Dye removal from wastewaters using adsorption

0 downloads 0 Views 674KB Size Report
equilibrium for the potential lremoval of acid dyes using a biosorbent. Chem. Eng. J. 139 (2008) ...... [294] G.M. Barrow, Physical Chemistry. 4th Ed., Mc Graw ...
‫‪ 4‬ب ‪ 42‬‬ ‫ر  ‪6‬ب  ا‪32‬د از  ‬ ‫ﺗﺪوﻳﻦ و ﮔﺮدآوري‬ ‫دﻛﺘﺮ ﻧﻴﺎزﻣﺤﻤﺪ ﻣﺤﻤﻮدي‬ ‫ﻋﻀﻮ ﻫﻴﺄت ﻋﻠﻤﻲﮔﺮوه ﭘﮋوﻫﺸﻲ رﻧﮓ و ﻣﺤﻴﻂزﻳﺴﺖ‬ ‫ﻣﻮﺳﺴﻪ ﭘﮋوﻫﺸﻲ ﻋﻠﻮم و ﻓﻨﺎوري رﻧﮓ و ﭘﻮﺷﺶ‬

‫‬ ‫ان و م   ور‬ ‫ ‪785‬ت ‪5‬‬ ‫ ‪785‬ت >ه‬ ‫‪B-‬‬ ‫و‪%" H9) HIJ‬‬ ‫ددا‪H‬‬ ‫ ‪J‬ع‬ ‫ ‪J‬ع‬ ‫رد* ‪*$L  -‬‬ ‫رد* ‪  -‬د‪%‬‬ ‫ ر* ‪%T %5-,L‬‬ ‫ﻋﻨﻮان‬

‫‪ :‬د‪ ،‬ز ‪- ١٣٥٥ ،‬‬ ‫‪ :‬ر‪" #$‬به ‪ -‬ا‪+,‬د* از ) ('ب & ‪ 012 /%‬و‬ ‫‪ 2‬و‪ :3‬ز د‪.‬‬ ‫‪92 :‬ان‪- :; :‬ن‪.١٣٩٢ ،‬‬ ‫‪ ١١? :‬ص‪ ( :.‬ول‪  ،‬دار‪.‬‬ ‫‪ ١٠٠٠٠٠ :‬رل‪٧-٥٨-٨٣٨٢-٩٦٤-٩٧٨ :‬‬ ‫‪K) :‬‬ ‫‪. -,L :‬‬ ‫‪* N :‬ه ‪'( --‬ب و ('ب & ‪%‬‬ ‫‪OJ) :‬ب ‪+72 --‬‬ ‫‪/١٧RTD :‬م‪٣S‬ر‪١٣٩٢ ٩‬‬ ‫‪?٢٨/S :‬‬ ‫‪٣٢٧S٢?٣ :‬‬

‫‪ :‬رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

‫ﺗﺄﻟﻴﻒ و ﺗﺪوﻳﻦ ‪ :‬دﻛﺘﺮ ﻧﻴﺎزﻣﺤﻤﺪ ﻣﺤﻤﻮدي‬ ‫ﻧﻮﺑﺖ ﭼﺎپ‬

‫‪ :‬اول ‪1392‬‬

‫اﻧﺘﺸﺎرات‬

‫‪ :‬ﻧﻘﺶ ﺑﻴﺎن‬

‫ﻃﺮح ﺟﻠﺪ‬

‫‪ :‬ﻋﺒﺎس ﻣﺮادي‬

‫ﭼﺎپ‬

‫‪ :‬ﻫﺎوﻳﻦ ﺗﻚ‬

‫وﻳﺮاﺳﺘﺎر‬

‫‪ :‬ﻋﺒﺎس ﻣﺮادي‬

‫ﻧﺎﻇﺮﻓﻨﻲ‬

‫‪ :‬ﻋﻠﻴﺮﺿﺎ ﺑﻬﻨﻴﺎﻓﺮد‬

‫ﺷﻤﺎرﮔﺎن‬

‫‪ 1000 :‬ﺟﻠﺪ‬

‫ﻗﻴﻤﺖ‬

‫‪ 100000 :‬رﻳﺎل‬

‫ﺷﺎﺑﻚ‬

‫‪7-58-8382-964-978 :‬‬

‫ﻛﻠﻴﺔ ﺣﻘﻮق اﻳﻦ اﺛﺮ ﺑﺮاي ﻣﺆﻟﻒ و ﻣﻮﺳﺴﻪ ﭘﮋوﻫﺸﻲ ﻋﻠﻮم و ﻓﻨﺎوري رﻧﮓ و ﭘﻮﺷﺶ ﻣﺤﻔﻮظ اﺳﺖ‪.‬‬ ‫ﻧﺸﺎﻧﻲ‪ :‬ﺗﻬﺮان‪ ،‬ﺑﺰرﮔﺮاه ﺻﻴﺎد ﺷﻴﺮازي ﺷﻤﺎﻟﻲ‪ ،‬ﺧﺮوﺟﻲ ﻟﻮﻳﺰان‪ ،‬ﻣﻴﺪان ﺣﺴﻴﻦآﺑﺎد‪ ،‬ﻣﻮﺳﺴﻪ ﭘﮋوﻫﺸﻲ ﻋﻠﻮم و ﻓﻨﺎوري رﻧﮓ و ﭘﻮﺷﺶ‬

‫ﭘﻴﺸﮕﻔﺘﺎر‪ :‬ﺟﺬب ﺳﻄﺤﻲ ﻓﺮآﻳﻨﺪي اﺳﺖ ﻛﻪ ﺑﺴﻴﺎري از رﺷﺘﻪﻫﺎي ﻓﻨﻲ‪ -‬ﻣﻬﻨﺪﺳﻲ و‬ ‫ﻋﻠﻮم ﭘﺎﻳﻪ ﺑﺎ آن ﺳﺮوﻛﺎر دارﻧﺪ‪ .‬ﺑﺮرﺳﻲ ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ ﺑﺎ ﺟﺰﺋﻴﺎت ﺑﻴﺸﺘﺮ ﺑﺮاي ﻣﺤﻘﻘﺎن و‬ ‫داﻧﺸﺠﻮﻳﺎﻧﻲ ﻛﻪ در زﻣﻴﻨﻪ ﺣﺬف آﻻﻳﻨﺪهﻫﺎ ﺑﻪ وﻳﮋه رﻧﮕﺰاﻫﺎ ﺑﻪ ﻋﻨﻮان آﻻﻳﻨﺪهﻫﺎي رﻧﮕﻲ از آب‬ ‫و ﭘﺴﺎب ﺗﺤﻘﻴﻖ ﻣﻲﻛﻨﻨﺪ ﺿﺮوري ﺑﻪ ﻧﻈﺮ ﻣﻲرﺳﺪ‪ .‬ﻋﺪم وﺟﻮد ﻛﺘﺎﺑﻲ ﺟﺎﻣﻊ در ﻣﻮرد ﺗﺼﻔﻴﻪ‬ ‫آب و ﭘﺴﺎب رﻧﮕﻲ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ ﻣﻮﻟﻒ را ﺑﺮ آن داﺷﺖ ﺗﺎ ﻧﺘﺎﻳﺞ‬ ‫ﺗﺤﻘﻴﻘﺎﺗﻲ را ﻛﻪ ﺑﻴﺶ از ﻳﻚ دﻫﻪ در اﻳﻦ زﻣﻴﻨﻪ اﻧﺠﺎم داده اﺳﺖ ﺑﻪ ﺻﻮرت ﻛﺘﺎﺑﻲ ﻣﻨﺘﺸﺮ‬ ‫ﻧﻤﺎﻳﺪ‪ .‬ﺑﺴﻴﺎري از ﺗﺤﻘﻴﻘﺎت ﻧﻮﻳﺴﻨﺪه ﻛﺘﺎب ﺑﻪ ﺻﻮرت ﻣﻘﺎﻻت در ﻣﺠﻼت ﻣﻌﺘﺒﺮ ﺑﻴﻦاﻟﻤﻠﻠﻲ ﺑﻪ‬ ‫ﭼﺎپ رﺳﻴﺪه اﺳﺖ ﻛﻪ ﺷﺎﻣﻞ ﺑﻴﺶ از ‪ 100‬ﻣﻘﺎﻟﻪ ‪ ISI‬ﻣﻲﺑﺎﺷﺪ‪ .‬ﻫﻤﭽﻨﻴﻦ ﻣﻮﻟﻒ داوري ﺑﻴﺶ از‬ ‫‪ 220‬ﻣﻘﺎﻟﻪ را ﺑﺮاي ‪ 51‬ﻣﺠﻠﻪ ‪ ISI‬اﻧﺠﺎم داده اﺳﺖ‪ .‬اﻣﻴﺪ ﻣﻲرود ﻛﻪ ﺑﺎ ﺗﺄﻟﻴﻒ اﻳﻦ ﻛﺘﺎب‬ ‫درﻳﭽﻪاي ﻫﺮ ﭼﻨﺪ ﻛﻮﭼﻚ در اﻳﻦ زﻣﻴﻨﻪ ﻣﻬﻢ ﻋﻠﻤﻲ ﺑﺮاي ﻋﻼﻗﻤﻨﺪان ﮔﺸﻮده ﺷﻮد‪ .‬ﻛﺘﺎب‬ ‫ﺣﺎﺿﺮ ﺷﺎﻣﻞ ﭘﻨﺞ ﻓﺼﻞ ﻣﻲﺑﺎﺷﺪ‪ .‬در ﻓﺼﻞ اول روشﻫﺎي ﮔﻮﻧﺎﮔﻮن ﺗﺼﻔﻴﻪ ﭘﺴﺎب رﻧﮕﻲ ﺑﻪ‬ ‫ﺻﻮرت ﻣﺨﺘﺼﺮ ﺑﺮرﺳﻲ ﻣﻲﺷﻮد‪ .‬در ﻓﺼﻞ دوم ﺟﺬب ﺳﻄﺤﻲ و ﻋﻮاﻣﻞ ﻣﺆﺛﺮ ﺑﺮ آن ﺑﺎ ﺟﺰﺋﻴﺎت‬ ‫ﺑﻴﺸﺘﺮ اراﺋﻪ ﺷﺪه اﺳﺖ‪ .‬در ﻓﺼﻞ ﺳﻮم اﻧﻮاع ﺟﺎذبﻫﺎ و ﻛﺎرﺑﺮد آﻧﻬﺎ در رﻧﮕﺒﺮي ﭘﺴﺎب ﻣﻄﺎﻟﻌﻪ‬ ‫ﺷﺪه اﺳﺖ‪ .‬ﻓﺼﻞ ﭼﻬﺎرم ﺑﻪ اﻓﺰاﻳﺶ ﻛﺎراﻳﻲ ﺟﺎذبﻫﺎ در ﺣﺬف آﻻﻳﻨﺪه از ﻃﺮﻳﻖ اﺻﻼح ﺳﻄﺢ‬ ‫آﻧﻬﺎ ﻣﻲﭘﺮدازد و در ﻧﻬﺎﻳﺖ ﻓﺼﻞ ﭘﻨﺠﻢ اﻳﺰوﺗﺮم‪ ،‬ﺳﻴﻨﺘﻴﻚ و ﺗﺮﻣﻮدﻳﻨﺎﻣﻴﻚ ﺟﺬب ﺳﻄﺤﻲ را‬ ‫ﺑﺮرﺳﻲ ﻣﻲﻧﻤﺎﻳﺪ‪.‬‬ ‫از آن ﺟﺎ ﻛﻪ ﻣﻤﻜﻦ اﺳﺖ ﻫﺮ ﻣﺘﻨﻲ ﺑﺎ اﺷﺘﺒﺎﻫﺎﺗﻲ ﻫﻤﺮاه ﺑﺎﺷﺪ از ﺧﻮاﻧﻨﺪﮔﺎن ﻣﺤﺘﺮم ﺗﻘﺎﺿﺎ‬ ‫ﻣﻲﺷﻮد ﺗﺎ ﻧﻈﺮات ﺧﻮد را ﺑﻪ آدرسﻫﺎي اﻳﻤﻴﻞ ﻣﻮﻟﻒ ﻛﻪ در ذﻳﻞ ﻗﻴﺪ ﺷﺪه اﺳﺖ ارﺳﺎل دارﻧﺪ‬ ‫ﺗﺎ در ﭼﺎپﻫﺎي ﺑﻌﺪي ﻛﺘﺎب ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﮔﻴﺮد‪ .‬از ﺗﻤﺎﻣﻲ ﻋﺰﻳﺰاﻧﻲ ﻛﻪ ﻣﺮا ﻳﺎري ﻧﻤﻮدﻧﺪ‬ ‫ﺑﻪ وﻳﮋه داﻧﺸﺠﻮﻳﺎن ﺗﺤﺼﻴﻼت ﺗﻜﻤﻴﻠﻲ ﻓﻮق ﻟﻴﺴﺎﻧﺲ و دﻛﺘﺮي ﻛﻪ اﺳﺘﺎد راﻫﻨﻤﺎي آﻧﻬﺎ ﻫﺴﺘﻢ‬ ‫ﺻﻤﻴﻤﺎﻧﻪ ﺳﭙﺎﺳﮕﺰاري ﻣﻲﻧﻤﺎﻳﻢ‪.‬‬ ‫‪[email protected]‬‬ ‫‪[email protected]‬‬ ‫‪[email protected]‬‬

‫"ﻫﻤﺘﻢ ﺑﺪرﻗﻪ راه ﻛﻦ اي ﻃﺎﺋﺮ ﻗﺪس‬

‫دﻛﺘﺮ ﻧﻴﺎزﻣﺤﻤﺪ ﻣﺤﻤﻮدي‬ ‫ﺗﺎﺑﺴﺘﺎن ‪1392‬‬ ‫ﻛﻪ دراز اﺳﺖ ره ﻣﻘﺼﺪ و ﻣﻦ ﻧﻮﺳﻔﺮم"‬

‫ﻣﻨﺎﺑﻊ‬

‫ﻣﻨﺎﺑﻊ‬

88

[1] E. Forgacs, T. Cserháti, G. Oros. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30 (2004) 953-971. [2] A. Demirbas Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater. 167 (2009) 1-9. [3] C.I. Pearce, J.R. Lloyd, J.T. Guthrie. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments. 58 (2003) 179-196. [4] G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 33 (2008) 399–447. [5] G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol. 97 (2006) 1061–1085. [6] Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochem. 40 (2005) 997–1026. [7] I.K. Konstantinou, T.A. Albanis. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. A review. Appl. Catal. B: Environ. 49 (2004) 1–14. [8] I. Arsalan-Alaton. A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater. Color. Technol. 119 (2003) 345-353. [9] N.M. Mahmoodi. Magnetic ferrite nanoparticle – alginate composite: Synthesis, characterization and binary system dye removal. J. Taiwan Inst. Chem. Eng. 44 (2013) 321-329. [10] N.M. Mahmoodi. Photocatalytic ozonation of dyes using multiwalled carbon nanotube. J. Mol. Catal. A: Chem. 366 (2013) 254-260. [11] N.M. Mahmoodi, F. NajaGi, A. Neshat. Poly (amidoamine-co-acrylic acid) copolymer as a polymeric adsorbent: Synthesis, characterization, and its dye removal ability. Ind. Crop. Prod. 42 (2013) 119-125. [12] N.M. Mahmoodi, M. Bashiri, S.J. Moeen. Synthesis of Nickel-Zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation. Mater. Res. Bull. 47 (2012) 4403-4408. [13] N.M. Mahmoodi, F. NajaGi. Preparation of surface modiGied zinc oxide nanoparticle with high capacity dye removal ability. Mater. Res. Bull. 47 (2012) 1800-1809. [14] N.M. Mahmoodi, F. Najafi. Synthesis, amine functionaliztion and dye removal ability of titania/silica nano-hybrid. Micropor. Mesopor. Mater. 156 (2012) 153–160. [15] N.M. Mahmoodi, B. Hayati, M. Arami. Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Ind. Crop. Prod. 35 (2012) 296302. [16] N.M. Mahmoodi, F. NajaGi, S. Khorramfar, F. Amini, M. Arami. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer. J. Hazard. Mater. 198 (2011) 87-94. [17] N.M. Mahmoodi. Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination. 279 (2011) 332–337. [18] N.M. Mahmoodi, S. Khorramfar, F. NajaGi. Amine-functionalized silica nanoparticle: Preparation, characterization and anionic dye removal ability. Desalination. 279 (2011) 61–68. [19] N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami. Dye adsorption and desorption properties of Mentha Pulegium in single and binary systems. J. Appl. Polym. Sci. 122 (2011) 1489-1499.

89

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[20] N.M. Mahmoodi, B. Hayati, M. Arami, H. Bahrami. Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/ titania nanoparticle). Desalination. 275 (2011) 93-101. [21] N.M. Mahmoodi. Equilibrium, kinetic and thermodynamic of dye removal using alginate from binary system. J. Chem. Eng. Data. 56 (2011) 2802-2811. [22] N.M. Mahmoodi, R. Salehi, M. Arami. Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination. 272 (2011) 187-195. [23] N.M. Mahmoodi, M. Arami, J. Zhang. Preparation and photocatalytic activity of immobilized composite photocatalyst (titania nanoparticle/activated carbon). J. Alloy. Compd. 509 (2011) 4754–4764. [24] N.M. Mahmoodi, M. Arami, H. Bahrami, S. Khorramfar. The effect of pH on the removal of anionic dyes from colored textile wastewater using a biosorbent. J. Appl. Polym. Sci. 120 (2011) 2996-3006. [26] N.M. Mahmoodi, B. Hayati, M. Arami, Lan C. Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination. 268 (2011) 117–125. [27] N.M. Mahmoodi, R. Salehi, M. Arami, H. Bahrami. Dye removal from colored textile wastewater using chitosan in binary systems. Desalination. 267 (2011) 64-72. [28] N.M. Mahmoodi, B. Hayati, M. Arami, F. Mazaheri. Single and binary system dye removal from colored textile wastewater by a dendrimer as a polymeric nanoarchitecture: Equilibrium and kinetics. J. Chem. Eng. Data. 55 (2010) 4660-4668. [29] N.M. Mahmoodi, B. Hayati, M. Arami. Textile dye removal from single and ternary systems using Date Stones: Kinetic, isotherm and thermodynamic studies. J. Chem. Eng. Data. 55 (2010) 4638-4649. [30] N.M. Mahmoodi, M. Arami, H. Bahrami, S. Khorramfar. Novel biosorbent (Canola hull): Surface characterization and dye removal ability at different cationic dye concentrations. Desalination. 264 (2010) 134–142. [31] N.M. Mahmoodi, M. Arami. Immobilized titania nanophotocatalysis: Degradation, modeling and toxicity reduction of agricultural pollutants. J. Alloy. Compd. 506 (2010) 155-159. [32] N.M. Mahmoodi, M. Arami. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J. Photochem. Photobiol. B: Biol. 94 (2009) 20–24. [33] N.M. Mahmoodi, M. Arami. Numerical Ginite volume modeling of dye decolorization using immobilized titania nanophotocatalysis. Chem. Eng. J. 146 (2009) 189–193. [34] N.M. Mahmoodi, M. Arami, K. Gharanjig. Laboratory studies and CFD modeling of photocatalytic degradation of colored textile wastewater by titania nanoparticle. Desalin. Water Treat. 1 (2009) 312-317. [36] N.M. Mahmoodi, M. Arami. Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. J. Appl. Polym. Sci. 109 (2008) 4043-4048. [37] N.M. Mahmoodi, M. Arami, K. Gharanjig, Nourmohammadian F, Bidokhti AY. Purification of water containing agricultural organophosphorus pollutant using titania nanophotocatalysis: Laboratory studies and numerical modeling. Desalination. 230 (2008) 183-192.

‫ﻣﻨﺎﺑﻊ‬

90

[38] N.M. Mahmoodi, N.Y. Limaee, M. Arami, S. Borhany, M. Mohammad-Taheri. Nanophotocatalysis using nanoparticles of titania. Mineralization and finite element modelling of Solophenyl dye decolorization. J. Photochem. Photobiol. A: Chem. 189 (2007) 1-6. [39] N.M. Mahmoodi, M. Arami, N.Y. Limaee, K. Gharanjig. Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J. Hazard. Mater. 145 (2007) 65–71. [40] N.M. Mahmoodi, M. Arami, N.Y. Limaee, K. Gharanjig, F. Nourmohammadian. Nanophotocatalysis using immobilized titanium dioxide nanoparticle. Degradation and mineralization of water containing organic pollutant: case study of Butachlor. Mater. Res. Bull. 42 (2007) 797–806. [41] N.M. Mahmoodi, M. Arami, N.Y. Limaee, K. Gharanjig, F.D. Ardejani. Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids Surfaces A: Physicochem. Eng. Aspects. 290 (2006) 125–131. [42] N.M. Mahmoodi, M. Arami. Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium (IV) oxide nanoparticles. J. Photochem. Photobiol. A: Chem. 182 (2006) 60–66. [43] N.M. Mahmoodi, M. Arami, N.Y. Limaee. Photocatalytic degradation of triazinic ring containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. J. Hazard. Mater. 133 (2006) 113-118. [44] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interf. Sci. 295 (2006) 159–164. [45] N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi. Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem. Eng. J. 112 (2005) 191-196. [46] B. Hayati, N.M. Mahmoodi. Modification of activated carbon by alkaline to remove dyes from wastewater: mechanism, isotherm and kinetic. Desalin. Water Treat. 47 (2012) 322-333. [47] M. Yazdani, N.M. Mahmoodi, M. Arami, H. Bahrami. Isotherm, kinetic and thermodynamic of cationic dye removal from binary system by Feldspar. Sep. Sci. Technol. 47 (2012) 1660-1672. [48] M. Yazdani, N.M. Mahmoodi, M. Arami, H. Bahrami. Surfactant modiGied feldspar:Isotherm, kinetic and thermodynamic of binary system dye removal. J. Appl. Polym. Sci. 126 (2012) 340–349. [49] A. Haji, N.M. Mahmoodi. Soy meal hull activated carbon: Preparation, characterization and dye adsorption properties. Desalin. Water Treat. 44 (2012) 237-244. [50] E. Pajootan, M. Arami, N.M. Mahmoodi. Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. J. Taiwan Inst. Chem. Eng. 43 (2012) 282-290. [51] M. Vaez, A. Zarringhalam, N.M. Mahmoodi, S. Alijani. Decolorization and degradation of acid dye with immobilized titania nanoparticles. Process Saf. Environ. Prot. 90 (2012) 56-64. [52] S. Khorramfar, N.M. Mahmoodi, M. Arami, H. Bahrami. Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination. 279 (2011) 183–189.

91

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[53] B. Hayati, N.M. Mahmoodi, M. Arami, F. Mazaheri. Dye removal from colored textile wastewater by poly(propylene imine) dendrimer: Operational parameters and isotherm studies. CLEAN - Soil, Air, Water. 39 (2011) 673–679. [54] A. Dalvand, M. Gholami M, A. Joneidi, N.M. Mahmoodi. Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. CLEAN - Soil, Air, Water. 39 (2011) 665–672. [55] M. Amini, M. Arami, N.M. Mahmoodi, A. Akbari. Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination. 267 (2011) 107-113. [56] A.R. Tehrani-Bagha, H. Nikkar, N.M. Mahmoodi, M. Markazi, F.M. Menger. The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination. 266 (2011) 274-280. [57] S. Khorramfar, N.M. Mahmoodi, M. Arami, K. Gharanjig. Equilibrium and kinetics studies of the cationic dyes removal capability of a novel biosorbent Tamarindus indica from textile wastewater. Color. Technol. 126 (2010) 261-268. [58] A.R .Tehrani-Bagha, N.M. Mahmoodi, F.M. Menger. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination. 260 (2010) 34–38. [59] R. Salehi, M. Arami, N.M. Mahmoodi, H. Bahrami, S. Khorramfar. Novel biocompatible composite (Chitosan – Zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids Surfaces B: Biointerfaces. 80 (2010) 86-93. [60] A. Maljaei, M. Arami, N.M. Mahmoodi. Decolorization and aromatic ring degradation of colored textile wastewater using indirect electrochemical oxidation method. Desalination. 249 (2009) 1074–1078. [62] M. Arami, N.Y. Limaee, N.M. Mahmoodi. Evaluation of the adsorption kinetics and equilibrium for the potential lremoval of acid dyes using a biosorbent. Chem. Eng. J. 139 (2008) 2-10. [63] F.D. Ardejani, K. Badii, N.Y. Limaee, N.M. Mahmoodi, M. Arami, S.Z. Shafaei, A.R. Mirhabibi. Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile efGluents using orange peel, a low-cost adsorbent. Dyes Pigments. 73 (2007) 178-185. [64] M. Arami, N.Y. Limaee, N.M. Mahmoodi. Investigation on the adsorption capability of egg shell membrane towards model textile dyes. Chemosphere. 65 (2006) 1999– 2008. [65] M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J. Hazard. Mater. 135 (2006) 171-179. [66] M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi. Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetics studies. J. Colloid Interf. Sci. 288 (2005) 371-376. [67] N.P. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies. Butterworth-Heinemann, Boston, 2002. [68] S.A. Avlonitis, I. Poulios, D. Sotiriou, M. Pappas, K. Moutesidis, Simulated cotton dye efGluents treatment and reuse by nanoGiltration, Desalination 221 (2008) 259–267. [69] O. Marmagne, C. Coste, Color removal from textile plant efGluents. Am. Dyestuff Rep. 85 (1996) 15–20. [70] N. Al-Bastaki, Removal of methyl orange dye and Na2SO4 salt from synthetic waste water using reverse osmosis. Chem. Eng. Process 43 (2004)1561–1567.

‫ﻣﻨﺎﺑﻊ‬

92

[71] S. Sostar-Turk, M. Simonic, I. Petrinic, Wastewater treatment after reactive printing. Dyes Pigments 64 (2005)147–152. [72] M. Marcucci, G. Nosenzo, G. Capannelli, I. Ciabatti, , D. Corrieri, G. Ciardelli, Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138 (2001) 75–82. [73] M. Wang, H. Li, J. Wu, Y. Huo, G. Guo, F. Cao, Flocculant for uriGication of printing and dyeing wastewater. Univ Shanghai Normal, 2006. [74] A. Mishra, M. Bajpai, The flocculation performance of Tamarindus mucilage in relation to removal of vat and direct dyes. Bioresour. Technol. 97 (2006) 1055–1059. [75] J.S. Kace, H.B. Linford, Reduced cost flocculation of a textile dyeing wastewater. J. Water Pollut. Control Fed. 47 (1975) 1971. [76] Lee, J.-W., Choi, S.-P., Thiruvenkatachari, R., Shim, W.-G., Moon, H., 2006. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigments 69, 196–203. [77] F.I. Hai, K. Yamamoto, K. Fukushi, Hybrid treatment systems for dye Wastewater, Crit. Rev. Env. Sci. Technol. 37 (2007) 315–377. [78] C.G. Namboodri, W.S. Perkins, W.K. Walsh, Decolorizing dyes with chlorine and ozone: Part I. Am. Dyestuff Rep. 83 (1994) 17–22. [79] C.G. Namboodri, W.S. Perkins, W.K. Walsh, Decolorizing dyes with chlorine and ozone: Part II. Am. Dyestuff Rep. 83 (1994) 17–26. [80] T. Omura, Design of chlorine-fast reactive dyes. 4. Degradation of aminocontaining azo dyes by sodium-hypochlorite, Dyes Pigments 26 ( 1994) 33–50. [81 M. Morita, R. Ito, T. Kamidate, H. Watanabe, Kinetics of peroxidase catalyzed decoloration of Orange II with hydrogen peroxide. Text. Res. J. 66 (1996) 470–473. [82] S. Meric, D. Kaptan, C. Tunay. Removal of color and COD from a mixture of four reactive azo dyes using Fenton oxidation process. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 38, (2003) 2241–2250. [83] S. Wang, A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 76 (2008) 714–720. [84] M.M. Cheng, W.H. Ma, J. Li, Y.P. Huang, J.C. Zhao, Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values, Environ. Sci. Technol. 38 (2004)1569–1575. [85] M. Sundrarajan, G. Vishnu, K. Joseph, Ozonation of light-shaded exhausted reactive dye bath for reuse. Dyes Pigments 75 (2007) 273–278. [86] O.S.G.P. Soares, J.J.M. Órfaõ, D. Portela, A. Vieira, M.F.R. Pereira, Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. J. Hazard. Mater. 137 (2006)1664–1673. [87] V.K. Gupta, R. Jain, S. Varshney, Electrochemical removal of the hazardous dye ReactoGix Red 3 BFN from industrial efGluents. J. Colloid Interface Sci. 312 (2007) 292–296. [88] D. Dogan, H. Turkdemir, Electrochemical oxidation of textile dye indigo. J. Chem. Technol. Biotechnol. 80 (2005) 916–923. [89] C.G. Namboodri, W.K. Walsh, UV light/H2O2 system for decolorizing spent reactive dyebath wastewater. Am. Dyestuff Rep. 85 (1996) 27–36. [90] E.R. Bandala, M.A. Pelaez, A.J. Garcia-Lopez, M.d.J. Salgado, G. Moeller, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes, Chem. Eng. Process. 47 (2008)169–176.

93

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[91] A. Aguedach, S. Brosillon, J. Morvan, E.K. Lhadi,. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide, Appl. Catal. B 57 (2005) 55–62. [92] Q. Hong, J.L. Hardcastle, R.A.J. McKeown, F. Marken, R.G. Compton, The 20 kHz sonochemical degradation of trace cyanide and dye stuffs in aqueous media. New J. Chem. 23 (1999) 845–849. [93] A. Maezawa, H. Nakadoi, K. Suzuki, T. Furusawa, Y. Suzuki, S. Uchida, Treatment of dye wastewater by using photo-catalytic oxidation with sonication, Ultrason. Sonochem. 14 (2007) 615–620. [94] F.P. Van Der Zee, S. Villaverde, Combined anaerobic-aerobic treatment of azo dyes – a short review of bioreactor studies, Water Res. 39 (2005)1425–1440. [95] H.S. Rai, M.S. Bhattacharyya, J. Singh, T.K. Bansal, P. Vats, U.C. Banerjee, Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment, Crit. Rev. Env. Sci. Technol. 35 (2005)219–238. [96] R. Sani, U. Banerjee, Decolorization of acid green 20, a textile dye, by the white rot fungus Phanerochaete chrysosporium, Adv. Environ. Res. 2 (1999) 485–490. [97] N.K. Pazarlioglu, R.O. Urek, F. Ergun, Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium, Process Biochem. 40 (2005) 1923– 1929. [98] W. Delee, C. ONeill, F.R. Hawkes, H.M. Pinheiro, Anaerobic treatment of textile effluents: a review. J. Chem. Technol. Biotechnol. 73 (1998) 323–335. [99] A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56 (2001) 69–80. [100] E.R. Alley. Water quality control handbook. Mc Graw-Hill, INC. (2000). [101] L.D. BeneGield, J.F. Judkins, B.L. Wend. Process chemistry for water and wastewater treatment. Prentice-Hall,INC. (1982). [102] D.O. Cooney. Adsorption design for wastewater treatment. Lewis Publishers, Baca Raton, (1999). [103] N.M. Mahmoodi. PhD Thesis. Amirkabir University of Technology, 2010. [104] G. Crini. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30 (2005) 38–70. [105] N.P. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies. Butterworth-Heinemann, Boston, 2002. [106] C. Tien, Adsorption Calculations and Modeling, Butterworth-Heinemann, Boston, 1994. [107] T. J. Bandosz, Activated Carbon Surfaces in Environmental Remediation, First edition, The City College of New York, New York, USA, 2006. [108] W. J. Thomas, B. Crittenden, Adsorption Technology and Design, First edition, 1998, Elsevier Science & Technology Books. [109] C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon 42 (2004) 83–94. [110] A. Mittal, J. Mittal, A. Malviya, V.K. Gupta. Adsorptive removal of hazardous anionic dye ‘‘Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Interf. Sci. 340 (2009) 16–26.

‫ﻣﻨﺎﺑﻊ‬

94

[111] A. Mittal, D. Kaur, J. Mittal, Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green, J. Colloid Interf. Sci. 32 (2008) 68–17. [112] S.E. Bailey, T.J. Olin, M. Bricka, D.D. Adrian. A review of potentially low-cost sorbents for heavy metals. Water Res. 33 (1999) 2469–2479. [113] Y.S. Ho, G. McKay. Kinetic models for the sorption of dye from aqueous solution by wood. Trans. IChemE B. 76 (1998) 183–191. [114] S.D. Khattri, M.K. Singh, Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut. 120 (2000) 283–294. [115] L.C. Morais, O.M. Freitas, E.P. Goncalves, L.T. Vasconcelos, C.G.G. Beca, Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Res. 33 (1999) 979–988. [116] C. Namasivayam, D.J.S.E. Arasi. Removal of Congo red from wastewater by adsorption onto red mud. Chemosphere 34 (1997) 401– 471. [117] M.A. Al-Ghouti, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage. 69 (2003) 229–238. [118] M. Bagane, S. Guiza, Removal of a dye from textile efGluents by adsorption. Ann. Chim. Sci. Mater. 25 (2000) 615–626. [119] O. Ozdemir, B. Armagan, M. Turan, M.S. Celik. Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes Pigments 62 (2004) 49–60. [120] Y.E. Benkli, M.F. Can, M. Turan, M.S. Celik. Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors. Water Res. 39 (2005) 487– 493. [121] H.G. Dill. The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Sci. Rev. 53 (2001) 35–93. [122] M. Ozacar, A.I.,Sengil. Adsorption of reactive dyes on calcined alunite from aqueous solutions. J. Hazardous Mater. 98 (2003) 211–224. [123] O. Demirbas, M. Alkan, M. Dogan. The removal of Victoria blue from aqueous solution by adsorption on a low-cost material. Adsorption 8 (2002) 341–349. [124] Y.C. Wong, Y.S. Szeto, W.H. Cheung, G. McKay. Adsorption of acid dyes on chitosanequilibrium isotherm analyses. Process Biochem. 39 (2004) 693–702. [125] F.C. Wu, R.L. Tseng, R.S. Juang,. Comparative adsorption of metal and dye on flake- and bead-types of chitosan prepared from Gishery wastes. J. Hazardous Mater. 73 (2000) 63–75. [126] X.F. Zeng, E. Ruckenstein. Control of pores sizes in macroporous chitosan and chitin membranes. Ind. Eng. Chem. Res. 35 (1996) 4169–4175. [127] M.S. Chiou, H.Y. Li,. Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere. 50 (2003) 1095–1105. [128] A.J. Varma, S.V. Deshpande, J.F. Kennedy. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym. 55 (2004) 77–93. [129] M. Ruiz, A.M. Sastre, E. Guibal. Palladium sorption on glutaraldehyde-crosslinked chitosan. React Funct Polym. 45 (2000) 155-173. [130] F. Delval, G. Crini, J. Vebrel, M. Knorr, G. Sauvin, E. Conte. Starch-modified filters used for the removal of dyes from waste water. Macromol. Symp. 203 (2003) 165–171.

95

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[131] P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue, E.S. Upatham. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Pollut. 125 (2003) 385–392. [132] K.H. Chu, K.M. Chen. Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochem. 37 (2002) 595–600. [133] Z. Aksu. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem. 38 (2003) 1437–1444. [134] G. Crini, M. Morcellet. Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci. 25 (2002) 1–25. [135] H. Brend, A. Rehm, Alginate: Biology and applications, Heidelberg, 2009. [136] S. N. Pawar, K. J. Edgar, Alginate derivation: A review of chemistry, properties and applications, Biomaterials, 33 (2012) 3279-3305. [137] P. Sikorski, F. Mo, G. S. Break, B. T. Stokke, Evidence for egg-box compatible interactions in calcium alginate gels from fiber X-ray diffraction, Biomacromolecules, 8 (2007) 2098-2103. [138] I. Donati, S. Holtan, Y. A. Morch, M. Borgogna, M. Dentini, G. S. Break, New hypothesis on the role of alternating sequences in calcium alginate gels, Biomacromolecules, 6 (2005) 1031-1040. [139] G. S. Break, H. Grasdalen, O. Smidsrod, Inhomogeneous polysaccharide ionic gels, Carbohyd. Polym, 10 (1989) 31-54. [140] B. Pan, B. Pan,W. Zhang, L. Lv, Q. Zhang, S. Zheng. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 151 (2009) 19–29. [141] R.S. Juang, F.C. Wu, R.L. Tseng. Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloid Surf. A: Physicochem. Eng. Aspect. 201 (2002) 191–199. [142] Y. Guo, S.,Yang, W. Fu, J. Qi, R. Li, Z. Wang, H. Xu,. Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes Pigments. 56 (2003) 219–229. [143] W.X. Zhang, Nanoscale iron particles for environmental remediation: An overview. J. Nanoparticle Res. 5 (2003) 323–332. [144] G. Mishra, et al., A critical review of the treatment of decolorization of textile efGluent. Colourage, 40 (1993) 35-74. [145] N. Savage, M.S. Diallo. Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7(2005) 331-342. [146] N.M. Mahmoodi. Nickel ferrite nanoparticle: Synthesis, modiGication by surfactant and dye removal ability. Water, Air, & Soil Pollution. 224 (2013) Article number: 1419. [147] M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 181 (2010) 1039-1050. [148] L. Ai, H. Huang, Z. Chen, X. Wei, J. Jiang. Activated carbon/CoFe2O4 composites: Facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem. Eng. J. 156 (2010) 243–249. [149] M. Sasidharan, H.N. Luitel, N. Gunawardhana, M. Inoue, S.I. Yusa, T. Watari, K. Nakashima. Synthesis of magnetic α-Fe2O3 and Fe3O4 hollow nanospheres for sustained release of ibuprofen. Mater. Let. 73 (2012) 4-7.

‫ﻣﻨﺎﺑﻊ‬

96

[150] X. Hou, J. Feng, X. Liu, Y. Ren, Z. Fan, T. Wei, J. Meng, M. Zhang. Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. Journal of Colloid and Interface Science, 362 (2011) 477-485. [151] L. Ai, Y. Zhou, J. Jiang. Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination, 266 (2011) 72-77. [152] K. Kurita. Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 2001;26:1921–71. [153] J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas, R. Gurny. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical application. Eur. J. Pharma. Biopharm. 57 (2004) 35–52. [154] W.S.W. Ngah, C.S. Endud, R. Mayanar. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym. 50 (2002) 181-190. [155] J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Álvarez, M.C.M. AlvimFerraz, J.M. Dias. Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 187 (2011) 1–23. [156] C.Y. Yin, M.K. Aroua, W.M.A.W. Daud. Review of modiGications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 52 (2007) 403–415. [157] W. Qiao, Y. Korai, I. Mochida, Y. Hori, T. Maeda, Preparation of an AC artifact: oxidative modification of coconut shell-based carbon to improve the strength, Carbon 40 (2002) 351–358. [158] S. Haydar, M.A. Ferro-García, J. Rivera-Utrilla, J.P. Joly, Adsorption of pnitrophenol on an AC with different oxidations, Carbon 41 (2003) 387–395. [159] D. Aggarwal, M. Goyal, R.C. Bansal, Adsorption of chromium by AC from aqueous solution, Carbon 37 (1999) 1989–1997. [160] G. de la Puente, J.J. Pis, J.A. Menéndez, P. Grange, Thermal stability of oxygenated functions in ACs, J. Anal. Appl. Pyrol. 43 (1997) 125–138. [161] T. García, R. Murillo, D. Cazorla-Amorós, A.M. Mastral, A. Linares-Solano, Role of the AC surface chemistry in the adsorption of phenanthrene, Carbon 42 (2004) 1683–1689. [162] M.F.R. Pereira, S.F. Soares, J.J.M. Órfão, J.L. Figueiredo, Adsorption of dyes on ACs: inGluence of surface chemical groups, Carbon 41 (2003) 811–821. [163] M. Domingo-García, F.J. López-Garzón, M. Pérez-Mendoza, Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an AC, J. Colloid Interf. Sci. 222 (2000) 233–240. [164] B.K. Pradhan, N.K. Sandle, Effect of different oxidizing agent treatments on the surface properties of ACs, Carbon 37 (1999) 1323–1332. [165] C.O. Ania, J.B. Parra, J.J. Pis, InGluence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds, Fuel Process. Technol. 79 (2002) 265–271. [166] Y.H. Li, C.W. Lee, B.K. Gullett, Importance of AC’s oxygen surface functional groups on elemental mercury adsorption, Fuel 82 (2003) 451–457. [167] N. Zhao, N. Wei, J. Li, Z. Qiao, J. Cui, F. He, Surface properties of chemically modified ACs for adsorption rate of Cr (VI), Chem. Eng. J. 115 (2005) 133–138. [168] J.P. Chen, P. Wu, Acid/base-treated ACs: characterization of functional groups and metal adsorptive properties, Langmuir 20 (2004) 2233–2242.

97

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[169] I. Bautista-Toledo, J. Rivera-Utrilla, M.A. Ferro-García, C. Moreno-Castilla, Influence of the oxygen surface complexes of ACs on the adsorption of chromium ions from aqueous solutions: effect of sodium chloride and humic acid, Carbon 32 (1994) 93– 100. [170] A.N.A. El-Hendawy, Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based AC, Carbon 41 (2003) 713–722. [172] F. Carrasco-Marín, J. Rivera-Utrilla, J.P. Joly, C. Moreno-Castilla, Effects of ageing on the oxygen surface complexes of an oxidized AC, J. Chem. Soc. Faraday Trans. 92 (1996) 2779–2782. [172] Y.F. Jia, K.M. Thomas, Adsorption of cadmium ions on oxygen surface sites in AC, Langmuir 16 (1999) 1114–1122. [173] A.E. Aksoylu, M. Madalena, A. Freitas, M.F.R. Pereira, J.L. Figueiredo, The effects of different AC supports and support modifications on the properties of Pt/AC catalysts, Carbon 39 (2001) 175–185. [174] A. Quintanilla, J.A. Casas, J.J. Rodríguez, Catalytic wet air oxidation of phenol with modified ACs and Fe/AC catalysts, Appl. Catal. B-Environ. 76 (2007) 135–145. [175] P.S. Bailey, Ozonation in Organic Chemistry, Academic Press, New York, 1982. [176] E. Papirer, J.B. Donnet, A. Schutz, Etude cietique de l’oxydation des noirs de carbone par l’ozone, Carbon 5 (1967) 113–125. [177] V.R. Deitz, J.L. Bitner, The reaction of ozone with adsorbent charcoals, Carbon 10 (1972) 145–154. [178] V.R. Deitz, J.L. Bitner, Interaction of ozone with adsorbent charcoals, Carbon 11 (1973) 393–398. [179] C. Subrahmanyam, D.A. Bulushev, L.K. Minsker, Dynamic behaviour of AC catalysts during ozone decomposition at room temperature, Appl. Catal. B. Environ. 61 (2005) 98–106. [180] P.M. Álvarez, F.J. Masa, J. Jaramillo, F.J. Beltrán, V. Gómez-Serrano, Kinetics of ozone decomposition by granular activated carbon, Ind. Eng. Chem. Res. 47 (2008) 2545– 2553. [181] Y. Takeuchi, T. Itoh, Removal of ozone from air by AC treatment, Sep. Technol. 3 (1993) 168–175. [182] B. Dhandapani, S.T. Oyama, Gas phase ozone decomposition catalysts, Appl. Catal. BEnviron. 11 (1997) 129–166. [183] D.A. Kunkel, E.T. Gall, J.A. Siegel, A. Novoselac, G.C. Morrison, R.L. Corsi, Passive reduction of human exposure to indoor ozone, Build. Environ. 45 (2010) 445–452. [184] H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror, Effect of ozone treatment on surface properties of AC, Langmuir 18 (2002) 2111–2116. [185] V. Gómez-Serrano, P.M. Álvarez, J. Jaramillo, F.J. Betrán, Formation of oxygen complexes by ozonation of carbonaceous materials prepared from cherry stones. I. Thermal effects, Carbon 40 (2002) 513–522. [186] V. Gómez-Serrano, P.M. Álvarez, J. Jaramillo, F.J. Beltrán, Formation of oxygen complexes by ozonation of carbonaceous materials prepared from cherry stones. II. Kinetic study, Carbon 40 (2002) 523–529. [187] K. Kawamoto, K. Ishimaru, Y. Imamura, Reactivity of wood charcoal with ozone, J. Wood Environ. 51 (2005) 66–72. [188] R.H. Bradley, I. Sutherland, E. Sheng, Relationship between carbon black surface chemistry and energy, J. Chem. Soc. Faraday Trans. 91 (1995) 3201–3207.

‫ﻣﻨﺎﺑﻊ‬

98

[189] G. Mul, J.P.A. Neeft, F. Kapteijn, J.A. Moulijn, The formation of carbon surface oxygen complexes by oxygen and ozone. The effect of transition metal oxides, Carbon 36 (1998) 1269–1276. [190] X. Chen, M. Farber, G. Yuming, I. Kulaots, E.M. Suuberg, R.H. Hurt, Mechanisms of surfactant adsorption on non-polar, air oxidized and ozone-treated carbon surfaces, Carbon 41 (2003) 1489–1500. [191] F Cataldo, Ozone reaction with carbon nanostructures 2: The reaction of ozone with milled graphite and different carbon black grades, J. Nanosci. Nanotechnol. 7 (2007) 1446–1454. [192] F. Cataldo, O. Ursini, The role of carbon nanostructures in the ozonation of different carbon lack grades, together with graphite and rubber crumb in an IR gas cell, Fullerenes, Fuller. Nanotub. Carb. N. 15 (2007) 1–20. [193] X. Fu, W. Lu, D.D.L. Chung, Ozone treatment of carbon Giber for reinforcing cement, Carbon 9 (1998) 1337–1345. [194] K.R. Ko, S.K. Ryu, S.J. Park, Effect of ozone treatment on Cr(VI) and Cu(II) adsorption behaviors of AC Gibers, Carbon 42 (2001) 1864–1867. [195] G.P. Khokhlova, S.A. Semenova, Ozonation of Gibrous carbon materials and the effect of molybdenum compounds on this process, Solid Fuel Chem. 42 (2008) 54–59. [196] J.R. Rangel-Méndez, M. Streat, Adsorption of cadmium by AC cloth: influence of surface oxidation and solution pH, Water Res. 36 (2002) 1244–1252. [197] B. Parek, T. Debies, P. Knight, K.S.V. Santhanam, G.A. Takacs, Surface functionalization of multiwalled carbon nanotubes with UV and vacuum UV photo-oxidation, J. Adhes. Sci. Technol. 20 (2006) 1833–1846. [198] F. Cataldo, A study on the action of ozone on multiwall carbon nanotubes, Fuller. Nanotub. Carb. N. 16 (2008) 1–17. [199] C.H. Lau, R. Cervini, S.R. Clarke, M.G. Markovic, J.G. Matisons, S.C. Hawkins, C.P. Huynh, G.P. Simon, The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes, J. Nanopart. Res. 10 (2008) 77–88. [200] P. Magne, P. Dupont-Pavlovsky, Graphite-ozone surface complexes, Carbon 26 (1988) 249–255. [201] S.D. Razumovskii, V.N. Gorshenev, A.L. Kovarskii, A.M. Kuznetsov, A.N. Shchegolikhin, Carbon nanostructure reactivity: reactions of graphite powders with ozone, Fuller. Nanotub. Carb. N. 15 (2007) 53–63. [202] J.P. Deng, C.Y. Mou, C.C. Han, Oxidation of fullerenes by ozone, Fuller. Nanotub. Carb. N. 5 (1997) 1033–1044. [203] T. Manning, K. Olsen, L. Hardin, J. Purcell, T. Ayers, M. Duncan, D. Phillips, Extensive ozonation of C60: degradation or polymerization? Ozone: Sci. Eng. 28 (2006) 177– 180. [204] F. Cataldo, Ozone reaction with carbon nanostructures 1: reaction between solid C 60 and C70 fullerenes and ozone, J. Nanosci. Nanotechnol. 7 (2007)1439–1445. [205] J. Zhou, D.O. Wipf, UV/ozone pretreatment of glassy carbon electrodes, J. Electroanal. Chem. 499 (2001) 121–128. [206] F. López-Garzón, M. Domingo-García, M. Pérez-Mendoza, P.M. Álvarez, V. GómezSerrano, Textural and chemical surface modifications produced by some oxidation treatments of a glassy carbon, Langmuir 19 (2003) 2838–2844. [207] Y. Gao, I. Kulatos, R. Chen, A. Aggarwal, E.M. Mehta, Ozonation for the chemical modiGication of carbon surfaces in Gly ash, Fuel 80 (2001) 765–768.

99

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[208] R. Kotzick, U. Panne, R. Niessner, Changes in condensation properties of ultrafine carbon particles subjected to oxidation by ozone, J. Aerosol. Sci. 28 (1997) 725–735. [209] D. Urfer, R. Courbat, J.L. Walther, A. Pärli, Fluidized bed GAC Giltration for the control of ozone residuals, Ozone Sci. Eng. 23 (2002) 429–438. [210] U. Jans, J. Hoigné, AC and carbon black catalyzed transformation of aqueous ozone into OH-radicals, Ozone Sci. Eng. 20 (1998) 67–90. [211] F.J. Beltrán, J. Rivas, P. Álvarez, R. Montero de Espinosa, Kinetics of heterogeneous catalytic ozone decomposition in water on an AC, Ozone Sci. Eng. 22 (2002) 227–237. [212] M. Guiza, A. Ouederni, A. Ratel, Decomposition of dissolved ozone in the presence of AC: an experimental study, Ozone Sci. Eng. 26 (2004) 299–307. [213] M. Sánchez-Polo, U. Von Gunten, J. Rivera-Utrilla, Efficiency of AC to transform ozone into OH radicals: inGluence of operational parameters, Water Res. 39 (2005) 3189– 3198. [214] P.M. Álvarez, J.F. García-Araya, F.J. Beltrán, I. Giráldez, J. Jaramillo, V. Gómez- Serrano, The influence of various factor son aqueous ozone decomposition by granular ACs and the development of a mechanistic approach, Carbon 44 (2006) 3102–3112. [215] P. Faria, J.M. Orfao, F.R. Pereira, Ozone decomposition in water catalyzed by AC: influence of chemical and textural properties, Ind. Eng. Chem. Res. 45 (2006) 2715– 2721. [216] R. Tsunoda, T. Ozawa, J. Ando, Ozone treatment of coal- and coffee groundsbased active carbons: water vapor adsorption and surface fractal micropores, J. Colloid Interf. Sci. 205 (1998) 265–270. [217] R. Considine, R. Denoyel, P. Pendleton, R. Schumann, S.H. Wong, The influence of surface chemistry on AC adsorption of 2-methylisoborneol from aqueous solution, Colloids Surf. A 179 (2001) 271–280. [218] S.J. Park, S.Y. Jin, Effect of ozone treatment on ammonia removal of ACs, J. Colloid Interf. Sci. 286 (2005) 417–419. [219] H.L. Chiang, P.C. Chiang, C.P. Huang, Ozonation of AC and its effects on the adsorption of VOCs exempliGied by methylethylketone and benzene, Chemosphere 47 (2002) 267–275. [220] P.M. Álvarez, J.F. García-Araya, F.J. Beltrán, F.J. Masa, F. Medina, Ozonation of ACs: effect on the adsorption of selected phenolic compounds from aqueous solutions, J. Colloids Interf. Sci. 283 (2005) 503–512. [221] H.L. Chiang, C.P. Huang, P.C. Chiang, The surface characteristics of AC as affected by ozone and alkaline treatment, Chemosphere 47 (2002) 257–265. [222] D.B. Mawhinney, J.T. Yates, FTIR study of the oxidation of amorphous carbon by ozone at 300 K. Direct COOH formation, Carbon 39 (2001) 1167–1173. [223] J. Jaramillo, V. Gómez-Serrano, P.M. Álvarez, Enhanced adsorption of metal ions onto functionalized granular ACs prepared from cherry stones, J. Hazard. Mat. 161 (2009) 670–676. [224] S. Kohl, A. Drochner, H. Vogel, QuantiGication of oxygen surface groups on carbon materials via diffuse reflectance FT-IR spectroscopy and temperature programmed desorption, Catal. Today 150 (2009) 67–70. [225] C.H. Chang, Preparation and characterization of carbon-sulfur surface compounds, Carbon 19 (1981) 175–186. [226] R.C. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York and Basel, 1988, pp. 259–333.

‫ﻣﻨﺎﺑﻊ‬

100

[227] B.R. Puri, in: P.L. Walker, Jr. (Ed.), Chemistry and Physics of Carbon, vol. 6, Marcel Dekker, New York, 1970, p. 191. [228] B.R. Puri, R.S. Hazra, Carbon sulphur surface complexes on charcoal, Carbon 9 (1971) 123–134. [229] J.A. Korpiel, R.D. Vidic, Effect of sulfur impregnation method on AC uptake of gasphase mercury, Environ. Sci. Technol. 31 (1997) 2319–2325. [230] W. Liu, R.D. Vidic, T.D. Brown, Optimization of high temperature sulfur impregnation on AC for permanente sequestration of elemental Mercury vapors, Env. Sci. Technol. 34 (2000) 483–488. [231] G. Skodras, Th. Orfanoudaki, E. Kakaras, G.P. Sakellaropoulos, Poduction of special AC from lignite for environmental purposes, Fuel Process. Technol. 77–78 (2002) 75–87. [232] J. Wang, B. Deng, X. Wang, J. Zheng, Asorption of aqueous Hg(II) by sulfurimpregnated active carbon, Environ. Eng. Sci. 26 (2009) 1693–1699. [233] J. de, D. López-González, C. Moreno-Castilla, A. Gurrero-Ruiz, F. Rodríguez- Reinoso, Effect of carbon-oxygen and carbon-sulfur surface complexes on the adsorption of mercuric chloride in aqueous solutions by AC, J. Chem. Tech. Biotechnol. 32 (1982) 575–579. [234] C. Valenzuela-Calahorro, A. Macías-García, A. Bernalte-García, V. Gómez- Serrano, Study of sulfur introduction in AC, Carbon 28 (1990) 321–335. [235] K.A. Krishnan, T.S. Anirudhan, Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised ACs prepared from bagasse pith: kinetics and equilibrium studies, J. Hazard. Mater. 92 (2002) 161–183. [236] A.F. Tajar, T. Kaghzchi, M. Soleimani, Adsorption of cadmium from aqueous solutions on sulfurized AC prepared from nut shells, J. Hazard. Mater. 165 (2009) 1159–1164. [237] W. Feng, E. Borguet, R.D. Vidic, Sulfurization of carbon surface for vapour phase mercury removal-II: sulfur forms and mercury uptake, Carbon 44 (2006) 2998–3004. [238] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular AC: batch and column studies, J. Harzard. Mater. 125 (2005) 211– 220. [239] A. Macías-García, C. Valenzuela-Calahorro, V. Gómez-Serrano, A. Espinosa- Mansilla, Adsorption of Pb2+ by heat-treated and sulfurized AC, Carbon 31 (1993) 1249–1255. [240] C.Y. Ying, M.K. Aroua, W.M.A.W. Daud, Review of modiGications of AC for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol. 52 (2007) 403– 415. [241] R. Pietrzak, H. Wachowska, P. Nowicki, Preparation of nitrogen-enriched ACs from brown coal, Energ. Fuel 20 (2006) 1275–1280. [242] M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon 46 (2008) 1475–1488. [243] J.L Figueiredo, M.F.R. Pereira, The role of surface chemistry with carbons, Catal. Today 41 (2010) 35–42. [244] G.M.K. Abotsi, A.W. Scaroni, Reaction of carbons with ammonia: effects on the surface charge and molybdenum adsorption, Carbon 28 (1990) 79–84. [245] B. Stöhr, H.P. Boehm, R. Schlögl, Enhancement of the catalytic activity of activatd carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observaion of a superoxide species as possible intermdiate, Carbon 29 (1991) 707–720.

101

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[246] R.J. Jansen, H. van Bekkum, Amination and ammoxidation of ACs, Carbon 32 (8) (1994) 1507–1516. [247] P. Vinke, M. van der Eijk, M. Verbree, A.F. Voskamp, H. van Bekkum, Modification of the surfaces of a gas AC and a chemically AC with nitric acid, hypochlorite, and ammonia, Carbon 32 (1994) 675–686. [248] R.J. Jansen, H. van Bekkum, Amination and ammoxidation of ACs, Carbon 33 (1995) 1021–1027. [249] C. Moreno-Castilla, M.A. Ferro-García, J.P. Joly, I. Bautista-Toledo, F. Carrasco- Marín, J. Rivera-Utrilla, AC surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments, Langmuir 11 (1995) 4386–4392. [250] M.C. Palma, I.F. Silva, P. Lodewyckx, J.J.M. Orfao, L.S. Lobo, Effect of HNO3 and NH3 treatment on the catalytic oxidation of carbon catalysed by Cu, Mo, and their mixture at eutectic composition, in: J.A. Pajares, J.M.D. Tascón (Eds.), Coal Science, vol. 1, Elsevier, Amsterdam, 1995, pp. 691–694. [251] S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of AC with oxygen and nitrogen surface groups, Carbon 35 (12) (1997) 1799–1810. [252] S. Biniak, M. Pakula, G.S. Szymanski, A. Swiatkowski, Effect of activated surface oxygen- and/or nitrogen-containing groups on adsorption of copper (II) ions from aqueous solution, Langmuir 15 (1999) 6117–6122. [253] F. Xie, J. Phillips, I.F. Silva, M.C. Palma, J.A. Menéndez, Microcalorimetric study of acid sites on anmmonia- and acid-pretreated AC, Carbon 38 (2000) 691–700. [254] M. Abe, K. Kawashima, K. Kozawa, H. Sakai, K. Kaneko, Amination of AC and adsorption characteristics of its aminated surface, Langmuir 16 (2000) 5059–5063. [255] L. Monser, N. Adhoum, Modified AC for the removal of copper, zinc, chromium and cyanide from wastewater, Sep. Purif. Technol. 26 (2002) 137–146. [256] E. Raymundo-Pi˜nero, D. Cazorla-Amorós, A. Linares-Solano, The role of different nitrogen functional groups on the rremoval of SO2 from flue gases by N-doped AC powders and Gibres, Carbon 41 (2003) 1925–1932. [257] S. Bashkova, A. Bagreev, T.J. Bandosz, Adsorption/oxidation of CH3SH on ACs containing nitrogen, Langmuir 19 (2003) 6115–6121. [258] J. Przepiórski, M. Skrodzewicz, A.W. Morawski, High temperature ammonia treatment of AC for ehancement of CO2 adsorption, Appl. Surf. Sci. 225 (2004) 235–242. [259] S.A. Dastgheib, T. KaranGil, W. Cheng, Tailoring ACs for enhanced removal of natural organic matter from natural waters, Carbon 42 (2004) 547–557. [260] A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T.J. Bandosz, Bituminous coalbased ACs modiGied with nitrogen as adsorbents of hydrogen sulGide, Carbon 42 (2004) 469–476. [261] W. Chen, F.S. Cannon, J.R. Rangel-Mendez, Ammonia-tailoring of GAC to enhance perchlorate removal. I: Characterization of NH3 thermally tailored GACs, Carbon 43 (2005) 581–590. [262] E. Okoniewska, J. Lach, M. Kacprzak, E. Neczaj, The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon, Desalination 206 (2007) 251–258. [263] A. Walczyk, M. Swiatkowski, S. Pakula, Biniak, Electrochemical studies of the interaction between a modified AC surface and heavy metal ions, J. Appl. Electrochem. 35 (2005) 123–130.

‫ﻣﻨﺎﺑﻊ‬

102

[264] J. Przepiórski, Enhanced adsorption of phenol from water by ammoniatreated AC, J. Hazard. Mater. 135 (2006) 453–456. [265] P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified ACs, J. Colloid Interf. Sci. 302 (2006) 408–416. [266] L. Yang, S. Wu, J.P. Chen, ModiGication of AC by polyaniline for enhanced adsorption of aqueous arsenate, Ind. Eng. Chem. Res. 46 (2007) 2133–2140. [267] G.C. Stavropoulos, P. Samaras, G.P. Sakellaropoulos, Effect of ACs modiGication on porosity, surface structure and phenol adsorption, J. Hazard. Mater. 151 (2008) 414– 421. [268] J. Zhu, B. Deng, J. Yang, D. Gang, Modifying AC with hybrid ligands for enhancing aqueous mercury removal, Carbon 47 (2009) 2014–2025. [269] R. Pietrzak, XPS study and physico-chemical properties of nitrogen-enriched microporoous activatred carbon from high volatile bituminous coal, Fuel 88 (2009) 1871–1877. [270] P. Nowicki, R. Pietrzak, H. Wachowska, InGluence of the precursor metamorphism degree on preparation of nitrogen-enriched ACs by ammoxidation and chemical activation of coals, Energ. Fuel 23 (2009) 2205–2212. [271] B. Stöhr, H.P. Boehm, R. Schlögl, Enhancement of the catalytic activity of ACs in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon 29 (1991) 707–720. [272] A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T.J. Bandosz, Oxidative adsorption of metyl mercaptan on nitrogen-enriched bituminous coal-based AC, Carbon 43 (2005) 208–210. [273] P. Liu, L. Zhang. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents, Sep. Purif. Technol., 58 (2007) 32–39. [274] P. Liu. Polymer modiGied clay minerals: A review, Appl. Clay Sci. 38 (2007) 64–76. [275] C.C. Wang, L.C. Juang, C.K. Lee, T.C. Hsu, J.F. Lee. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite, J. Colloid Interface Sci., 280 (2004) 27–35. [276] A.S. Özcan, B. Erdem, A. Özcan. Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite, J. Colloid Interf. Sci. 280 (2004) 44–54. [277] A. Özcan, E.M. Öncü, A.S. Özcan. Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite, J. Hazard. Mater. 129 (2006) 244–252. [278] P. Liu, T. Wang, Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions, J. Hazard. Mater. 149 (2007) 75–79. [279] L. Wang, A. Wang, Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite, J. Hazard. Mater. 147 (2007) 979–985. [280] Q.Y. Yue, Q. Li, B.Y. Gao, A.J. Yuan, Y. Wang, Formation and characteristics cationicpolymer/bentonite complexes of as adsorbents for dyes, Appl. Clay Sci. 35 (2007) 268–275. [281] P. Liu, J.S. Guo. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes, Colloids Surf. A Physicochem. Eng. Aspects, 282/283 (2006) 498–503. [282] I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38 (1946) 2221–2295.

103

‫رﻧﮕﺒﺮي ﭘﺴﺎبﻫﺎ ﺑﺎ اﺳﺘﻔﺎده از ﻓﺮآﻳﻨﺪ ﺟﺬب ﺳﻄﺤﻲ‬

[283] H.M.F. Freundlich, Uber die adsorption in losungen. Z Physics Chemistry. 57 (1906) 385–471. [284] M.J. Tempkin, V. Pyzhev, Recent modifications to Langmuir isotherms. Acta Physiochim. USSR 12 (1940) 217-222. [285] M. Greluk, Z. Hubicki. Kinetics, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins, Chem. Eng. J. 162 (2010) 919–926. [286] M.M.D. Jimenez, M.P.E. Gonzalez, A.A.P. Cid. Adsorption interaction between natural adsorbents and textile dyes in aqueous solution. Coll. Surf. A. 254 (2005) 107-114. [287] A. El Nemr, Potential of pomegranate husk carbon for Cr (VI) removal from wastewater: Kinetic and isotherm studies. J. Hazard. Mater. 161 (2009) 132-141. [288] Y.C. Kim, I. Kim, S.C. Rengraj, J. Yi. Arsenic removal using mesoporous alumina prepared via a templating method. J. Environ. Sci. Technol., 38 (2004) 924 -31. [289] M. Greluk, Z. Hubicki. Sorption of SPADNS azo dye on polystyrene anion exchangers: equilibrium and kinetics studies, J. Hazard. Mater. 172 (2009) 289–297. [290] S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handl. 24 (1898) 1-39. [291] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34 (1999) 451-465. [292] W.J. Weber, J.C. Morris, Preliminary appraisal of advanced waste treatment processes. Water Pollut. Res. 2 (1963) 231–241. [293] P.W. Atkins, Physical Chemistry. 4th Ed., Oxford University Press, 1990 (Translated to Persian by H. Aghaei and H. Modarres). [294] G.M. Barrow, Physical Chemistry. 4th Ed., Mc Graw – Hill, 1979 (Translated to Persian by G. Khodadadi, G.M. Avval, A. Farazdel, H. Naanaei, H. Khoshkho, M. Hasanpour). [295] M.J. Jaycock, G.D. ParGitt. Chemistry of interfaces. Onichester, Ellis Horwood Ltd., 1981. [296] A. Özcan, E.M. Öncü, A.S. Özcan, Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloids Surfaces A. Physicochem. Eng. Aspects. 277 (2006) 90-97. [297] J. Huang, K. Huang, S. Liu. Tertiary amino groups modified macroporous crosslinked poly(styrene-co-divinylbenzene) and its oxidized adsorbent: Synthesis, characterization, and adsorption behavior. J. Hazard. Mater. 162 (2009) 771-776.

Dye removal from wastewaters using adsorption process

Niyaz Mohammad Mahmoodi, Ph.D. Department of Environmental Research, Institute for Color Science and Technology

October 2013