.‬‬ ‫ﮐﺎﺭﻫﺎﻱ ﺗﺤﻘﻴﻘﺎﺗﻲ ﺩﺭ ﺯﻣﻴﻨﻪ ﻣﺎﺷﻴﻦﻫﺎﻱ ﺷﺶ ﻓﺎﺯ ﺟﻨﺒﻪﻫﺎﻱ‬ ‫ﻣﺨﺘﻠﻔﻲ ﺩﺍﺭﺩ ﺩﺭ ﺑﺮﺧﻲ ﻣﺮﺍﺟﻊ ﻣﺎﻧﻨﺪ ]‪ [۶‬ﺑﻪ ﻣﺴﺌﻠﻪ ﻗﺎﺑﻠﻴﺖ ﺍﻃﻤﻴﻨﺎﻥ ﺍﻳﻦ‬

‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫‪ /۳‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫‪ -۲‬ﻣﺪﻝﺳﺎﺯﻱ ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ‬ ‫ﺷﮑﻞ )‪ (۱‬ﺑﻪ ﻃﻮﺭ ﺷﻤﺎﺗﻴﮏ ﺳﻴﻢ ﭘﻴﭻﻫﺎﻱ ﺍﺳﺘﺎﺗﻮﺭ ﻳﮏ ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ‬ ‫ﻧﺎﻣﺘﻘﺎﺭﻥ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ‪ .‬ﺩﺭ ﺍﺭﺗﺒﺎﻁ ﺑﺎ ﺍﻳﻦ ﻣﺎﺷﻴﻦ ﺑﻪ ﺟﺎﻱ ﻣﺎﺗﺮﻳﺲ‬ ‫ﺗﺒﺪﻳﻞ ﻣﺘﺪﺍﻭﻝ ﺳﻪ ﻓﺎﺯ ﺍﺯ ﻣﺎﺗﺮﻳﺲ ﺗﺒﺪﻳﻞ ﺯﻳﺮ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ ]‪:[۵‬‬ ‫‪cos 9φ ‬‬ ‫‪sin 9φ ‬‬ ‫‪cos 9φ ‬‬ ‫‪‬‬ ‫‪sin 9φ ‬‬ ‫‪0 ‬‬ ‫‪‬‬ ‫‪1 ‬‬

‫‪cos 8φ‬‬ ‫‪sin 8φ‬‬ ‫‪cos 4φ‬‬ ‫‪sin 4φ‬‬ ‫‪1‬‬

‫‪cos 5φ‬‬ ‫‪sin 5φ‬‬ ‫‪cos φ‬‬ ‫‪sin φ‬‬ ‫‪0‬‬

‫‪cos 4φ‬‬ ‫‪sin 4φ‬‬ ‫‪cos8φ‬‬ ‫‪sin 8φ‬‬ ‫‪1‬‬

‫‪0‬‬

‫‪1‬‬

‫‪0‬‬

‫‪d‬‬ ‫) ‪( L i + L miα r‬‬ ‫‪dt s α s‬‬ ‫‪d‬‬ ‫) ‪v β s = R si β s + ( L si β s + L mi β r‬‬ ‫‪dt‬‬ ‫‪d‬‬ ‫) ‪v xs = R si xs + ( Llsi xs‬‬ ‫‪dt‬‬ ‫‪d‬‬ ‫) ‪v ys = R si ys + ( Llsi ys‬‬ ‫‪dt‬‬ ‫‪vα s = R siα s +‬‬

‫‪1 cos φ‬‬ ‫‪0 sin φ‬‬ ‫‪‬‬ ‫‪2 x 1 cos 5φ‬‬ ‫=‪C‬‬ ‫‪‬‬ ‫‪6 y 0 sin 5φ‬‬ ‫‪0 + 1‬‬ ‫‪0‬‬ ‫‪‬‬ ‫‪0 − 0‬‬ ‫‪1‬‬

‫‪α‬‬ ‫‪β‬‬

‫)‪(۲‬‬

‫ﺩﺭ ﺍﻳﻨﺠﺎ ‪ R s‬ﻣﻘﺎﻭﻣﺖ ﺍﺳﺘﺎﺗﻮﺭ ﻭ ‪ L s‬ﺍﻧﺪﻭﮐﺘﺎﻧﺲ ﺍﺳﺘﺎﺗﻮﺭ ‪L m‬‬

‫ﺍﻧﺪﻭﮐﺘﺎﻧﺲ ﻣﺘﻘﺎﺑﻞ ﻭ ‪ L ls‬ﺍﻧﺪﻭﮐﺘﺎﻧﺲ ﻧﺸﺘﻲ ﺍﺳﺘﺎﺗﻮﺭ ﺍﺳﺖ‪.‬‬ ‫ﻣﻌﺎﺩﻻﺕ ﻭﻟﺘﺎﮊ ﺭﻭﺗﻮﺭ ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ ﺍﺳﺖ‪:‬‬

‫‪0 = R r iα r + ω r ( L r i β r + L mi β s ) +‬‬

‫)‪(۱‬‬ ‫)‪(۳‬‬

‫‪d‬‬ ‫) ‪( L i + L miα s‬‬ ‫‪dt r α r‬‬ ‫‪0 = R r i β r − ω r ( L r iα r + L miα s) +‬‬ ‫‪d‬‬ ‫) ‪( L i + L mi β s‬‬ ‫‪dt r β r‬‬

‫‪.‬‬

‫ﺷﮑﻞ )‪ :(۱‬ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ‬

‫)ﺍﻟﻒ( ﻣﺪﺍﺭﻫﺎﻱ ﻣﻌﺎﺩﻝ ) ‪( α − β‬‬

‫ﺩﺭ ﺍﻳﻨﺠﺎ ‪ φ = π / 6‬ﻭ ﻫﻤﭽﻨﻴﻦ ) ‪ ( x, y ) ، (α , β‬ﻭ )‪ (0+, 0−‬ﺳﻪ‬ ‫ﺯﻳﺮ ﻓﻀﺎﻱ ﺩﻭ ﺑﻌﺪﻱ ﻋﻤﻮﺩ ﺑﺮ ﻫﻢ ﻫﺴﺘﻨﺪ‪ .‬ﻣﺆﻟﻔﻪﻫﺎﻱ ) ‪ (α , β‬ﺩﺭ ﺗﺒﺪﻳﻞ‬ ‫ﺍﻧﺮﮊﻱ ﻭ ﺗﻮﻟﻴﺪ ﮔﺸﺘﺎﻭﺭ ﻧﻘﺶ ﺩﺍﺭﻧﺪ ﻭ ﻣﺆﻟﻔﻪﻫﺎﻱ ) ‪ ( x, y‬ﺩﺭ ﺗﺒﺪﻳﻞ ﺍﻧﺮﮊﻱ‬ ‫ﻫﻴﭻ ﻧﻘﺸﻲ ﻧﺪﺍﺭﻧﺪ ﻭ ﻓﻘﻂ ﺑﺎﻋﺚ ﺗﻠﻔﺎﺕ ﺩﺭ ﻣﺎﺷﻴﻦ ﻣﻲﺷﻮﻧﺪ ﻭ ﻣﺆﻟﻔﻪﻫﺎﻱ‬ ‫)‪ (0+, 0−‬ﺑﻪ ﻣﺆﻟﻔﻪﻫﺎﻱ ﺻﻔﺮ‪ ٣‬ﻣﻌﺮﻭﻑ ﻫﺴﺘﻨﺪ‪ .‬ﭼﻨﺎﻧﭽﻪ ﻣﺮﺍﮐﺰ ﺳﺘﺎﺭﻩ ﺩﻭ‬ ‫ﻣﺠﻤﻮﻋﻪ ﺳﻪ ﻓﺎﺯ ﺑﻪ ﻳﮑﺪﻳﮕﺮ ﻣﺘﺼﻞ ﻧﺸﻮﺩ ﺍﻳﻦ ﻣﺆﻟﻔﻪﻫﺎ ﺻﻔﺮ ﻣﻲﺷﻮﻧﺪ‪ .‬ﺑﺎ‬

‫)ﺍﻟﻒ( ﻣﺪﺍﺭﻫﺎﻱ ﻣﻌﺎﺩﻝ ) ‪( x − y‬‬

‫ﺑﻪﮐﺎﺭﮔﻴﺮﻱ ﻣﺎﺗﺮﻳﺲ ﺗﺒﺪﻳﻞ ﻓﻮﻕ‪ ،‬ﻣﺆﻟﻔﻪ ﺍﻭﻝ ﻭ ﻫﺎﺭﻣﻮﻧﻴﮏﻫﺎﻱ ﺍﺯ ﻣﺮﺗﺒﻪ‬ ‫)‪ 12m ± 1, (m = 1, 2,3,...‬ﺑﻪ ﺯﻳﺮﻓﻀﺎﻱ ) ‪ (α , β‬ﺗﺼﻮﻳﺮ ﻣﻲﺷﻮﻧﺪ؛‬ ‫ﻫﺎﺭﻣﻮﻧﻴﮏﻫﺎﻱ ﺍﺯ ﻣﺮﺗﺒﻪ )‪ 6m ± 1, (m = 1,3,5,...‬ﺑﻪ ﺯﻳﺮ ﻓﻀﺎﻱ‬ ‫) ‪ ( x, y‬ﺗﺼﻮﻳﺮ ﻣﻲﺷﻮﻧﺪ ﻭ ﻫﺎﺭﻣﻮﻧﻴﮏﻫﺎﻱ ﺗﻮﺍﻟﻲ ﺻﻔﺮ ﺑﻪ ﺯﻳﺮﻓﻀﺎﻱ‬ ‫)‪ (0+, 0−‬ﺗﺼﻮﻳﺮ ﻣﻲﺷﻮﻧﺪ ]‪ .[۵‬ﻣﻌﺎﺩﻻﺕ ﻭﻟﺘﺎﮊ ﺍﺳﺘﺎﺗﻮﺭ ﺩﺭ ﺯﻳﺮ ﻓﻀﺎﻫﺎﻱ‬

‫)ﺍﻟﻒ( ﻣﺪﺍﺭﻫﺎﻱ ﻣﻌﺎﺩﻝ ﺗﻮﺍﻟﻲ ﺻﻔﺮ‬ ‫ﺷﮑﻞ )‪ :(۲‬ﻣﺪﺍﺭﻫﺎﻱ ﻣﻌﺎﺩﻝ ﻳﮏ ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ‬

‫) ‪ (α , β‬ﻭ ) ‪ ( x, y‬ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ ﺍﺳﺖ‪:‬‬ ‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫‪ /۴‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﺩﺭ ﺍﻳﻨﺠﺎ ‪ R r‬ﻣﻘﺎﻭﻣﺖ ﺭﻭﺗﻮﺭ ‪ L r‬ﻭ ‪ L lr‬ﺑﻪ ﺗﺮﺗﻴﺐ ﺍﻧﺪﻭﮐﺘﺎﻧﺲ ﺭﻭﺗﻮﺭ ﻭ‬

‫‪ -۴‬ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‬

‫ﺍﻧﺪﻭﮐﺘﺎﻧﺲ ﻧﺸﺘﻲ ﺭﻭﺗﻮﺭ ﻫﺴﺘﻨﺪ‪.‬‬

‫ﺷﺶ ﻓﺎﺯ‬

‫ﻣﺪﺍﺭﻫﺎﻱ ﻣﻌﺎﺩﻝ ﻣﺎﺷﻴﻦ ﺩﺭ ﺷﮑﻞ )‪ (۲‬ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪.‬‬

‫ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ ﻣﺸﺎﺑﻪ ﺭﻭﺵ‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ‪:‬‬

‫) ‪T e = P L m(iα r i β s − i β r iα s‬‬

‫)‪(۴‬‬

‫ﺩﺭ ﺍﻳﻦ ﺭﺍﺑﻄﻪ ‪ P‬ﺗﻌﺪﺍﺩ ﺯﻭﺝ ﻗﻄﺐ ﺍﺳﺖ‪.‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺳﻪ ﻓﺎﺯ ﺍﺳﺖ ﮐﻪ ﺍﻧﺘﺨﺎﺏ‬ ‫ﮐﻠﻴﺪ ﺯﻧﻲ ﻣﻨﺎﺳﺐ ﺑﺮ ﺍﺳﺎﺱ ﺧﻄﺎﻱ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻭ ﻫﻤﭽﻨﻴﻦ ﺯﺍﻭﻳﻪ ﺷﺎﺭ‬ ‫ﺻﻮﺭﺕ ﻣﻲﮔﻴﺮﺩ ﺷﮑﻞ )‪ (۴‬ﺑﻠﻮﮎ ﺩﻳﺎﮔﺮﺍﻡ ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ‬ ‫ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ‪.‬‬

‫‪ -۳‬ﺍﻳﻨﻮﺭﺗﺮ ﺷﺶ ﻓﺎﺯ‬

‫ﻣﺆﻟﻔﻪﻫﺎﻱ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ ﺩﺭ ﺩﺳﺘﮕﺎﻩ ﻣﺨﺘﺼﺎﺕ ﺳﺎﮐﻦ‪ ،‬ﺑﻪ ﺻﻮﺕ ﺯﻳﺮ‬

‫ﺍﺯ ﺍﻳﻨﻮﺭﺗﺮ ﻣﻨﺒﻊ ﻭﻟﺘﺎﮊ ‪ ۱۲‬ﮐﻠﻴﺪﻱ )‪ ۶‬ﺳﺎﻗﻪ( ﺑﺮﺍﻱ ﺗﻐﺬﻳﻪ ﻣﻮﺗﻮﺭﻫﺎﻱ ﺷﺶ‬

‫ﻗﺎﺑﻞ ﻣﺤﺎﺳﺒﻪ ﻫﺴﺘﻨﺪ‬

‫ﻓﺎﺯ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ‪ .‬ﺑﻪ ﻋﻠﺖ ﺍﻳﻨﮑﻪ ﻫﺮ ﮐﻠﻴﺪ ‪ ۲‬ﺣﺎﻟﺖ ﺧﺎﻣﻮﺵ ﻭ ﺭﻭﺷﻦ‬

‫)‪(۶‬‬

‫ﺩﺍﺭﺩ ﺗﻌﺪﺍﺩ ‪ 2 6‬ﺣﺎﻟﺖ ﮐﻠﻴﺪ ﺯﻧﻲ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺷﮑﻞ )‪ (۳‬ﻳﮏ ﺍﻳﻨﻮﺭﺗﺮ‬

‫‪λ α s = ∫ (vα s − R siα s ) dt‬‬ ‫‪‬‬ ‫‪λ β s = ∫ (v β s − R si β s ) dt‬‬

‫ﺷﺶ ﻓﺎﺯ ﻣﺘﺼﻞ ﺑﻪ ﺳﻴﻢ ﭘﻴﭽﻲﻫﺎﻱ ﻳﮏ ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲ‪-‬‬

‫ﺗﻌﻴﻴﻦ ﺟﺪﻭﻝ ﮐﻠﻴﺪ ﺯﻧﻲ ‪:‬‬

‫ﺩﻫﺪ‪.‬‬

‫ﻫﻤﺎﻥ ﻃﻮﺭ ﮐﻪ ﺩﺭ ﺑﺎﻻ ﮔﻔﺘﻪ ﺷﺪ ‪ ۶۴‬ﺣﺎﻟﺖ ﮐﻠﻴﺪﺯﻧﻲ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﻫﺮ‬ ‫ﺣﺎﻟﺖ ﻳﮏ ﺑﺮﺩﺍﺭ ﻭﻟﺘﺎﮊ ﺭﺍ ﺗﻮﻟﻴﺪ ﻣﻲﮐﻨﺪ ﮐﻪ ﺩﺭ ﺍﻧﺘﺨﺎﺏ ﺑﺮﺩﺍﺭﻫﺎﻱ ﮐﻠﻴﺪ‬

‫ﺭﻭﺍﺑﻂ ﻭﻟﺘﺎﮊ ﺍﻳﻨﻮﺭﺗﺮ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ‪:‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫) ‪v aN − (v bN + v cN + v dN + v eN + v fN‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫) ‪v bs = v bN − (v aN + v cN + v dN + v eN + v fN‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫) ‪v cs = v cN − (v aN + v bN + v dN + v eN + v fN‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫) ‪v ds = v dN − (v aN + v bN + v cN + v eN + v fN‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫) ‪v es = v eN − (v aN + v bN + v cN + v dN + v fN‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫) ‪v fs = v fN − (v aN + v bN + v cN + v dN + v eN‬‬ ‫‪6‬‬ ‫‪6‬‬

‫= ‪v as‬‬

‫ﺯﻧﻲ ﺑﺎﻳﺪ ﺑﻪ ﺍﻳﻦ ﻧﮑﺘﻪ ﺗﻮﺟﻪ ﺩﺍﺷﺖ ﮐﻪ ﺑﺮﺩﺍﺭﻫﺎﻳﻲ ﺍﻧﺘﺨﺎﺏ ﺷﻮﻧﺪ ﮐﻪ‬ ‫ﺑﺰﺭﮒﺗﺮﻳﻦ ﺩﺍﻣﻨﻪ ﺭﺍ ﺩﺭ ﺯﻳﺮﻓﻀﺎﻱ ) ‪ (α , β‬ﻭ ﮐﻮﭼﮑﺘﺮﻳﻦ ﺩﺍﻣﻨﻪ ﺭﺍ ﺩﺭ ﺯﻳﺮ‬ ‫ﻓﻀﺎﻱ ) ‪ ، ( x, y‬ﮐﻪ ﺩﺭ ﺗﺒﺪﻳﻞ ﺍﻧﺮﮊﻱ ﻧﻘﺸﻲ ﻧﺪﺍﺭﻧﺪ‪ ،‬ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ‪ .‬ﺷﮑﻞ‬ ‫)‪ (۵‬ﻧﺤﻮﻩ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻦ ﺑﺮﺩﺍﺭﻫﺎﻱ ﺑﺰﺭﮒ ﺩﺭ ﺯﻳﺮ ﻓﻀﺎﻱ ) ‪ (α , β‬ﻭ ﺗﺼﻮﻳﺮ‬ ‫ﺁﻧﻬﺎ ﺩﺭ ﺯﻳﺮ ﻓﻀﺎﻱ ) ‪ ( x, y‬ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ‪ .‬ﻫﺮ ﺑﺮﺩﺍﺭ ﺑﺰﺭﮒ ﺩﺭ ﺯﻳﺮ ﻓﻀﺎﻱ‬ ‫ﺩﻳﮕﺮ ﻣﻌﺎﺩﻝ ﻳﮏ ﺑﺮﺩﺍﺭ ﮐﻮﭼﮏ ﺍﺳﺖ‪.‬‬ ‫ﮔﺸﺘﺎﻭﺭ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺖ ﺑﺎﻳﺪ ﺑﺮﺩﺍﺭﻱ ﺍﻧﺘﺨﺎﺏ ﺷﻮﺩ ﮐﻪ ﺯﺍﻭﻳﻪ ﺷﺎﺭ ﺭﺍ‬ ‫ﺍﻓﺰﺍﻳﺶ ﺩﻫﺪ ﻭ ﺑﺎﻟﻌﮑﺲ؛ ﭼﺮﺍ ﮐﻪ ﺭﺍﺑﻄﻪﻫﺎﻱ ﺯﻳﺮ ﺑﺮﺍﻱ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ‬ ‫ﺑﺮﻗﺮﺍﺭ ﺍﺳﺖ‬ ‫)‪(۷‬‬

‫)‪(۵‬‬

‫‪T e ∝ λs×I s‬‬

‫)‪(۸‬‬

‫ﺩﺭ ﺍﻳﻦ ﺭﺍﺑﻄﻪﻫﺎ ‪ N‬ﺳﺮ ﻣﻨﻔﻲ ﻟﻴﻨﮏ ‪ DC‬ﺍﺳﺖ‪.‬‬

‫‪∆λ s = V sT s‬‬

‫ﺩﺭ ﺍﻳﻨﺠﺎ ‪ V s‬ﺑﺮﺩﺍﺭ ﮐﻠﻴﺪﺯﻧﻲ‪ I s ،‬ﺑﺮﺩﺍﺭ ﺟﺮﻳﺎﻥ ﺍﺳﺘﺎﺗﻮﺭ ﻭ ‪ T s‬ﺯﻣﺎﻥ‬ ‫ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭﻱ ﻳﺎ ﮐﻠﻴﺪﺯﻧﻲ ﺍﺳﺖ‪.‬‬

‫‪f‬‬

‫‪b c d e‬‬

‫‪a‬‬

‫‪v dc‬‬

‫‪N‬‬

‫‪v es‬‬ ‫‪v fs‬‬

‫‪v as‬‬

‫‪v cs‬‬

‫‪v ds‬‬

‫‪v bs‬‬

‫ﺷﮑﻞ )‪ :(۳‬ﺍﻳﻨﻮﺭﺗﺮ ﺷﺶ ﻓﺎﺯ‬ ‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫‪ /۵‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫‪ωr‬‬

‫‪Te‬‬

‫‪λs‬‬

‫‪ωr‬‬

‫‪λs‬‬ ‫‪Te‬‬

‫ﺷﮑﻞ )‪ :(۴‬ﺑﻠﻮﮎ ﺩﻳﺎﮔﺮﺍﻡ ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻣﻮﺗﻮﺭ ﺷﺶ ﻓﺎﺯ‬

‫‪β‬‬

‫ﺷﻮﺩ ﮐﻪ ﺍﻧﺪﺍﺯﻩ ﺷﺎﺭ ﺭﺍ ﺍﻓﺰﺍﻳﺶ ﺩﻫﺪ ﻭ ﺑﺎﻟﻌﮑﺲ ﻭ ﻫﻤﻴﻦﻃﻮﺭ ﺍﮔﺮ ﺧﻄﺎﻱ‬ ‫ﺩﻭ ﺟﺪﻭﻝ ﮐﻠﻴﺪﺯﻧﻲ ﺑﺮﺍﻱ ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﺍﻧﺘﺨﺎﺏ‬ ‫ﺷﺪﻩ ﺍﺳﺖ ﺩﺭ ﺯﻳﺮ ﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺟﺪﻭﻝ )‪ (۱‬ﺩﺭ ﻣﺮﺟﻊ ]‪[۱۲‬ﺍﺭﺍﺋﻪ‬ ‫ﺷﺪﻩ ﻭ ﺟﺪﻭﻝ )‪ (۲‬ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﭘﻴﺸﻨﻬﺎﺩ ﻣﻲﺷﻮﺩ‪ .‬ﺩﺭ ﺍﻳﻦ ﺟﺪﻭﻝﻫﺎ‬ ‫‪ Tc‬ﻭ ‪ λc‬ﺑﻪ ﺗﺮﺗﻴﺐ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﺗﻐﻴﻴﺮ ﻣﻄﻠﻮﺏ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫‪α‬‬

‫)ﺧﺮﻭﺟﻲﻫﺎﻱ ﺑﺎﻧﺪﻫﺎﻱ ﻫﻴﺴﺘﺮﺯﻳﺲ ﺷﮑﻞ )‪ ((۴‬ﻣﻲﺑﺎﺷﻨﺪ؛ ﺑﻪ ﻋﺒﺎﺭﺕ‬ ‫ﺩﻳﮕﺮ ﭼﻨﺎﻧﭽﻪ ‪ Tc‬ﻭ ‪ λc‬ﻫﺮ ﺩﻭ ‪ +۱‬ﺑﺎﺷﻨﺪ ﻻﺯﻡ ﺍﺳﺖ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ‬ ‫ﺍﺳﺘﺎﺗﻮﺭ ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩﻩ ﺷﻮﺩ ﻭ ﭼﻨﺎﻧﭽﻪ ‪ -۱‬ﺑﺎﺷﻨﺪ ﻻﺯﻡ ﺍﺳﺖ ﮔﺸﺘﺎﻭﺭ ﻭ‬ ‫ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ ﮐﺎﻫﺶ ﺩﺍﺩﻩ ﺷﻮﺩ‪ .‬ﺑﺴﺘﻪ ﺑﻪ ﻣﻮﻗﻌﻴﺖ ﺑﺮﺩﺍﺭ ﺷﺎﺭ‪ ،‬ﺷﻤﺎﺭﻩ‬ ‫ﺑﺮﺩﺍﺭ ﮐﻠﻴﺪﺯﻧﻲ ﻣﻄﻠﻮﺏ ﺩﺭ ﺟﺪﺍﻭﻝ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ‪.‬‬

‫)ﺍﻟﻒ(‪ :‬ﺯﻳﺮﻓﻀﺎﻱ‬

‫) ‪(α , β‬‬

‫)ﺏ(‪ :‬ﺯﻳﺮﻓﻀﺎﻱ‬

‫) ‪( x, y‬‬

‫ﺑﺮﺍﻱ ﻣﺸﺨﺺ ﺷﺪﻥ ﻧﺤﻮﻩ ﺭﺳﻴﺪﻥ ﺑﻪ ﺟﺪﻭﻝ )‪ (۲‬ﻳﮏ ﻋﻨﺼﺮ ﺟﺪﻭﻝ‬ ‫ﺑﺪﺳﺖ ﺁﻭﺭﺩﻩ ﻣﻲﺷﻮﺩ‪ .‬ﻓﺮﺽ ﮐﻨﻴﺪ ﺑﺮﺩﺍﺭ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ ﺩﺭ ﻧﺎﺣﻴﻪ ‪ s1‬ﺍﺯ‬ ‫ﺻﻔﺤﻪ ‪ α − β‬ﺷﮑﻞ )‪ (۵‬ﺑﺎﺷﺪ‪ ،‬ﻫﻤﭽﻨﻴﻦ ﻓﺮﺽ ﮐﻨﻴﺪ ‪ Tc‬ﻭ ‪ λc‬ﻫﺮ‬ ‫ﺩﻭ ﻣﺜﺒﺖ ﺑﺎﺷﻨﺪ ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻻﺯﻡ ﺍﺳﺖ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬ ‫ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩﻩ ﺷﻮﺩ ﺑﺎ ﻣﺮﺍﺟﻌﻪ ﺑﻪ ﺷﮑﻞ )‪-۵‬ﺍﻟﻒ( ﺑﺮﺩﺍﺭﻫﺎﻱ ‪،v45 ،v41‬‬ ‫‪ v52 ،v36 ،v37‬ﻭ ‪ v54‬ﻫﻤﮕﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺷﺎﺭ ﺷﻮﻧﺪ‬ ‫ﻭﻟﻲ ‪ v37‬ﻭ ‪ v36‬ﺍﺯ ﻫﻤﻪ ﺑﻴﺸﺘﺮ ﺑﺎﻋﺚ ﺍﻳﻦ ﺍﻓﺰﺍﻳﺶ ﻣﻲﺷﻮﻧﺪ‪ .‬ﺍﺯ ﻃﺮﻓﻲ‬ ‫‪ v18 ،v22 ،v54 ،v52 ،v36‬ﻭ ‪ v26‬ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺯﺍﻭﻳﻪ ﺑﺮﺩﺍﺭ‬ ‫ﺷﺎﺭ ﺷﺪﻩ ﻭ ﺩﺭ ﻧﺘﻴﺠﻪ ﮔﺸﺘﺎﻭﺭ ﺭﺍ ﺍﻓﺰﺍﻳﺶ ﻣﻲﺩﻫﻨﺪ‪ .‬ﺑﻴﻦ ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ‬

‫ﺷﮑﻞ )‪ :(۵‬ﻧﻤﺎﻳﺶ ﺑﺮﺩﺍﺭﻫﺎﻱ ﺑﺰﺭﮒ ﺩﺭ ﺯﻳﺮﻓﻀﺎﻱ ) ‪ (α , β‬ﻭ‬ ‫ﺗﺼﻮﻳﺮ ﺁﻥﻫﺎ ﺩﺭ ﺯﻳﺮﻓﻀﺎﻱ‬

‫) ‪( x, y‬‬

‫ﻫﻤﺎﻥ ﻃﻮﺭ ﮐﻪ ﮔﻔﺘﻪ ﺷﺪ ﺍﻧﺘﺨﺎﺏ ﺑﺮﺩﺍﺭ ﻣﻨﺎﺳﺐ ﺑﺴﺘﮕﻲ ﺑﻪ ﺧﻄﺎﻱ ﺷﺎﺭ‬

‫ﺑﺮﺩﺍﺭ ﻭ ﻣﺠﻤﻮﻋﻪ ﻗﺒﻠﻲ ﺗﻌﺪﺍﺩﻱ ﺑﺮﺩﺍﺭ ﻣﺸﺘﺮﮎ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﻋﺒﺎﺭﺗﻨﺪ‬ ‫ﺍﺯ ‪ v52 ،v36‬ﻭ ‪ v54‬ﮐﻪ ﺑﺮﺍﻱ ﺟﻠﻮﮔﻴﺮﻱ ﺍﺯ ﺗﻐﻴﻴﺮﺍﺕ ﺷﺪﻳﺪ ﺑﺮﺩﺍﺭ‬ ‫ﻭﺳﻄﻲ ﻳﻌﻨﻲ ‪ v52‬ﺍﻧﺘﺨﺎﺏ ﺷﺪﻩ ﺍﺳﺖ ﮐﻪ ﺍﻭﻟﻴﻦ ﻋﻨﺼﺮ ﺟﺪﻭﻝ )‪(۲‬‬ ‫ﻣﻲﺑﺎﺷﺪ‪ .‬ﺑﻪ ﻫﻤﻴﻦ ﻃﺮﻳﻖ ﺳﺎﻳﺮ ﻋﻨﺎﺻﺮ ﺟﺪﻭﻝ ﺍﻧﺘﺨﺎﺏ ﻣﻲﮔﺮﺩﻧﺪ‪.‬‬

‫ﻭ ﮔﺸﺘﺎﻭﺭ ﺩﺍﺭﺩ ﻳﻌﻨﻲ ﺍﮔﺮ ﺧﻄﺎﻱ ﺷﺎﺭ ﺍﻓﺰﺍﻳﺶ ﻳﺎﺑﺪ ﺑﺎﻳﺪ ﺑﺮﺩﺍﺭﻱ ﺍﻧﺘﺨﺎﺏ‬

‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫‪ /۶‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﺟﺪﻭﻝ )‪ :(۳‬ﻗﻮﺍﻧﻴﻦ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ‬

‫ﺟﺪﻭﻝ )‪ :(۱‬ﺑﺮﺩﺍﺭﻫﺎﻱ ﮐﻠﻴﺪﺯﻧﻲ ﻣﺮﺟﻊ ]‪[12‬‬ ‫ﺷﻤﺎﺭﻩ ﻗﻄﺎﻉ‬

‫‪3‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫‪6‬‬

‫‪3‬‬ ‫‪7‬‬ ‫‪5‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫‪8‬‬

‫ﺧﻄﺎﻱ‬

‫ﺷﻤﺎﺭﻩ ﻗﻄﺎﻉ‬

‫‪4‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪4‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪9‬‬ ‫‪5‬‬ ‫‪4‬‬

‫‪9‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫‪2‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪7‬‬ ‫‪3‬‬ ‫‪6‬‬

‫‪2‬‬ ‫‪7‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪7‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪8‬‬ ‫‪4‬‬ ‫‪5‬‬

‫‪1‬‬ ‫‪8‬‬ ‫‪2‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪1‬‬

‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪9‬‬

‫‪5‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪8‬‬ ‫‪5‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪1‬‬

‫‪5‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪2‬‬ ‫‪7‬‬

‫‪λ‬‬ ‫‪c‬‬ ‫‪+1‬‬

‫‪T‬‬ ‫‪c‬‬

‫‪6‬‬

‫‪5‬‬

‫‪+1‬‬

‫‪27‬‬

‫‪26‬‬

‫‪18‬‬

‫‪9‬‬

‫‪11‬‬

‫‪27‬‬

‫‪41‬‬

‫‪9‬‬

‫‪11‬‬

‫‪22‬‬

‫‪54‬‬

‫‪52‬‬

‫‪36‬‬

‫‪52‬‬

‫‪36‬‬

‫‪37‬‬

‫‪45‬‬

‫‪41‬‬

‫‪37‬‬

‫‪45‬‬

‫‪41‬‬

‫‪9‬‬

‫‪-1‬‬ ‫‪+1‬‬

‫‪-1‬‬

‫‪-1‬‬

‫ﺷﺎﺭ‬

‫ﮔﺸﺘﺎﻭﺭ‬

‫‪22‬‬

‫‪54‬‬

‫‪52‬‬

‫‪P‬‬

‫‪26‬‬

‫‪18‬‬

‫‪22‬‬

‫‪Z‬‬

‫‪PL‬‬

‫‪27‬‬

‫‪26‬‬

‫‪18‬‬

‫‪N‬‬

‫‪37‬‬

‫‪45‬‬

‫‪P‬‬

‫‪9‬‬

‫‪Z‬‬

‫‪NL‬‬

‫‪11‬‬

‫‪N‬‬ ‫ﺧﻄﺎﻱ‬

‫ﺧﻄﺎﻱ‬

‫‪12‬‬

‫‪11‬‬

‫‪10‬‬

‫‪9‬‬

‫‪8‬‬

‫‪7‬‬

‫ﺷﺎﺭ‬

‫ﮔﺸﺘﺎﻭﺭ‬

‫‪36‬‬

‫‪37‬‬

‫‪45‬‬

‫‪41‬‬

‫‪9‬‬

‫‪11‬‬

‫‪P‬‬

‫‪54‬‬

‫‪52‬‬

‫‪36‬‬

‫‪37‬‬

‫‪45‬‬

‫‪41‬‬

‫‪Z‬‬

‫‪22‬‬

‫‪54‬‬

‫‪52‬‬

‫‪36‬‬

‫‪37‬‬

‫‪45‬‬

‫‪N‬‬

‫‪41‬‬

‫‪9‬‬

‫‪11‬‬

‫‪27‬‬

‫‪26‬‬

‫‪18‬‬

‫‪P‬‬

‫‪11‬‬

‫‪27‬‬

‫‪26‬‬

‫‪18‬‬

‫‪22‬‬

‫‪54‬‬

‫‪Z‬‬

‫‪27‬‬

‫‪26‬‬

‫‪18‬‬

‫‪22‬‬

‫‪54‬‬

‫‪52‬‬

‫‪N‬‬

‫‪36‬‬

‫‪3‬‬

‫‪4‬‬

‫‪2‬‬

‫‪1‬‬

‫ﺷﻤﺎﺭﻩ ﻗﻄﺎﻉ‬

‫ﺟﺪﻭﻝ )‪ :(۲‬ﺑﺮﺩﺍﺭﻫﺎﻱ ﮐﻠﻴﺪﺯﻧﻲ ﭘﻴﺸﻨﻬﺎﺩﻱ‬ ‫ﺷﻤﺎﺭﻩ ﻗﻄﺎﻉ‬

‫‪3‬‬ ‫‪6‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪7‬‬

‫‪3‬‬ ‫‪7‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬

‫‪4‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪8‬‬

‫‪4‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪2‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪9‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬

‫‪1‬‬ ‫‪1‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫‪8‬‬ ‫‪5‬‬ ‫‪2‬‬

‫‪2‬‬ ‫‪7‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪6‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪9‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪7‬‬

‫‪1‬‬ ‫‪8‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪5‬‬

‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪7‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪1‬‬

‫‪5‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪9‬‬

‫‪5‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪8‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪1‬‬ ‫‪1‬‬

‫‪λ‬‬ ‫‪c‬‬

‫‪T‬‬ ‫‪c‬‬

‫‪+1‬‬

‫‪+1‬‬

‫‪-1‬‬ ‫‪+1‬‬

‫‪-1‬‬

‫ﺧﻄﺎﻱ‬

‫‪PL‬‬

‫‪NL‬‬

‫‪-1‬‬

‫‪ -۵‬ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻓﺎﺯﻱ‬ ‫ﺑﺎ ﺑﮑﺎﺭ ﮔﻴﺮﻱ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﻣﻲﺗﻮﺍﻥ ﺭﻳﭙﻞ ﻣﻮﺟﻮﺩ ﺩﺭ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﺭﺍ‬ ‫ﮐﺎﻫﺶ ﺩﺍﺩ‪ .‬ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺟﺪﻭﻝ )‪ ،(۲‬ﺑﺮﺩﺍﺭ ﮐﻠﻴﺪﺯﻧﻲ‬ ‫ﻣﻄﻠﻮﺏ ﺑﺎ ﺑﻪﮐﺎﺭﮔﻴﺮﻱ ﻣﻨﻄﻖ ﻓﺎﺯﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻩ ﻣﻲﺷﻮﺩ‪ .‬ﺩﺭ ﺍﻳﻦ‬

‫)ﺍﻟﻒ( ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺯﺍﻭﻳﻪ ﺑﺮﺩﺍﺭ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺳﻪ ﻭﺭﻭﺩﻱ ﺯﺍﻭﻳﻪ ﺷﺎﺭ‪ ،‬ﺧﻄﺎﻱ ﮔﺸﺘﺎﻭﺭ ﻭ ﺧﻄﺎﻱ ﺷﺎﺭ ﺩﺭ‬ ‫ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩ ﻭ ﻳﮏ ﺧﺮﻭﺟﻲ ﺷﻤﺎﺭﻩ ﺑﺮﺩﺍﺭ ﮐﻠﻴﺪﺯﻧﻲ‪ .‬ﺗﻮﺍﺑﻊ‬ ‫ﻋﻀﻮﻳﺖ ﺍﻧﺘﺨﺎﺑﻲ ﻭﺭﻭﺩﻱﻫﺎ ﻭ ﺧﺮﻭﺟﻲ ﺩﺭ ﺷﮑﻞ )‪ (۶‬ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ‬ ‫ﺍﺳﺖ‪ .‬ﻗﻮﺍﻧﻴﻦ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ ﺩﺭ ﺟﺪﻭﻝ )‪ (۳‬ﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺑﺮﺍﻱ‬ ‫ﺧﻄﺎﻱ ﮔﺸﺘﺎﻭﺭ ﺍﺯ ﺩﻭ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﺧﻴﻠﻲ ﻣﺜﺒﺖ )‪ (PL‬ﻭ ﺧﻴﻠﻲ ﻣﻨﻔﻲ‬

‫)ﺏ( ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺧﻄﺎﻱ ﮔﺸﺘﺎﻭﺭ‬

‫)‪ ،(NL‬ﺑﺮﺍﻱ ﺧﻄﺎﻱ ﺷﺎﺭ ﺍﺯ ﺳﻪ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﻣﻨﻔﻲ )‪ ،(N‬ﺻﻔﺮ )‪ (Z‬ﻭ‬ ‫ﻣﺜﺒﺖ )‪ (P‬ﻭ ﺑﺮﺍﻱ ﺯﺍﻭﻳﻪ ﺑﺮﺩﺍﺭ ﺷﺎﺭ ﺍﺯ ‪ ۱۲‬ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ‬ ‫ﺍﺳﺖ‪ .‬ﺟﺪﻭﻝ )‪ (۳‬ﺑﺮﮔﺮﻓﺘﻪ ﺍﺯ ﺟﺪﻭﻝ )‪ (۲‬ﻣﻲﺑﺎﺷﺪ ﻭ ﻗﻮﺍﻧﻴﻦ ﺳﻴﺴﺘﻢ‬ ‫ﻓﺎﺯﻱ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ‪.‬‬ ‫)ﺝ( ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺧﻄﺎﻱ ﺷﺎﺭ‬

‫)ﺩ( ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺧﺮﻭﺟﻲ‬ ‫ﺷﮑﻞ )‪ :(۶‬ﻧﻤﺎﻳﺶ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺘﻐﻴﺮﻫﺎﻱ ﻭﺭﻭﺩﻱ ﻭ ﺧﺮﻭﺟﻲ ﺳﻴﺴﺘﻢ ﻓﺎﺯﻱ‬

‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫‪ /۷‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫‪ -۵‬ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪ ﺳﺎﺯﻱ‬

‫ﺟﺮﻳﺎﻥﻫﺎ ﻫﻢ ﻣﺸﺨﺺ ﺍﺳﺖ ﻭﻟﻲ ﺑﺎ ﺍﻧﺘﺨﺎﺏ ﻣﻨﺎﺳﺐ ﻭ ﺑﻬﻴﻨﻪ ﺑﺮﺩﺍﺭﻫﺎ‬

‫ﻧﺘﺎﻳﺞ ﺁﺯﻣﺎﻳﺶﻫﺎﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺮﺍﻱ ﻫﺮ ﺩﻭ ﺟﺪﻭﻝ ﺩﺭ ﺷﮑﻞﻫﺎﻱ‬

‫ﮐﻪ ﺩﺭ ﺟﺪﻭﻝ )‪ (۲‬ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ﮔﺸﺘﺎﻭﺭ ﻣﺎﺷﻴﻦ‪ ،‬ﮔﺸﺘﺎﻭﺭ‬

‫)‪ (۶‬ﻭ )‪ (۷‬ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﻫﻤﺎﻥ ﻃﻮﺭ ﮐﻪ ﺩﺭ ﺷﮑﻞﻫﺎﻱ )‪ (۶‬ﻭ‬

‫ﻣﺮﺟﻊ ﺭﺍ ﺑﻪ ﺧﻮﺑﻲ ﺩﻧﺒﺎﻝ ﻣﻲﮐﻨﺪ ﻭ ﻫﻤﻴﻦ ﻃﻮﺭ ﻣﺸﮑﻞ ﺷﺎﺭ ﻣﺎﺷﻴﻦ‬

‫)‪ (۷‬ﻣﺸﺨﺺ ﺍﺳﺖ ﮔﺸﺘﺎﻭﺭ ﻣﺮﺟﻊ ﺗﺎ ﺯﻣﺎﻥ ‪ ۱‬ﺛﺎﻧﻴﻪ ﺭﻭﻱ ‪ ۱۰‬ﻧﻴﻮﺗﻦ ﻣﺘﺮ‬

‫ﺑﺮﻃﺮﻑ ﻣﻲﺷﻮﺩ ﻭ ﺟﺮﻳﺎﻥ ﻣﺎﺷﻴﻦ ﺑﻪ ﺷﮑﻞ ﺳﻴﻨﻮﺳﻲ ﻣﻲﺷﻮﺩ‪ .‬ﮔﺸﺘﺎﻭﺭ‬

‫ﻭ ﺩﺭ ﺯﻣﺎﻥﻫﺎﻱ ﺑﻴﺶ ﺍﺯ ‪ ۱‬ﺛﺎﻧﻴﻪ ﺭﻭﻱ ‪ -۱۰‬ﻧﻴﻮﺗﻦ ﻣﺘﺮ ﻓﺮﻣﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ‬

‫ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ ﺍﺯ ﺩﻳﻨﺎﻣﻴﮏ ﺧﻮﺑﻲ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ ﻭ ﺩﺍﺭﺍﻱ ﺭﻳﭙﻞ‬

‫ﮐﻪ ﺩﺭ ﺟﺪﻭﻝ )‪ (۱‬ﺑﺎ ﺍﻧﺘﺨﺎﺏ ﻧﺎﻣﻨﺎﺳﺐ ﺑﻌﻀﻲ ﺍﺯ ﺑﺮﺩﺍﺭﻫﺎ‪ ،‬ﮔﺸﺘﺎﻭﺭ‬

‫ﮐﻤﻲ ﻣﻲﺑﺎﺷﺪ ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ﺑﺮﺍﻱ ﮐﺎﻫﺶ ﺑﻴﺸﺘﺮ ﺭﻳﭙﻞ ﻭ ﺩﺍﺷﺘﻦ ﺭﻓﺘﺎﺭ‬

‫ﺗﻮﻟﻴﺪﻱ‪ ،‬ﮔﺸﺘﺎﻭﺭ ﻣﺮﺟﻊ ﺯﻣﺎﻧﻲ ﮐﻪ ﻣﺜﺒﺖ ﺍﺳﺖ ﺭﺍ ﺩﻧﺒﺎﻝ ﻣﻲﮐﻨﺪ ﻭﻟﻲ‬

‫ﺑﻬﺘﺮ )ﮐﺎﻫﺶ ﻟﺮﺯﺵ ﻭ ﺳﺮ ﻭ ﺻﺪﺍﻱ ﻣﺎﺷﻴﻦ( ﺍﺯ ﺭﻭﺵ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ‬

‫ﮔﺸﺘﺎﻭﺭ ﻣﻨﻔﻲ ﺭﺍ ﻧﻤﻲﺗﻮﺍﻧﺪ ﺑﻪ ﺧﻮﺑﻲ ﺩﻧﺒﺎﻝ ﮐﻨﺪ ﻭ ﻫﻤﻴﻦ ﻃﻮﺭ ﺳﺮﻋﺖ‬

‫ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻓﺎﺯﻱ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ‪.‬‬

‫ﺩﺭ ﺯﻣﺎﻧﻲ ﮐﻪ ﮔﺸﺘﺎﻭﺭ ﻣﻨﻔﻲ ﻓﺮﻣﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﺩ ﻧﺎﮔﻬﺎﻥ ﺑﻪ ﺻﻔﺮ ﻣﻲ‪-‬‬ ‫ﺭﺳﺪ ﻭ ﻳﺎ ﺩﺭ ﺷﺎﺭ ﺗﻮﻟﻴﺪﻱ ﺍﻓﺖ ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ﻭ ﺍﻳﻦ ﻣﺸﮑﻼﺕ ﺩﺭ‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ‬

‫ﺳﺮﻋﺖ ﻣﻮﺗﻮﺭ‬

‫‪Serial No. 62‬‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ‬

‫ﺳﺮﻋﺖ ﻣﻮﺗﻮﺭ‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫‪ /۸‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﺟﺮﻳﺎﻥ ﻳﮏ ﻓﺎﺯ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺟﺮﻳﺎﻥ ﻳﮏ ﻓﺎﺯ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺷﮑﻞ )‪ :(۶‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬

‫ﺷﮑﻞ )‪ :(۷‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬

‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۱‬‬

‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۲‬‬

‫ﻣﺆﻟﻔﻪ ﻋﻤﻮﺩ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﻣﺆﻟﻔﻪ ﻋﻤﻮﺩ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺍﺩﺍﻣﻪ ﺷﮑﻞ )‪ :(۶‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬

‫ﺍﺩﺍﻣﻪ ﺷﮑﻞ )‪ :(۷‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬ ‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۲‬‬

‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۱‬‬

‫ﻧﺘﺎﻳﺞ ﺁﺯﻣﺎﻳﺶﻫﺎﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺮﺍﻱ ﺭﻭﺵ ﮐﻼﺳﻴﮏ ﺟﺪﻭﻝ‬

‫ﺗﺮﺳﻴﻢ ﺷﺪﻩﺍﻧﺪ ﮐﻪ ﺩﺭ ﺭﻭﺵ ﻓﺎﺯﻱ ﺷﮑﻞ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺑﻪ ﻳﮏ ﺩﺍﻳﺮﻩ‬

‫ﭘﻴﺸﻨﻬﺎﺩﻱ )‪ (۲‬ﻭ ﺭﻭﺵ ﻓﺎﺯﻱ ﺑﻪ ﺗﺮﺗﻴﺐ ﺩﺭ ﺷﮑﻞﻫﺎﻱ )‪ (۸‬ﻭ )‪ (۹‬ﻧﺸﺎﻥ‬

‫ﻧﺰﺩﻳﮏﺗﺮ ﺍﺳﺖ‪.‬‬

‫ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﻳﻦ ﻧﺘﺎﻳﺞ ﺑﺮﺗﺮﻱ ﺭﻭﺵ ﻓﺎﺯﻱ ﭘﻴﺸﻨﻬﺎﺩﻱ ﺭﺍ ﺑﻪ ﻧﻤﺎﻳﺶ‬

‫ﺑﺮﺍﻱ ﻣﻘﺎﻳﺴﻪ ﺑﻴﺸﺘﺮ ﺭﻭﺵ ﮐﻼﺳﻴﮏ ﺟﺪﻭﻝ ﭘﻴﺸﻨﻬﺎﺩﻱ )‪ (۲‬ﺑﺎ ﺭﻭﺵ‬

‫ﻣﻲﮔﺬﺍﺭﻧﺪ‪ .‬ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺩﺭ ﻫﺮ ﺩﻭ ﻣﻮﺭﺩ ﺗﺤﺖ ﺷﺮﺍﻳﻂ ﻳﮑﺴﺎﻥ‬

‫ﻓﺎﺯﻱ‪ ،‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺗﻐﻴﻴﺮ ﮔﺸﺘﺎﻭﺭ ﻳﺎ ﺗﻐﻴﻴﺮ ﺷﺎﺭ ﺑﻪ ﺗﺮﺗﻴﺐ ﺩﺭ‬

‫ﺻﻮﺭﺕ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ﺭﻳﭙﻞ ﮔﺸﺘﺎﻭﺭ ﺩﺭ ﺭﻭﺵ ﻓﺎﺯﻱ ﺑﻪ‬

‫ﺷﮑﻞﻫﺎﻱ )‪ (۱۰‬ﻭ )‪ (۱۱‬ﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﺯ ﻟﺤﺎﻅ ﺩﻳﻨﺎﻣﻴﮑﻲ )ﺳﺮﻋﺖ‬

‫ﻣﺮﺍﺗﺐ ﮐﻤﺘﺮ ﺍﺳﺖ‪ .‬ﻫﻤﭽﻨﻴﻦ ﻣﺆﻟﻔﻪ ﻫﺎﻱ ﺟﺮﻳﺎﻥ ﺩﺭ ﺭﻭﺵ ﻓﺎﺯﻱ ﺑﻪ‬

‫ﭘﺎﺳﺦ ﺩﻫﻲ( ﻫﺮ ﺩﻭ ﺭﻭﺵ ﻣﺸﺎﺑﻪ ﻫﺴﺘﻨﺪ ﻭﻟﻲ ﺭﻳﭙﻞ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ‬

‫ﺣﺎﻟﺖ ﺳﻴﻨﻮﺳﻲ ﻧﺰﺩﻳﮏﺗﺮﻧﺪ‪ .‬ﺩﺍﻣﻨﻪ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ ﻧﻴﺰ ﺩﺭ ﺭﻭﺵ ﻓﺎﺯﻱ ﺍﺯ‬

‫ﺭﻭﺵ ﻓﺎﺯﻱ ﺩﺭ ﺷﺮﺍﻳﻂ ﻳﮑﺴﺎﻥ ﮐﻤﺘﺮ ﺍﺳﺖ؛ ﺑﻪ ﻋﺒﺎﺭﺕ ﺩﻳﮕﺮ ﺭﻭﺵ ﻓﺎﺯﻱ‬

‫ﺭﻳﭙﻞ ﮐﻤﺘﺮﻱ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ‪ .‬ﻣﺆﻟﻔﻪ ﻫﺎﻱ ﺷﺎﺭ ﻧﻴﺰ ﻧﺴﺒﺖ ﺑﻪ ﻳﮑﺪﻳﮕﺮ‬

‫ﻋﻠﻲ ﺭﻏﻢ ﺩﺍﺷﺘﻦ ﭘﺎﺳﺦ ﻣﻄﻠﻮﺏﺗﺮ ﺑﺎﻋﺚ ﮐﺎﻫﺶ ﺳﺮﻋﺖ ﭘﺎﺳﺦ ﺩﻫﻲ‬ ‫ﻧﺸﺪﻩ ﺍﺳﺖ‪.‬‬

‫‪Serial No. 62‬‬

‫‪Journal of Electrical Eng., Vol. 41, No. 2‬‬

‫‪ /۹‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ‬

‫ﺷﮑﻞ )‪ :(۸‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬

‫ﺷﮑﻞ )‪ :(۹‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻗﻮﺍﻧﻴﻦ‬

‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۲‬‬

‫ﻣﺆﻟﻔﻪﻫﺎﻱ ﺟﺮﻳﺎﻥ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺩﺍﻣﻨﻪ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﻣﺆﻟﻔﻪﻫﺎﻱ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ ﻧﺴﺒﺖ ﺑﻪ ﻳﮑﺪﻳﮕﺮ‬

‫‪Serial No. 62‬‬

‫ﻓﺎﺯﻱ ﺟﺪﻭﻝ )‪(۳‬‬

‫ﻣﺆﻟﻔﻪﻫﺎﻱ ﺟﺮﻳﺎﻥ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺩﺍﻣﻨﻪ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﻣﺆﻟﻔﻪﻫﺎﻱ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ ﻧﺴﺒﺖ ﺑﻪ ﻳﮑﺪﻳﮕﺮ‬

‫‪Journal of Electrical Eng., Vol. 41, No.2‬‬

‫‪ /۱۰‬ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‪ ،‬ﺟﻠﺪ ‪،۴۱‬ﺷﻤﺎﺭﻩ ‪۲‬‬

‫ﺍﺩﺍﻣﻪ ﺷﮑﻞ )‪ :(۸‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬

‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‪.........‬‬

‫ﺍﺩﺍﻣﻪ ﺷﮑﻞ )‪ :(۹‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﮐﻨﺘﺮﻝ ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬ ‫ﻗﻮﺍﻧﻴﻦ ﻓﺎﺯﻱ ﺟﺪﻭﻝ )‪(۳‬‬

‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۲‬‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ‬

‫ﮔﺸﺘﺎﻭﺭ ﺍﻟﮑﺘﺮﻭﻣﻐﻨﺎﻃﻴﺴﻲ‬

‫ﺩﺍﻣﻨﻪ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺩﺍﻣﻨﻪ ﺷﺎﺭ ﺍﺳﺘﺎﺗﻮﺭ‬

‫ﺷﮑﻞ )‪ :(۱۰‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﺗﻐﻴﻴﺮ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ‬

‫ﺷﮑﻞ )‪ :(۱۱‬ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺍﺯ ﺷﺒﻴﻪ ﺳﺎﺯﻱ ﺗﻐﻴﻴﺮ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻗﻮﺍﻧﻴﻦ‬

‫ﺑﺮﺩﺍﺭﻫﺎﻱ ﺟﺪﻭﻝ )‪(۲‬‬

‫ﻓﺎﺯﻱ ﺟﺪﻭﻝ )‪(۳‬‬

‫‪ -۶‬ﻧﺘﻴﺠﻪ‬ ‫ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺮﺍﻱ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻳﮏ ﻣﺎﺷﻴﻦ ﺍﻟﻘﺎﻳﻲ‬

‫ﺿﻤﻴﻤﻪ‬

‫ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ ﻳﮏ ﺟﺪﻭﻝ ﺍﺻﻼﺡ ﺷﺪﻩ ﺍﺭﺍﺋﻪ ﮔﺮﺩﻳﺪ‪ .‬ﺑﺮﺍﻱ ﺍﻳﻦ‬ ‫ﻣﻨﻈﻮﺭ ﻣﺪﻝ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ‪ ،‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﺵ‬ ‫ﺗﺠﺰﻳﻪ ﺑﺮﺩﺍﺭ ﻓﻀﺎﻳﻲ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﺮﻓﺖ‪ .‬ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ‬ ‫ﮔﺸﺘﺎﻭﺭ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺣﺬﻑ ﻣﺤﺎﺳﺒﺎﺕ ﺭﻭﺵﻫﺎﻱ ﮐﻨﺘﺮﻝ ﺑﺮﺩﺍﺭﻱ ﻭ‬ ‫ﮐﻨﺘﺮﻝ ﻏﻴﺮﺧﻄﻲ ﻭ ﺳﺎﺩﮔﻲ ﭘﻴﺎﺩﻩﺳﺎﺯﻱ ﻳﮑﻲ ﺍﺯ ﺭﻭﺵﻫﺎﻱ ﻣﻄﻠﻮﺏ‬ ‫ﮐﻨﺘﺮﻝ ﻣﻮﺗﻮﺭﻫﺎﻱ ﺍﻟﻘﺎﻳﻲ ﻣﻲﺑﺎﺷﺪ‪ .‬ﻣﺎﺷﻴﻦ ﺷﺶ ﻓﺎﺯ ﻧﺴﺒﺖ ﺑﻪ ﻣﺎﺷﻴﻦ‬ ‫ﺳﻪ ﻓﺎﺯ ﺍﺯ ﻧﻮﺳﺎﻥ ﮔﺸﺘﺎﻭﺭ ﮐﻤﺘﺮﻱ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ ﻭ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺟﺪﻭﻝ‬ ‫ﭘﻴﺸﻨﻬﺎﺩﻱ ﺑﺎﻋﺚ ﮐﻨﺘﺮﻝ ﻣﻄﻠﻮﺏ ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻣﻲﮔﺮﺩﺩ‪ .‬ﻧﺘﺎﻳﺞ ﺷﺒﻴﻪ‬ ‫ﺳﺎﺯﻱ ﮐﺎﻣﭙﻴﻮﺗﺮﻱ ﺩﺭ ﺷﺮﺍﻳﻂ ﻣﺨﺘﻠﻒ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﮐﺎﺭ ﺁﻳﻲ ﺍﻳﻦ ﺭﻭﺵ‬ ‫ﺑﺎ ﺟﺪﻭﻝ ﭘﻴﺸﻨﻬﺎﺩﻱ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺳﻴﺴﺘﻢ ﺩﺭﺍﻳﻮ ﺷﺶ ﻓﺎﺯ ﻧﺎﻣﺘﻘﺎﺭﻥ‬ ‫ﭘﻴﺸﻨﻬﺎﺩﻱ ﺑﺮﺍﻱ ﮐﺎﺭﺑﺮﺩﻫﺎﻱ ﺗﻮﺍﻥ ﺑﺎﻻ ﻳﺎ ﺟﺮﻳﺎﻥ ﺑﺎﻻ‪ ،‬ﺟﺎﻳﮕﺰﻳﻦ ﻣﻨﺎﺳﺒﻲ‬ ‫ﺑﻪ ﺟﺎﻱ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺳﻪ ﻓﺎﺯ ﻣﺘﺪﺍﻭﻝ ﺍﺳﺖ‪ .‬ﻫﻤﭽﻨﻴﻦ ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ‬ ‫ﮔﺸﺘﺎﻭﺭ ﻭ ﺷﺎﺭ ﻓﺎﺯﻱ ﺍﻳﻦ ﻣﺎﺷﻴﻦ ﻣﻄﺮﺡ ﺷﺪ ﮐﻪ ﺍﺯ ﺭﻳﭙﻞ ﮐﻤﺘﺮﻱ‬ ‫ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ‪.‬‬

‫‪Serial No. 62‬‬

‫ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ ﺑﻪ ﮐﺎﺭ ﺭﻓﺘﻪ‪:‬‬ ‫‪B=0.0001‬‬

‫‪J=0.003‬‬

‫‪P =2‬‬

‫‪L s =740mH‬‬

‫‪R r =8.37‬‬

‫‪R s =9‬‬

‫‪v dc =500v‬‬

‫‪L m =712mH‬‬

‫‪L r =740mH‬‬

‫ﻣﺮﺍﺟﻊ‬ ‫‪[1] N. R. Abjadi, J. Soltani, Gh. Arab Markadeh, S. M.‬‬ ‫‪Ahmadi, "full Decoupling Control of a Sensorless Six‬‬‫‪Phase Series Connected Two Induction Motor Drive‬‬ ‫‪Taking into Account the Voltage-Drop of Each‬‬ ‫‪Motor", International Review of Electrical Engineering‬‬ ‫‪(I.R.E.E.), Vol. 4, No. 3, pp. 485-494, May-June 2009.‬‬ ‫‪[2] R.Bojoi, F.Farina, F.Profumo and‬‬ ‫‪A.Tenconi,‬‬ ‫‪"Dual-Three Phase Induction Machine Drives Control‬‬ ‫‪– a Survey", JIEE Trans. on Industry Appl., 2006, Vol.‬‬ ‫‪126, No. 4, pp.420-429.‬‬ ‫‪[3] E. Levi, S. N. Vukosavic and M. Jones, "Vector‬‬ ‫‪control schemes for series-connected six-phase two-‬‬

‫‪Journal of Electrical Eng., Vol. 41, No.2‬‬

.........‫ﮐﻨﺘﺮﻝ ﻣﺴﺘﻘﻴﻢ ﺷﺎﺭ ﻭ ﮔﺸﺘﺎﻭﺭ ﻳﮏ ﻣﻮﺗﻮﺭ ﺍﻟﻘﺎﻳﻲ‬ Drive", Power Electronics and Motion Control Conference EPE-PEMC 2006, Portoroz, Slovenia, pp. 1233 – 1238, Aug. 30 2006-Sept. 1 2006. [13] R. Bojoi, A. Tenconi and S. Vaschetto, "Direct Stator Flux and Torque Control for Asymmetrical SixPhase Induction Motor Drives", IEEE International Conf. on Industrial Technology (ICIT), pp. 1507 1512, 2010. [14] M. Jones, S. N. Vukosavic, D. Dujic and Emil Levi, "A Synchronous Current Control Scheme for Multiphase Induction Motor Drives", IEEE Trans. on Energy Conv., Vol. 24, No. 4, pp. 860-868,Dec. 2009. [15] R. Bojoi, E. Levi, F. Farina, A. Tenconi and F. Profumo, "Dual Three-Phase Induction Motor Drive with Digital Current Control in the Stationary Reference frame", IEE Proc. On Electr. Power Appl., Vol. 153, No. 1, pp. 129-139, Jan. 2006. [16] R. Kianinezhad, R. Alcharea, B. Nahid, F. Betin and G. Capolino, "A Novel Direct Torque (DTC) for Six-Phase Induction Motors with Common Neutrals", International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2008), pp. 107-112, 2008. [17] R. Alcharea, R. Kianinezhad, B. Nahid Mobarakeh, F. Betin and G. Capolino, "Direct Torque Control for Six-Phase Symmetrical Induction Machines", IEEE Conf. on Industrial Electronics (IECON 2008), pp. 3090-3095, 2008. [18] M. B. Bannae Sharifian, E. Babaei and A. Eslami, "Comparison of two torque control methods for induction motors", in Proc. 4th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, Electric-Control, pp. 167171, Dec. 7-11, 2005. [19] B. K. Bose, "Neural Network Applications in Power Electronics and Motor Drives—An Introduction and Perspective", IEEE Trans. on Ind. Electron, Vol. 54, No. 1, pp. 14-33, Feb. 2007. [20] B. K. Bose, "Expert System, Fuzzy Logic, and Neural Network Applications in Power Electronics and Motion Control", Proc. of the IEEE, Vol. 82, No. 8, pp. 1303–1323, Aug. 1994.

۲ ‫ﺷﻤﺎﺭﻩ‬،۴۱ ‫ ﺟﻠﺪ‬،‫ ﻣﺠﻠﻪ ﻣﻬﻨﺪﺳﻲ ﺑﺮﻕ ﺩﺍﻧﺸﮕﺎﻩ ﺗﺒﺮﻳﺰ‬/۱۱ motor drive systems", IEE Proc.-Electr. Power Appl., Vol. 152, No. 2, March 2005. [4] M. Jones, S. N. Vukosavic, E. Levi and A. Iqbal, "A Six-Phase Series-Connected Two-Motor Drive With Decoupled Dynamic Control", IEEE Trans. on Ind. Appl., Vol. 41, No. 4, July/August 2005. [5] Y. Zhao, T. A. Lipo, "Space Vector PWM Control of Dual Three-phase Induction Machine Using Vector Space Decomposition", IEEE Trans. on Ind. Appl., Vol. 31, No. 5, pp. 1100-1109, Sep./Oct. 1995. [6] M. A. Fnaiech, F. Betin, G. A. Capolino and F. Fnaiech, "Fuzzy Logic and Sliding-Mode Controls Applied to Six-Phase Induction Machine With Open Phases", IEEE Trans. on Ind. Electr., Vol. 57, No. 1, pp. 354-364, Jan. 2010. [7] N. R. Abjadi, G. R. Arab Markadeh, J. Soltani, "A Two-Frequency Quasi Six-Phase Voltage Source Inverter Based on Space Vector PWM", European Power Electronics and Drives Journal (EPE), Vol. 20, No. 3, 2010. [8] R. Bojoi, M. Lazzari, F. Profumo and A. Tenconi, "Digital Field Oriented Control for Dual-Three Phase Induction Motor Drives", IEEE Trans. on Ind. Appl., Vol. 39, No.3, pp. 752-760, May/June 2003. [9] G. R. Arab Markadeh, J. Soltani, N. R. Abjadi, M. Hajian, "Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame", World Academy of Science, Engineering and Technology, Issue 58, Oct. 2009. [10] N. R. Abjadi, G. R. Arab Markadeh, J. Soltani, "Model Following Sliding-Mode Control of a SixPhase Induction Motor Drive", Journal of Power Electronics (JPE), Vol. 10, No. 6, pp. 694-701, Nov. 2010. [11] J. Soltani, J. Askari, N.R. Abjadi and G.R. Arab Markadeh, "Sliding-mode control for a six-phase series-connected induction two-motor drive", Electromotion, vol. 15 , No. 1, Jan.-Mar. 2008, pp. 3139. [12] K. Marouanil, F. Khouchal, A. Khelouil, L. Baghli and D. Hadiouche, "Study and Simulation of Direct Torque Control of Double-Star Induction Motor

‫ﺯﻳﺮﻧﻮﻳﺲﻫﺎ‬ 1

Direct Torque Control (DTC) Vector Space Decomposition 3 Zero Sequence 2

Journal of Electrical Eng., Vol. 41, No. 2

Serial No. 62