Feb 13, 2012 - Maintenance and life-cycle management of these high-risk ... prognostic algorithm performs best in a spec
Author’s Accepted Manuscript
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life Chao Hu, Byeng D. Youn, Pingfeng Wang, Joung Taek Yoon PII: DOI: Reference:
S0951-8320(12)00042-7 doi:10.1016/j.ress.2012.03.008 RESS4607
To appear in:
Reliability Engineering and System Safety
Received date: Revised date: Accepted date:
29 March 2011 13 February 2012 8 March 2012
www.elsevier.com/locate/ress
Cite this article as: Chao Hu, Byeng D. Youn, Pingfeng Wang and Joung Taek Yoon, Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life, Reliability Engineering and System Safety, doi:10.1016/j.ress.2012.03.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life Chao Hu 1, Byeng D. Youn 2, Pingfeng Wang 3, and Joung Taek Yoon 4 1
Department of Mechanical Engineering, the University of Maryland at College Park, College Park, MD 20742, USA (Currently at Medtronic Inc.)
2,4
SchoolofMechanicalandAerospaceEngineering,theSeoulNationalUniversity, Seoul151742,Korea
3
DepartmentofIndustrialandManufacturingEngineering,theWichitaStateUniversity, Wichita,KS67260,USA
Abstract — Prognostics aims at determining whether a failure of an engineered system (e.g., a nuclear power plant) is impending and estimating the remaining useful life (RUL) before the failure occurs. The traditional data-driven prognostic approach is to construct multiple candidate algorithms using a training data set, evaluate their respective performance using a testing data set, and select the one with the best performance while discarding all the others. This approach has three shortcomings: (i) the selected standalone algorithm may not be robust; (ii) it wastes the resources for constructing the algorithms that are discarded; (iii) it requires the testing data in addition to the training data. To overcome these drawbacks, this paper proposes an ensemble data-driven prognostic approach which combines multiple member algorithms with a weighted-sum formulation. Three weighting schemes, namely the accuracy-based weighting, diversity-based weighting and optimization-based weighting, are proposed to determine the weights of member algorithms. The k-fold cross validation (CV) is employed to estimate the prediction error required by the weighting schemes. The results obtained from three case studies suggest that the ensemble approach with any weighting scheme gives more accurate RUL predictions compared to any sole algorithm when member
1 Ph.D.,
[email protected]. 2
AssistantProfessor,
[email protected],CorrespondingAuthor.
3
AssistantProfessor,
[email protected].
4GraduateStudent,
[email protected].
1
algorithms producing diverse RUL predictions have comparable prediction accuracy and that the optimization-based weighting scheme gives the best overall performance among the three weighting schemes.
Keywords:Ensemble;Kfoldcrossvalidation;Weightingschemes;Datadrivenprognostics;RUL prediction.
I. Introduction To support critical decision-making processes such as maintenance replacement and system design, activities of health monitoring and life prediction are of great importance to high-risk engineered systems composed of multiple components, complex joints, and various materials, such as aerospace systems, nuclear power plants, chemical plants, advanced military systems and so on. Stressful conditions (e.g., high pressure, high temperature and high irradiation field) imposed on these systems are the direct causes of damage in their integrity and functionality, which necessitates the continuous monitoring of these systems due to the health and safety implications [1,2,3]. Research on real-time diagnosis and prognosis which interprets data acquired by distributed sensor networks, and utilizes these data streams in making critical decisions provides significant advancements across a wide range of applications. Maintenance and life-cycle management of these high-risk engineered systems for minimizing the cost [4,5,6], maximizing the availability [7] and extending the service life [8] is one of the beneficiary application areas because of the pervasive nature of monitoring and maintenance activities throughout the manufacturing and service sectors and, especially, the extremely high failure costs. For instance, in nuclear power plants, unexpected breakdowns can be prohibitively expensive and disastrous since they immediately result in lost power production, correct maintenance cost, reduced public confidence, and, possibly, human injuries and deaths. In order to reduce and possibly eliminate such problems, it is necessary to accurately assess current system health condition and precisely predict the remaining useful lives (RULs) of operating components, subsystems, and systems in the highrisk engineered systems.
Ingeneral,prognosticapproachescanbecategorizedintomodelbasedapproaches[9,10,11,12,13], datadrivenapproaches[14,15,16,17,18]andhybridapproaches[19,20,21].Theapplicationofgeneral modelbasedprognosticapproachesreliesontheunderstandingofsystemphysicsoffailureand underlyingsystemdegradationmodels.Myötyrietal.[9]proposedtheuseofastochasticfiltering 2
techniqueforrealtimeRULpredictioninthecaseoffatiguecrackgrowthwhileconsideringthe uncertaintiesinbothdegradationprocessesandconditionmonitoringmeasures.Asimilarparticle filteringapproachwaslaterappliedtoconditionbasedcomponentreplacementinthecontextof fatiguecrackgrowth[10].Luoetal[11]developedamodelbasedprognostictechniquethatreliesonan accuratesimulationmodelforsystemdegradationpredictionandappliedthistechniquetoavehicle suspensionsystem.GebraeelpresentedadegradationmodelingframeworkforRULpredictionsof rollingelementbearingsundertimevaryingoperationalconditions[12]orintheabsenceofprior degradationinformation[13].Ashighriskengineeredsystemsgenerallyconsistofmultiplecomponents withmultiplefailuremodes,understandingallpotentialphysicsoffailuresandtheirinteractionsfora complexsystemisalmostimpossible.Withtheadvanceofmodernsensorsystemsaswellasdata storageandprocessingtechnologies,thedatadrivenapproachesforsystemhealthprognostics,which aremainlybasedonthemassivesensorydatawithlessrequirementofknowinginherentsystemfailure mechanisms,havebeenwidelyusedandbecomepopular.Agoodreviewofdatadrivenprognostic approacheswasgivenin[14].Datadrivenprognosticapproachesgenerallyrequirethesensorydata fusionandfeatureextraction,statisticalpatternrecognition,andforthelifeprediction,the interpolation[15,16],extrapolation[17],ormachinelearning[18]andsoon.Hybridapproachesattempt totakeadvantageofthestrengthfromdatadrivenapproachesaswellasmodelbasedapproachesby fusingtheinformationfrombothapproaches.Gargaetal.[19]describedadatafusionapproachwhere domainknowledgeandpredictorperformanceareusedtodetermineweightsfordifferentstateof chargepredictors.Goebeletal.[20]employedaDempsterShaferregressiontofuseaphysicsbased modelandanexperiencebasedmodelforprognostics.Sahaetal.[21]combinedtheofflinerelevance vectormachine(RVM)withtheonlineparticlefilterforbatteryprognostics.Similartomodelbased approaches,theapplicationofhybridapproachesislimitedtothecaseswheresufficientknowledgeon systemphysicsoffailuresisavailable.
3
ImplicitrelationshipbetweentheRULandthesensorysignalsmakesitdifficulttoknowwhich prognosticalgorithmperformsbestinaspecificapplication.Furthermore,therearemanyfactorsthat affectthepredictionaccuracyandrobustness,suchas(i)dependencyofthealgorithm’saccuracyonthe numberofunitsinatrainingdataset,(ii)significantvariabilityinmanufacturingconditionsandlarge uncertaintiesinenvironmentalandoperationalconditions,(iii)theamountofeffectivesensorysignals forRULpredictions,and(iv)theformofdegradationtrend(e.g.,linear,nonlinear,noisy,smooth). Therefore,nosingleprognosticalgorithmworkswellforallpossiblesituations.Insteadofusingan individualprognosticalgorithm,itwouldbebeneficialtocombinemultiplealgorithmstoformahybrid algorithm.
Combiningapproximatealgorithmsintoanensemble,i.e.ensemblemethods,wasmotivatedto improvetherobustnessandaccuracyofalgorithminthemachinelearningcommunity.Themethodscan beclassifiedbythecombiningstrategy;byconsensusorbylearning.Examplesofnotedensemble methodsandbriefdescriptionsarearrangedbelowinTable1[22].
Table1 Examplesofnotedensemblemethods
Combinin Ensemble gstrategy method
By consensus
By learning
Description
Reference
Bagging
Baggingdeterminesaclasslabelwithmajor votingbymultipleclassifiers.
BreimanL. (1996)[23]
Random Forest
Randomforestimprovestheperformanceof baggingbycombiningwithrandomfeature selectionscheme.
BreimanL. (2001)[24]
Boosting
Boostingtrainsweakclassifiersandcombines themintoastrongclassifier.
Schapire R.E.(1990)
4
[25] Adaboosttrainseachbaseclassifierwitha weighteddatasetofwhichweightingcoefficients Adaboost arecomputedfromclassificationerrorsbythe previousclassifiers,andthenaggregatesthebase classifiersintoone.
FreundY.& Schapire R.E.(1997) [26]
Notonlyuseabasisfunctionasabaseclassifier,a ruleensembleincludesaruleasabaseclassifier. Rule Astherulehasasimpleform,itiseasyto Ensemble understandtheinfluencesofrulesonpredictions andthedegreeofdependencyoneachother.
Friedman J.H.& Popescu B.C.(2008) [27]
Theensemblemethodfoundsitsapplicationsinawidevarietyofresearchfields,suchasthe developmentofcommitteesofneuralnetworks[28,29],themetamodelingforthedesignofmodern engineeredsystems[30,31,32],thediscoveryofregulatorymotifsinbioinformatics[33],thedetection oftrafficincidents[34],thetransientidentificationofnuclearpowerplant[35],andthedevelopmentof ensembleKalmanfilters[36].However,theutilizationoftheensembleapproachforthedatadriven prognosticsisstillininfancy.Theonlyrelevantworkweareawareofcomesfrom[37]whereonlytwo datadrivenalgorithmsareemployedasmemberalgorithmsandtheirweightsareempirically determinedbasedonaonetimetrainingerrorwithoutasystematicschemeforerrorestimationand performancevalidation.Mostdatadrivenprognosticpracticesselectasinglealgorithmwiththebest accuracyfromthealgorithmpoolwhilediscardingtheothers.Thisapproachnotonlywastesthe resourcedevotedtodevelopingdifferentalgorithms,butalsosuffersfromthelackofrobustness.
Estimatingtheaccuracyofaprognosticalgorithmisimportantnotonlyforevaluatingitsprediction accuracybutalsoforchoosingthebestalgorithmfromagivenset(algorithmselection),orcombining algorithms.Manydatadrivenapproaches[14,16]usethesocalledholdoutmethod,whichdividesthe originalruntofailuredatasetintotwomutuallyexclusivesubsetscalledatrainingsetandatestingset,
5
orholdoutset.Theholdoutmethodisstraightforwardandcomputationallyefficient.However,itoften producesalargevarianceoftheresultingestimateandrequiresthetestingdatasetwhichincreasesthe overallexpenses.
Toovercometheaboveshortcomings,thisstudyproposesanensembleapproachthatemploysthe kfoldcrossvalidation(CV)toestimatetheaccuracyofagivenensembleandproposesthreeweighting schemestodeterminetheweightvalues.Assumptionsforthisstudyarelistedbelow: (1) Sensory data from multiple run-to-failure units are available, either from the computer simulation or field testing. (2) A single failure mode is considered, i.e., the RUL prediction is exclusively for this failure mode. (3) The underlying physics of the system fault propagation is not comprehensive or it is too expensive to derive a reliable physical damage model for a complex engineered system. Both cases entail the use of the data-driven prognostics.
Therestofthepaperisorganizedasfollows.SectionIIgivesabriefintroductiontothedatadriven prognosticalgorithmsselectedinthisstudy.SectionIIIpresentstheproposedensembleapproachwith thekfoldCVandthreeweightingschemes.Applicationsoftheproposedmethodologyarepresentedin SectionIVandtheconclusionofthisworkisgiveninSectionV.
II. Description of Prognostic Algorithms II.1. A general description of member algorithms
Thissectionprovidesabriefoverviewofthefiveselecteddatadrivenprognosticalgorithms:Method 1asimilaritybasedinterpolation(SBI)approachwiththerelevancevectormachine(RVM)asthe regressiontechnique(RVMSBI)[15,49],Method2SBIwiththesupportvectormachine(SVM)asthe regressiontechnique(SVMSBI)[15,47],Method3SBIwiththeleastsquareexponentialfitting(Exp SBI)[15],Method4aBayesianlinearregressionwiththeleastsquarequadraticfitting(QuadBLR)[17], andMethod5arecurrentneuralnetwork(RNN)approach[18,50].Adataprocessingschemewitha
6
generichealthindexsystemisusedforthefirstfouralgorithmswhileadataprocessingschemewitha simplenormalizationschemeforthelastalgorithm. II.2. Methods 1-3: Similarity-based interpolation approaches II.2.1.
Data processing with a generic health index system
Successfulimplementationsofprognosticalgorithmsrequiretheextractionofthehealthcondition signaturesandbackgroundhealthknowledgefrommassivetraining/testingsensorysignalsfrom engineeredsystemunits.Todoso,thisstudywilluseagenerichealthindexsystemthatiscomposedof twodistinguishedhealthindices:physicshealthindex(PHI)andvirtualhealthindex(VHI).Ingeneral,the PHIusesadominantphysicalsignalasadirecthealthmetricandisthusapplicableonlyifsensorysignals aredirectlyrelatedtophysicsoffailures.Intheliterature,mostengineeringpracticesofhealth prognosticsarebasedonvariousPHIs,suchasthebatteryimpedance[21],themagnitudeofthe vibrationsignal[45]andtheradiofrequency(RF)impedance[46].Incontrast,thevirtualhealthindex (VHI)isapplicableevenifsensorysignalsarenotdirectlyrelatedtosystemphysicsoffailures.Inthis study,theVHIsystemwillbeemployedwhichtransformsthemultidimensionalsensorysignalstoone dimensionalVHIwithalineardatatransformationmethod[15].TheVHIsystemwillbedetailedinwhat follows.
Supposetherearetwomultidimensionalsensorydatasetsthatrepresentthesystemfailedand healthystates,Q0ofM0uDmatrixandQ1ofM1uDmatrix,respectively,whereM0andM1arethedata sizesforsystemfailedandhealthystates,respectively,andDisthedimensionofeachdataset.With thesetwodatamatrices,atransformationmatrixTcanbeobtainedtotransformthemultidimensional sensorysignalintotheonedimensionalVHIas
T
Q Q T
7
1
QT S off
(1)
whereQ=[Q0;Q1],Soff=[S0,S1]T,S0isa1uM0zerovectorandS1isa1uM1unityvector.This transformationmatrixTcantransformanysensorysignalfromtheofflinelearningoronlineprediction processtothenormalizedVHIasH=QoffTorH=QonT,whereQoffandQonaretheofflineandonline multidimensionalsensorydatasets,respectively,and,ifweassumethedatasizesforQoffandQonare respectivelyMonandMoff(i.e.,QoffofMoffuDmatrixandQonofMonuDmatrix),Hwillbeacolumnvector ofthesizeMofforMon.TheVHIcanalsobedenotedash(ti)fori=1,…,Moff(fortheofflinecase)orfori= 1,…,Mon(fortheonlinecase),varyingapproximatelybetween0and1.ThisVHIcanbeusedtoconstruct backgroundhealthknowledge(e.g.,predictivehealthdegradationcurves)intheofflinetrainingprocess andtofurtherconducttheonlinepredictionprocess.
II.2.2.
Training with RVM, SVM, or exponential fitting
Threeregressiontechniques,namely,relevancevectormachine(RVM),supportvectormachine (SVM),andleastsquareexponentialfitting,areemployedtoconstructthebackgroundhealth knowledgeusingtheVHIofofflinesystemunitsobtainedfromSectionII.2.1.Theseregression techniquescangeneratedifferentsetsofpredictivehealthdegradationcurvesforofflinesystemunits. II.2.2.1. Relevance vector machine
Supposewehaveatrainingdataset{ti,hi},i=1,…,Ms,sampledfromascalarvaluedfunctionwith additivezeromeanGaussiannoisewithavariance2.TheRVMisaspecialcaseofasparselinear modeltoapproximatethisdatasetas
h t
Ms
¦Z I t, t Z i
i
0
(2)
i 1
where=(0,...,Ms)TisakernelweightvectorandI(t,ti)isakernelfunctioncenteredatthetraining pointti.Assumingtheindependenceof{hi},i=1,…,Ms,wehavethelikelihoodoftheobserveddataas
8
p h | , V 2
2SV
2 Ms /2
1 2· § exp ¨ h ¸ 2 © 2V ¹
(3)
whereh=(h1,...,hMs)T,isanMs×(Ms+1)designmatrixconstructedthetrainingpointstwithij=I(ti, tj). ToevaluatetheunknownparametersinEq.(3)fromaBayesianperspective,asparseweightprior distributioncanbeassigned,insuchawaythatadifferentvarianceparameterisassignedforeach weight,as
p |
Ms
N Z | 0, D 1 i
i
(4)
i 0
where=(0,…,Ms)isavectorconsistingofMs+1hyperparameters,whicharetreatedasindependent randomvariables.TospecifythishierarchicalBayesianinferencemodel,priordistributionsforandthe noisevariance2mustbedefined.Forscaleparametersand2,itiscommontouseGammaprior distributionsas
p
p E
Ms
Gamma D i 0
i
| a, b
(5)
Gamma E | c , d
where=–2,Gamma(|a,b)=(a)–1baa–1e–bwith(a)beingthegammafunction,a,b,canddare thehyperparametersandsettosmallvaluestoformaflatGammaprior.
Withthepriordefined,theposteriordistributionovertheweightsisgivenbytheBayesianinference as
p | h, , V 2
2S
M s 1 / 2
1/ 2
T § 1 · exp ¨ 1 ¸ © 2 ¹
wheretheposteriormeanvectoroftheweightsis=–2h,andthecovariancematrixis=(–
9
(6)
2
T+A)–1withA=diag(0,…,Ms).Appropriateiterativeoptimizationmethods[49],suchasmarginal
likelihoodoptimization,expectationmaximization(EM)algorithmsorincrementaloptimization algorithms,canbeemployedtofindthehyperparameterposteriormodesormostprobablevaluesm andm2thatmaximizep(,2|h) v p(h|,2)p()p(2).MoredetaileddescriptionsoftheRVMcanbe foundin[49]. II.2.2.2. Support vector machine
SimilartotheRVM,theSVMisalsoaspecialcaseofasparselinearmodelthatapproximatesthe dataset{ti,hi},i=1,…,Ms,as
h t
Ms
¦Z I t, t Z i
i
0
(7)
i 1
wherethelinearornonlinearkernelfunctionI(t,ti)arecenteredatthetrainingpointti.Theoptimum regressionfunctioncanbeobtainedbysolvingthefollowingoptimizationproblem
Minimize
Ms 1 2 w C ¦ [i [i 2 i 1 Ms
Subject to hi ¦ ZiI ti , t j Z0 d H [i j 1
Ms
¦Z I t , t Z i
i
j
0
(8)
hi d H [i
j 1 i
[ , [i t 0, i 1,..., M s
wheretheregularizationparameterCspecifiesthetradeoffbetweentheflatnessandtolerance; i–and i+areslackvariablesdefiningtheupperandlowerconstraintsonthepredictionswithaninsensitive lossfunction.WiththeKarushKuhnTucker(KKT)conditions,theoptimizationproblemcanbe reformulatedas
10
Maximize
Ms Ms 1 Ms Ms
, D D D D I t t D D H Di Di yi ¦¦ i i j j i j ¦ ¦ i i 2i1 j1 i 1 i 1
Ms
Subject to
¦ Di Di 0, 0 d Di ,Di d C, i 1,..., M s
(9)
i 1
Theweightsandbiastermcanbecomputedas
wi
Di Di , i 1,..., M s
w0
1 Ms Di Di ª¬I xi , xr I xi , xs º¼ ¦ 2i1
(10)
Then,theregressionfunctioncanbeexpressedas
h t
Ms
¦ D i 1
i
Di I t , ti Z0
(11)
DetailedinformationregardingtheuseofSVMforregressioncanbefoundin[47].Thisstudyusedthe MATLAB®programdevelopedbyRakotomamonjy[48].
II.2.2.3. Exponential fitting
ComparedtotheRVMandSVM,anexponentialfittingismuchsimplerandeasiertoimplement.In thisstudy,anexponentialfunctionwasconstructedas
h t
b1 ª¬ exp b2 t 1º¼
(12)
wheretheoptimumcoefficientsb1andb2canbeobtainedthatminimizetheleastsquareerrorofthe exponentialfitting.
11
II.2.3.
RUL prediction using SBI
TheRULpredictionprocessinvolvestwoprocedures:(i)determinationofaninitialhealthcondition and(ii)theRULpredictionusingthesimilaritybasedinterpolation(SBI).Thisprocesscloselyfollowsthe similaritybasedapproachin[15]. II.2.3.1. Determination of initial health condition
Differentonlinetestingunitsoftenexhibitdifferentinitialhealthindicesduetodifferentinitialhealth conditions.Thus,accurateestimationsofinitialhealthconditionsforonlinetestingunitsareofgreat importancetopreciseRULpredictions.Basedonthepredictivehealthdegradationcurve(hp)froman offlinesystemunit,anoptimumfittingisconductedtodetermineatimescaleinitialhealthcondition (T0)thatminimizesthesumofsquareddifferencesSSDbetweentheonlineandofflinehealthindex data.Theoptimumfittingcanbeformulatedas Ms
Minimize SSD
¦ h t h t r
j
j 1
p
j
T0
2
(13)
subject to T0 [0, TS 't ]
wherehr(tj)andhp(tj)aretheonlineandpredictivehealthindicesattj,respectively,Msisthelengthof theonlinehealthindexdata;T0isthetimescaleinitialhealthcondition;'tisthetimespan(=tMst1)of theonlinehealthindexdata;TSisthetimespanofapredictivehealthdegradationcurve,i.e.,thelife spanofanofflinesystemunit.Itisnotedthatthepredictivehealthdegradationcurvehpbuiltinthe offlinetrainingprocess(seeSectionII.2.2)isessentiallytheregressionmodelinEq.(2),(7)or(12).This optimizationprocessbasicallymovestheonlinehealthindexdatahralongthetimeaxisofapredictive healthdegradationcurvehptofindtheoptimumtimescaleinitialhealthstate(T0)thatbestmatcheshr withhpwithrespecttotheSSD.AssumingthatthedatasizeoftheofflinesystemunitisMoff,itfollows that,amongMoffofflinedatapointsontheofflinehealthdegradationcurve,weonlyselectMs consecutivedatapointsoverlappingwiththeonlinedataalongthetimeaxistocomputetheSSD.Once
12
T0isdetermined,theprojectedremaininglifeofanonlinesystemunitbasedonagivenpredictive healthdegradationcurvecanbecalculatedas
LP TS 't T0
(14)
RepeatingtheoptimumfittingprocessonKpredictivehealthdegradationcurvesfromKdifferentoffline systemunitsgivesKRULestimates(LiPfori=1,…,K). II.2.3.2. Similarity-based interpolation
Inthesimilaritybasedinterpolation(SBI),thepredictiveRULisalinearinterpolationfunctionin termsofdifferentprojectedRULs(Lifori=1,…,K)ofanonlineunitas
L
1 W
K
¦ W L i
i
K
where W
i 1
¦W
i
(15)
i 1
whereLiistheprojectedRULontheithpredictivehealthdegradationcurve(forsimplicity,weuseLi insteadofLiPhere),Wiistheithsimilarityweight.AsimilarityweightWicanbedefinedastheinverseof thecorrespondingSSDi,i.e.,Wi=(SSDi)–1.Thisdefinitionensuresthatagreatersimilaritygivesagreater weight.
II.3. Method 4: Extrapolation-based approach
Unlike the similarity-based interpolation (SBI) approach, the extrapolation-based approach employs the training data set not for the comparison with the testing data set but rather for obtaining prior distributions of the degradation model parameters. The testing data set is then used to update these prior distributions. An RUL estimate can be obtained by extrapolating the updated degradation model to a predefined failure threshold. For the construction and updating of the degradation model, this study employed the Bayesian linear regression method used in [17].
13
II.3.1.
Data processing with a generic health index system
ThissectionfollowsexactlythedescriptionsinSectionII.2.1andwillnotbedetailedhere.
II.3.2.
Training with quadratic fitting
In this study, the least-square quadratic fitting was employed as the degradation model for both the training and testing units. Aquadraticfunctionwasconstructedas h t
b1t 2 b2 t b3
(16)
wheretheoptimumcoefficientsb1,b2andb3canbeobtainedthatminimizetheleastsquareerrorof thequadraticfitting.Theoptimummodelparametersforadataset{ti,hi},i=1,…Ms,areestimatedas
b
T
1 T 1h 1
(17)
wherethecoefficientvectorb=[b1,b2,b3]T,thedesignmatrixisofthesizeMs×3withij=tij,the diagonalcovariancematrixisofthesizeMs×Mswiththediagonalelementsij=2andtheoffdiagonal elementsbeingzero,theVHIvectorh=[h1,…,hMs]T.Forthetrainingprocesswithoutpriorinformation, thevalueof2doesnotaffecttheleastsquarefittingresultsandwesimplyset2=1.
II.3.3.
RUL prediction with Bayesian linear regression
TheBayesianlinearregressionemploystheBayesianupdatingtechniquetoupdatetheprior distributionsofthedegradationparametersbandtheRULpredictionisthenaccomplishedby extrapolatingthemodelshowninEq.(16)withtheposteriordistributionsofb.TheBayesianlinear regressionmethodforRULpredictionisbrieflyexplainedhereandamorecompletediscussionabout thismethodcanbefoundinreferences[13,41].Thepriorinformationofbcanbeobtainedfromthe
14
trainingdata,i.e.thepriordistributionofbjisrepresentedbyanormaldistribution,N(Pj,Vj2),withthe mean jandthestandarddeviationj,j=1,2,3.Thevalueofj2canbeestimatedfromthetraining datasetastherootmeansquareerrorbetweenpredictedandtruedegradationcurves.Inorderto includethispriorinformationintotheregressionestimationofmodelparametersbasshowninEq.(17), thedesignmatrix,theVHIvectorh,andthediagonalcovariancematrixneedtobechanged accordingly.Astherearethreeparametersintotal,b1,b2andb3,thedesignmatrixconstructedwitha testingdatasetisappendedwiththreeadditionalrowswith(Ms+j)j=1,j=1,2,3,andallotherelements beingzero.AccordinglytheVHIvectorhisappendedwiththreeadditionalrowswithhMs+j= j,j=1,2,3, andthecovariancematrixisaugmentedwiththreeadditionalrowsandcolumnswith(Ms+j)(Ms+j)=j2,j =1,2,3,andallotherelementsbeingzero.Withtheupdateddesignmatrix,theVHIvectorh,andthe diagonalcovariancematrix,theposteriorestimateofthedegradationparametersbicanbeobtained withEq.(17),andtheupdatedquadraticdegradationmodelshowninEq.(16)canbeextrapolatedto thedegradationthresholdhc=0toobtaintheRULas:
RUL
t t0 :
^t >t , f 0
| b1t 2 b2 t b3
0
`
(18)
where t0 is the time that the system has been operating until the RUL prediction is made. II.4. Method 5: Recurrent neural network approach
II.4.1.
Data processing with a normalization scheme
Asastandarddataprocessingtechnique,thenormalizationprovidesacommonscaleamongallthe dimensionsofadataset.SupposethatamultidimensionalsensorydatasetQintheformofamatrixof thesizeMsuDcomesfromthesameoperationcondition,whereMsisthedatasizeandDisthe dimension.ThenormalizeddatasetQNofthedatasetQcanbeexpressedas
QijN
Qij P j
Vj
15
(19)
whereQijNisthenormalizedvalueofQij, jandjarethemeanandstandarddeviationofthejth dimensionofthedatasetQ,respectively.
II.4.2.
Recurrent neural network
TheRNNiscapableoflearningthenonlineardynamictemporalbehaviorduetotheuseofan internalstateandfeedback.AfirstordersimpleRNNisanexampleofmultilayerperceptron(MLP)with feedbackconnections(seeFigure1).Thenetworkiscomposedoffourlayers,namely,theinputlayerI, recurrentlayerR,contextlayerCandoutputlayerO.Unitsoftheinputlayerandtherecurrentlayerare fullyconnectedthroughtheweightsWRIwhileunitsoftherecurrentlayerandoutputlayerarefully connectedthroughtheweightsWOR.ThroughtherecurrentweightsWRC,thetimedelayconnectionslink currentrecurrentunitsR(t)withthecontextunitsC(t)holdingrecurrentunitsR(t–1)intheprevioustime step.LetI(t)=(I1(t),…,Ij(t),…,I|I|(t)),R(t)=(R1(t),…,Rj(t),…,R|R|(t))andO(t)=(O1(t),…,Oj(t),…,O|O|(t))betheinput patterns,recurrentactivitiesandoutputactivitiesatthetimestept,respectively,where|I|,|R|and |O|denotethenumbersoftheinput,recurrentandoutputunits,respectively.Thenetinputoftheith recurrentunitcanbecomputedas
R it
¦W
RI ij
j
I j t ¦ WijRC R jt 1
(20)
j
Giventhelogisticsigmoidfunctionastheactivationfunctionf,theoutputactivityoftheithrecurrent unitcanthenbecomputedas
Ri t
f R i t
1
ª1 exp R i t º ¬ ¼
Thenetinputandoutputactivityoftheithoutputunitcanbecomputed,respectively,as
16
(21)
t O i
¦W
OR ij
t R j
(22)
j
and Oi t
f O i t
1
ª1 exp O i t º ¬ ¼
(23)
Inthisstudy,theinputstotheRNNarethenormalizedsensorydatasetQNandtheoutputsarethe RULsassociatedwiththedataset.WeusedtheMATLAB®programdevelopedbyCernansky[50].Inthe RNNtrainingprocess,thebackpropagationthroughtimeandextendedKalmanfilterwereusedto calculatethegradientsofnetworkweightsandtoupdatenetworkweights,respectively.
Output layer O
O1
…
Ok
…
O|O|
Time delay
Time delay
WOR
WOR R1
Recurrent layer R WRC
…
Rj
…
R|R|
WRC
WRI
WRI C1
…
Cj
…
I1
C|C|
…
Ii
…
I|I|
Input layer I
Context layer R
(b)
(a) Figure1.
Simplified(a)andmoredetailedrepresentation(b)ofElman’ssimpleRNN[50]
III. Ensemble of Prognostic Algorithms ItisessentialtoproposearobustprognosticsolutionthataccuratelypredictstheRULusingdata featuresextractedfrommultidimensionalsensorydegradationsignals.Forbuildingsuchaunified structuralhealthprognosticframework,thispaperproposes(i)aweightedsumformulationforan ensembleofprognosticalgorithms,(ii)kfoldcrossvalidation(CV)toevaluatetheerrormetric
17
associatedwithacandidateensemblemodel;and(iii)threeweightingschemestodeterminetheweight valuesforthememberalgorithms.Thissectionisorganizedasfollows.SectionIII.1presentsthebasic weightedsumformulationfortheRULprediction.SectionIII.2describesthebackgroundofthekfoldCV andhowitcanbeappliedforestimatingtheaccuracyofaprognosticalgorithm.SectionIII.3describes thethreeproposedweightingschemes.Theoverallprocedureoftheensembleapproachisdescribedin SectionIII.4.
III.1.Weighted-sum formulation
AsimpleaverageofRULpredictionsobtainedusingthememberalgorithmsmeansassigningequal weightstothememberalgorithmsusedforprognostics.Thisisacceptableonlywhenthemember algorithmsprovidethesamelevelofaccuracyforagivenproblem.However,itismorelikelythatan algorithmtendstobemoreaccuratethanothers.Itisidealtoassignagreaterweighttoamember algorithmwithhigherpredictionaccuracyinordertoenhanceitspredictionaccuracyandrobustness. Hence,memberalgorithmswithdifferentpredictionperformanceshouldbemultipliedbydifferent weightfactors.
LetY={y1,y2,…,yN}beadatasetconsistingofmultidimensionalsensorysignals(e.g.,acceleration, strain,pressure)fromNdifferentruntofailureunits.Anensembleofprognosticmemberalgorithmsfor RULpredictioncanbeexpressedinaweightedsumformulationas
Lˆ
M
¦ w Lˆ y , Y j
j
t
(24)
j 1
where Lˆ denotes the ensemble predicted RUL for the testing data set yt; M denotes the number of algorithm members in the ensemble; wj denotes the weight assigned to the jth prognostic algorithm; Lˆ j (yt, Y) denotes the predicted RUL by the jth prognostic member algorithm trained with the data set Y. Let the weight vector w = [w1,…,
18
ˆ [Lˆ ,..., Lˆ ]T , the weighted-sum formulation in Eq. wM]T and the vector of predicted RULs by member algorithms L M 1
ˆ (24) can be expressed in a vector form as Lˆ w, L
ˆ. wTL
III.2.K-fold cross validation
The k-fold cross validation is used in the offline process to evaluate the accuracy of a given ensemble. It randomly divides the original data set Y into k mutually exclusive subsets (or folds) Y1, Y2,…, Yk having an approximately equal size [38]. Of the k subsets, one is used as the test set and the other k1 subsets are put together as a training set. The CV process is performed k times, with each of the k subsets used exactly once as the test set. Let Im = {i: yi Ym}, m = 1, 2,…, k denote the index set of the run-to-failure units whose sensory signals construct the subset Ym. Then the CV error is computed as the average error over all k trials and can be expressed as
HCV
1 k ˆ y , Y \ Y , LT S Lˆ w, L ¦¦ i m i N m 1 iIm
(25)
where S(x) is a predefined evaluation metric that measures the accuracy of the ensemble-predicted RUL; N denotes the number of run-to-failure units for CV; LiT denotes the true RUL of the ith unit. The above formula indicates that all units in the data set are used for both training and testing, and each unit is used for testing exactly once and for training k–1 times. Thus, the variance of the resulting estimate is likely to be reduced compared to the traditional holdout approach, resulting in superior performance when employing a small data set. It is important to note that the disadvantage of the k-fold CV against the holdout method is greater computational expense because the training process has to be executed k times. As a commonly used setting for CV, a 10-fold CV is employed in this study.
III.3.Weighting schemes
This section will introduce three schemes to determine the weights of member algorithms: the accuracy-based weighting, diversity-based weighting and optimization-based weighting.
III.3.1. Accuracybasedweighting ThepredictionaccuracyofthejthmemberalgorithmisquantifiedbyitsCVerror,expressedas
19
H CVj
1 k ¦¦ S Lˆ j yi , Y \ Ym , LTi N m 1 iIm
(26)
Theweightwjofthejthmemberalgorithmcanthenbedefinedasthenormalizationofthe correspondinginverseCVerror,expressedas
wj
H ¦ H j CV
M
i 1
1
i CV
(27)
1
Thisdefinitionindicatesthatalargerweightisassignedtoamemberalgorithmwithhigherprediction accuracy.Thus,amemberalgorithmwithbetterpredictionaccuracyhasalargerinfluenceonthe ensembleprediction.Thisweightingschemereliesexclusivelyonthepredictionaccuracytodetermine theweightsofmemberalgorithms.
III.3.2. Diversitybasedweighting TheweightformulationinEq.(27)reliesexclusivelyonthepredictionaccuracytodeterminethe weights.However,thepredictionaccuracyofmemberalgorithmsisnottheonlyfactorthataffectsthe ensembleperformance.Thepredictiondiversity,whichmeasurestheextenttowhichthepredictionsby amemberalgorithmaredistinguishablefromthosebytheothers,alsohasasignificanteffectonthe ensembleperformance,especiallyontherobustness.Morespecifically,alargerweightshouldgenerally beassignedtoamemberalgorithmwithhigherpredictiondiversitybecauseofitslargerpotentialto enhancetheensemblerobustness.
WebeginbyformulatinganNdimensionalerrorvectorconsistingofabsoluteRULpredictionerrors bythejthmemberalgorithmas
ej
ª Lˆ j y1 , Y \ Y1 LT1 ,..., Lˆ j y N , Y \ Ym LTN º ¬ ¼
20
T
(28)
RepeatedlycomputingtheerrorvectorsforallMmemberalgorithmsgivesMerrorvectorse1,e2,…,eM. ThepredictiondiversityofthejthmemberalgorithmcanthenbecomputedasthesumofEuclidean distancesbetweentheerrorvectorejandalltheothererrorvectors,givenby M
Dj
¦
e j ei
(29)
i 1;i z j
Thepredictiondiversitymeasurestheextenttowhichthepredictionsbyamemberalgorithmare distinguishablefromthosebyanyother.Basedonthedefinedpredictiondiversity,thenormalized weightwjofthejthmemberalgorithmcanthenbecalculatedas
wj
Dj
¦
M i 1
Di
(30)
Thisdefinitionsuggeststhatamemberalgorithmwithhigherpredictiondiversitywillbegivenalarger weightandthuscontributesmoretotheensemblepredictedRUL.Forexample,if,amongallthe memberalgorithms,onealgorithmconsistentlygivesearlyRULpredictionswhileanyoftheotherslate RULpredictions,theformerwilllikelybegivenalargerweightthanthelatter.Itisalsonotedthatthe weightformulationinEq.(30)considersthepredictiondiversityastheonlycriterionfortheweight determination.
III.3.3. Optimizationbasedweighting Neithertheaccuracybasednordiversitybasedweightingschemetakesintoaccountboththe predictionaccuracyanddiversityintheweightcalculation.Thus,thetwoschemescannotproducean ensemblealgorithmtoachievebothhighpredictionaccuracyandrobustness.Inwhatfollows,an optimizationbasedweightingschemeisproposedtomaximizetheaccuracyandrobustnessofdata drivenprognosticsbyadaptivelysynthesizingthepredictionaccuracyanddiversityofeachmember
21
algorithm.
Intheoptimizationbasedweightingscheme,theweightsinEq.(24)canbeobtainedbysolvingan optimizationproblemofthefollowingform
Subject to
¦
H CV Lˆ w, Lˆ yi , LTi , i 1,..., N
Minimize H CV M j
w 1 j
(31)
1
AfterthepredictionofRULsusingtheMmemberalgorithmsthroughthe10foldCV,theabove optimizationproblemcanbereadilysolvedwithalmostnegligiblecomputationaleffortsincetheweight optimizationprocessdoesnotrequiretheexecutionofmemberalgorithms.Thus,theoverall computationalcostmainlycomesfromthetrainingandtestingintheCVprocess.Weexpectthat,by solvingtheoptimizationprobleminEq.(31),theresultingensembleofalgorithmswilloutperformanyof theensemble’sindividualmemberalgorithmsintermsofbothaccuracyandrobustness.Thecapability ofthisweightingschemetoadaptivelysynthesizethepredictionaccuracyanddiversityofeachmember algorithmwillbedemonstratedinthecasestudysection.
III.4.Overall procedure
Figure2showstheoverallprocedureoftheproposedensembleapproachwiththekfoldCVand threeweightingschemes.Thisdatadrivenprognosticapproachiscomposedoftheofflineandonline processes.Intheofflineprocess,theofflinetraining/testingprocesswiththekfoldCVisemployedto computetheCVerrorofanensembleformulation;theweightsofmemberalgorithmsaredetermined usingtheaccuracybasedweighting,diversitybasedweightingandoptimizationbasedweighting.The onlinepredictionprocesscombinestheRULpredictionsfromallmemberalgorithmstoforman ensembleRULpredictionusingtheweightsobtainedfromtheofflineprocess.Thisprocessenablesthe continuousupdateofthehealthinformationandprognosticresultsinrealtimewithnewsensory 22
signals.0detailstheproposedensembleprognosticsapproachwiththefivesteps.STEPS24canbe repeatedtoincorporatenewtrainingsensorysignalsandtoupdatetheweightsandRULpredictions. Sincethecomputationallyexpensivetrainingprocesswithmultiplealgorithmsisdoneofflineandthe onlinepredictionprocesswithmultiplealgorithmsrequiresarelativelysmallamountofcomputational effort,theensembleapproachraiseslittleconcernsinthecomputationalcomplexity.Indeed,inmany engineeredsystems,theprognosticaccuracyistreatedasofmuchhigherimportancecomparedtothe computationalcomplexitysincetheoccurrenceofacatastrophicsystemfailurecausesmuchmoreloss thantheincreaseofthecomputationalefforts.Therefore,incaseswheretheensembleapproach achievesconsiderableimprovementinthepredictionaccuracyoveranysolememberalgorithm,we shouldalwaysprefertheuseoftheformer.
Figure2.
Aflowchartoftheensembleapproach
Table2 Detailedprocedureoftheensembleapproach
23
STEP1
Determinesensorconfigurationsandacquiretrainingsensorysignalsfromoffline systemunits;
STEP2a
Performtheofflinetraining&testingprocesseswiththekfoldCVwiththetraining sensorysignalstocomputetheCVerror;
STEP2b
Determinetheweightsusingtheaccuracybasedweighting,diversitybasedweighting andoptimizationbasedweightingschemes;
STEP3
Acquiretestingsensorysignalsfromonlinesystemunits;
STEP4a
PredictRULsusingthememberalgorithmsthroughtheonlinepredictionprocesswhich employsthebackgroundhealthknowledgeobtainedfromtheofflinetrainingprocess;
STEP4b PredicttheensembleRULswiththeoptimumweightsobtainedfromSTEP2b.
IV. Case Studies Inthissection,theproposedensembleofdatadrivenprognosticalgorithmsisdemonstratedwith threePHMcasestudies:(i)2008IEEEPHMchallengeproblem,(ii)powertransformerproblem,and(iii) electriccoolingfanproblem.Ineachcasestudy,theensembleapproachcombinesRULpredictionsfrom fivepopulardatadrivenprognosticalgorithms,namely,asimilaritybasedinterpolation(SBI)approach withRVMastheregressiontechnique(RVMSBI)[15,49],SBIwithSVM(SVMSBI)[47,15],SBIwiththe leastsquareexponentialfitting(ExpSBI)[15],aBayesianlinearregressionwiththeleastsquare quadraticfitting(QuadBLR)[17],andarecurrentneuralnetwork(RNN)approach[50,18].Details regardingthefiveprognosticalgorithmsaregiveninSectionII. IV.1.
2008 IEEE PHM challenge problem
In an aerospace system (e.g., an airplane, a space shuttle), system safety plays an important role since failures can lead to dramatic consequences. In order to meet stringent safety requirements as well as minimize the maintenance cost, condition-based maintenance must be conducted throughout the system’s lifetime, which can be enabled by system health prognostics. This case study aims at predicting the RULs
24
of aircraft engine systems in an accurate and robust manner with massive and heterogeneous sensory data. IV.1.1. Description of data set
The data set provided by the 2008 IEEE PHM Challenge problem consists of multivariate time series signals that are collected from an engine dynamic simulation process. Each time series signal comes from a different degradation instance of the dynamic simulation of the same engine system [39]. The data for each cycle of each unit include the unit ID, cycle index, 3 values for an operational setting and 21 values for 21 sensor measurements. The sensor data were contaminated with measurement noise and different engine units start with different initial health conditions and manufacturing variations which are unknown. Three operational settings have a substantial effect on engine degradation behaviors and result in six different operation regimes as shown in Table 3. The 21 sensory signals were obtained from six different operation regimes. The whole data set was divided into training and testing subsets, each of which consists of 218 engine units. In the training data set, the damage growth in a unit was allowed until the occurrence of a system failure when one or more limits for safe operation have been reached. In the testing data set, the time series signals were pruned some time prior to the occurrence of a system failure. The objective of the problem is to predict the number of remaining operational cycles before failure in the testing data set.
Table3 Sixdifferentoperationregimes
Operating Operating Operating RegimeID parameter1 parameter2 parameter3 1
0
0
100
2
20
0.25
20
3
20
0.7
0
4
25
0.62
80
5
35
0.84
60
6
42
0.84
40
25
IV.1.2. Implementation of ensemble approach
FortheCVprocess,thetrainingdatasetwith218unitsweredividedto10datasubsetswithasimilar size.Eachdatasubsetwasusedforbothtrainingandtestingand,morespecifically,9timesfortraining andoncefortesting.Thetrainingdatasubsetscontaincompletedegradationinformationwhilethe testingdatasubsetscarryonlypartialdegradationinformation.Thelatterweregeneratedbytruncating theoriginaldatasubsetsafterpreassignedRULs.TheRULpreassignedtoeachunitinatestingdata subsetwasrandomlygeneratedfromauniformdistributionbetweenitszeroandhalfremaininglife. Thisrangeintheuniformdistributionwasselectedbasedonthefollowingtwocriteria:(i)thepre assignedRULsshouldbesmallenoughtoallowtheoccurrenceofsubstantialdegradation;and(ii)the variationofthepreassignedRULsshouldbelargeenoughtotesttherobustnessofalgorithms.
Amongthe21sensorysignals,somesignalscontainnoorlittledegradationinformationofanengine unitwhereastheothersdo.ToimprovetheRULpredictionaccuracy,importantsensorysignalsmustbe carefullyselectedtocharacterizethedegradationbehaviorofengineunitsforhealthprognostics. Followingtheworkin[15],thisstudyselected7sensorysignals(2,3,4,7,11,12and15)amongthe21 sensorysignalsfortheuseinthememberalgorithms:RVMSBI,SVMSBI,ExpSBIandQuadBLR.A monotoniclifetimetrendcanbeobservedfromthese7sensorysignalsofwhichthenoiselevelsare relativelylow.FortheVHIconstruction,thesystemfailurematrixQ0wascreatedwiththesensorydata inasystemfailurecondition,0Ld4,whilethesystemhealthymatrixQ1withthoseinasystem healthycondition,L>300.TheRVMemployedalinearsplinekernelfunctionwiththeinitialmost probablehyperparametervectorforkernelweightsm=[1×104,…,1×104]andtheinitialmostprobable noisevariancem2=1×10–4.IntheSVM,aGaussiankernelfunctionisusedwiththeparametersettings
26
as:theregularizationparameterC=10andtheparameteroftheinsensitivelossfunction=0.10.In theRNNtraining,the21normalizedsensorysignalstogetherwiththeregimeIDateachcyclewereused asthemultidimensionalinputsoftheRNNandtheRULatthecorrespondingcyclewasusedasthe output.Theimplementationdetailscanbefoundin[18].IntheRNNarchitecture,thenumbersofthe input,recurrentandoutputunitsare|I|=22,|R|=8and|O|=1.
Theevaluationmetricconsideredforthisexampleemployedanasymmetricscorefunctionaround thetrueRULsuchthatheavierpenaltiesareplacedonlatepredictions[39].Thescoreevaluationmetric Scanbeexpressedas
S Lˆi , LTi
°exp di /13 1, di 0 ® °¯exp di /10 1, di t 0
where di
Lˆi LTi
(32)
where Lˆi and LiT denote the predicted and true RUL of the ith unit, respectively. This score function was used to compute the CV error CV using Eq. (25) for the accuracy- and optimization-based weighting schemes. In this study the weight optimization problem in Eq. (31) was solved using a sequential quadratic optimization (SQP) method which is a gradient-based optimization technique.
IV.1.3. Results of ensemble approach
ThefiveselectedmemberalgorithmsareRVMSBI(RS),SVMSBI(SS),ExpSBI(ES),QuadBLR(QB) andRNN(RN).Thethreeweightingschemesaretheaccuracybasedweighting(AW),diversitybased weighting(DW)andoptimizationbasedweighting(OW).Table4summarizestheweightingresultsby thethreeweightingschemesaswellascomparestheCVandvalidationerrorsoftheindividualand ensembleapproaches.Itisobservedthattheensembleapproacheswithallthreeweightingschemes outperformsanyoftheindividualmemberalgorithmintermsoftheCVerrorandthattheonewiththe optimizationbasedweightingachievesthesmallestCVerrorof4.8387onthetrainingdataset,a 38.62%improvementoverthebestindividualmemberalgorithm,ES,whoseCVerroris7.8834.As 27
expected,theaccuracybasedweightingschemeyieldsbetterpredictionaccuracythanthediversity basedweighting.Thiscanbeattributedtothefactthattheformerassignslargerweightstomember algorithmswithbetterpredictionaccuracywhilethelatterdoesnotconsiderthepredictionaccuracyin theweightdetermination.Totesttherobustnessoftheensembleapproaches,thetestingdatasetwith 218unitswereemployedtocomputethevalidationerrors.Notethatthetestingdatasetisdifferent fromthetrainingdatasetthatwasusedtodeterminetheweightsintheensembleapproach.Itis apparentthattheensembleapproachesagainoutperformtheindividualmemberalgorithmsandthat theonewiththediversitybasedweightingperformsbest,witha34.7%improvementoverthebest individualmemberalgorithm,SS.Thissuggeststhatthediversitybasedweighting,comparedtothe accuracybasedweighting,providesamorerobustensembleofthememberalgorithms.Itisnotedthat theoptimizationbasedweightingschemestillachievesacomparablevalidationerrortothatofthe diversitybasedweightingscheme.
Undertheoptimizationbasedweightingscheme,theRULpredictionsbytwoindividualalgorithms, ESandQB,withthelargestweightsandtheensembleapproachareplottedfor218trainingandtesting unitsinFigure3.TheunitsaresortedbytheRULsinanascendingorder.ItisseenthatEStendstogive consistentlyearlyRULpredictionswhileQBtendstoprovideconsistentlylateRULpredictions.In contrast,theensembleapproachgivesRULpredictionsclosertothetruevalueswhileeliminatingmany outliersproducedbythetwoindividualalgorithms.Theoptimizationbasedweightingschemeprovides betterperformancesincetheschemeemploysanoptimumensembleformulation.
28
(a) Figure3.
(b)
RULpredictionsoftrainingunits(a)andtestingunits(b)for2008PHM challengeproblem(optimizationbasedweighting)
Table4 Weightingresults,CVandvalidationerrorsfor2008PHMchallengeproblem
RSSSESQBRN RS
SS
ES
QB
RN
AW
DW
OW
WeightbyAW
0.3063
0.3029
0.3137
0.0151 0.0620
WeightbyDW
0.1478
0.1488
0.1488
0.3354 0.2191
WeightbyOW
0.0000
0.0470
0.7462
0.2068 0.0000
CVerror
8.0743
8.1646
7.8834
163.3376 39.8583
Validation error
10.2393
9.3907
10.4710
247.0079
29
20.1499
6.9159
7.0852
4.8387
8.5544
6.1280
6.1955
IV.1.4. Comparison of different combinations of member algorithms
Outofthefivememberalgorithms,31differentcombinationscanbechosentoformulatean ensembleapproach.Itwouldbeinterestingtostudyhowachoiceofcombinationaffectsthe performanceofanensembleapproach.Table5summarizestheCVerrorsforensembleapproacheswith allpossiblecombinationsofthememberalgorithmsundertheoptimizationbasedweightingscheme. Threeimportantremarkscanbederivedfromtheresults.Firstofall,itisobservedthattheES,asthe individualmemberalgorithmwiththebestperformance,alwaysservesasamemberalgorithmofthe bestensembleapproach.WealsoobservethattheES,wheninvolvedintheensembleapproach,always hadalargerweightthananyother.Itindicatesthatthebestmemberalgorithmexhibitsgood cooperativeperformancewhichcanbeidentifiedbytheoptimizationbasedweightingscheme. Secondly,theQB,whichgivestheworstindividualperformance,wassurprisinglyselectedasan importantmemberofthebestensembleapproach.Theseresults,thoughcounterintuitive,suggestthat theensembleapproachcanadaptivelysynthesizethepredictionabilityanddiversityofeachindividual algorithmtoenhancetheaccuracyandrobustnessofRULpredictions.Indeed,theQBispronetogive lateRULpredictionsasshowninFigure3andthuspossesseshigherpredictiondiversity.Thirdly,both themeanandstandarddeviationofCVerrorsdecreaseasthenumberofmemberalgorithmsincreases. ThemeanandstandarddeviationofCVerrorsofensembleapproacheswithasinglememberalgorithm are45.4636and67.3188,respectively,andtheymonotonicallydecreaseto5.1896and0.7440, respectively,bytheensembleapproachwithfourmemberalgorithms.Thusitwouldbebeneficialto havemorememberalgorithmstoenhancethepredictionaccuracyandreducetheuncertaintyofthis accuracy.
Table5 ComparisonofCVerrorsofdifferentcombinationsofmemberalgorithmsfor2008PHM
30
challengeproblem(optimizationbasedweighting) Combination
CVerror
Combination
CVerror
Combination
CVerror
RS
8.0743
RSSS
8.0769
RSSSES
7.8834
SS
8.1646
RSES
7.8834
RSSSQB
4.9123
ES
7.8834
RSQB
4.9162
RSSSRN
6.7983
QB
163.3376
RSRN
6.8002
RSESQB
4.8391
RN
39.8583
SSES
7.8834
RSESRN
6.5194
Mean
45.4636
Stda
67.3188
RS SS ES QB
4.8387
SSQB
4.9362
RSQBRN
4.9162
RSSSESRN
6.5194
SSRN
6.8376
SS ES QB
4.8387
RSSSQBRN
4.9123
ES QB
4.8391
SSESRN
6.5194
RSESQBRN
4.8391
ESRN
6.5194
SSQBRN
4.9362
SS ES QB RN
4.8387
QBRN
17.5868
ESQBRN
4.8391
Mean
5.1896
Mean
7.6279
Mean
5.7002
Std
0.7440
Std
3.7182
Std
1.1234
RSSSESQBRN
4.8387
a
Standarddeviation
IV.2.
Power transformer problem
Thepowertransformerisacriticalpowerelementinnuclearpowerplants,sinceanunexpected breakdownofthetransformercausesplantshutdownandsubstantialsocietalexpense.Soitisvery importanttoensurehighreliabilityandsafetyofthetransformerduringitsoperation.Investigationsof
31
thefailurescauseshaverevealedthatmechanicalbreakdownsconstitutealargeportionofunexpected breakdownsoftransformersinnuclearpowerplants[40].Therefore,healthmonitoringandprognostics ofthetransformerwithrespecttomechanicalfailuresisofsignificantimportancetopreventing unexpectedbreakdownsandminimizinginterruptionstoreliablecustomerservice.Thiscasestudy conductstransformerhealthprognosticswithsensorysignalsobtainedfromafiniteelement(FE)model ofapowertransformer. IV.2.1. Model description
TheFEmodelofapowertransformerwascreatedinANSYS10asshowninFigure4,whereone exteriorwallisconcealedtomaketheinteriorstructurevisible.Thetransformerisfixedatthebottom surfaceandavibrationloadwiththefrequencyof120Hzisappliedtothemagneticcore.Thethree windingshaveatotalnumberoftwelvesupportjoints,witheachhavingfoursupportjoints.Therandom parametersconsideredinthisstudyarelistedinTable6,whichincludesthematerialpropertiesof supportjointsandwindingsaswellthegeometriesofthetransformer.Theuncertaintiesinvibration responsespropagatedfromtheseuncertainparameterswillbeaccountedforwhengenerating prognosticdata. Sinceitisverydifficult,ifnotimpossible,toobtaindirectmeasurementsofthehealthconditionof transformers,indirectmeasurementsaremostoftenusedtodiagnosethehealthconditionandpredict theRULsoftransformers[41].Inparticular,thevibrationsofthemagneticcoreandofthewindings couldcharacterizetransitoryoverloadsandpermanentfailuresbeforeanyirreparabledamageoccurs [42,43].Thus,thiscasestudyemploysthevibrationsignalsofthemagneticcoreandofthewindingsofa powertransformertopredicttheRULsoftransformers.
32
Damagedjoint
Figure4.
ApowertransformerFEmodel(withoutthe coveringwall)
Table6 Randomgeometriesandmaterialpropertiesforpowertransformerproblem
Component
Physicalmeaning
Distri.type
x1
WallThickness
Normal
3
0.015
x2
Angularwidthofsupportjoints
Normal
15
0.075
x3
Heightofsupportjoints
Normal
6
0.03
x4
Young’smodulusofsupport joint
Normal
2E+12
1E+10
x5
Young’smodulusofwinding
Normal
1.28E+12
6E+8
x6
Poissonratioofjoints
Normal
0.27
0.0027
x7
Poissonratioofwinding
Normal
0.34
0.0034
x8
Densityofjoints
Normal
7.85
0.000785
x9
Densityofwindings
Normal
8.96
0.0896
33
Mean
Std
IV.2.2. Prognostic data generation
Thefailuremodeconsideredinthisstudyisthelooseningofawindingsupportjoint(seeFigure4) inducedbythemagneticcorevibration.Thejointlooseningwasrealizedbyreducingthestiffnessofthe joint.Thefailurecriterionisdefinedasa99%stiffnessreductionofthejoint.Tomodelthetrajectoryof changeinstiffnessovertime,thisstudyusesadamagepropagationmodelwithanexponentialformas [39] E t
E0 bE 1 exp aE t
(33)
where E0 is the initial Young’s modulus of the joint; aE and bE are the model parameters; t is the cycle time. The initial Young’s modulus E0 follows the same normal distribution with x4 (see Table 6). The model parameters aE and bE are independent and normally distributed with means 0.002 and 4E+12, each of which has a 10% coefficient of variation.
Sincedatadrivenprognosticapproachesrequirealargeamountofprognosticdata,itis computationallyintolerable,ifnotimpossible,tosimplyrunthesimulationtogenerateeverydatapoint. Toovercomethisdifficulty,thisstudyemployedtheunivariatedecompositionmethodthatonlyusesa certainnumberofunivariatesamplepointstoconstructtheresponsesurfaceforageneralmultivariate responsefunctionwhileachievinggoodaccuracy[44].Thisstudyselected5straingauges(seeFigure5) fromtheoptimallydesignedsensornetworkconsistingof9straingaugesandthusrequiresthe constructionof5responsessurfaces.Thedatagenerationprocessinvolvesfoursequentiallyexecuted procedures:(i)fourunivariatesamplepointswereobtainedfromtheharmonicanalysistoconstruct responsesurfaces,alongthedamagepropagationpath,thatapproximatethestraincomponentsatfive sensorlocationsasfunctionsofrandomvariablesdetailedinTable6;(ii)400randomlygenerated samplesofE0,aEandbEwereusedinconjunctionwithEq.(33)toproduce400damagepropagation paths,ofwhich200pathswereassignedtothetrainingunitsandtheresttothetestingunits;(iii)the constructedresponsesurfaceswereusedtointerpolatethestraincomponentsatfivesensorlocations
34
foragivensetofrandomlygeneratedgeometriesandmaterialpropertiesanddamagepropagation paths,andrepeatedlyexecutingthisprocessfor400timesgavethetrainingdatasetwith200training unitsandthetestingdatasetwith200testingunits;(iv)measurementnoisefollowingazeromean normaldistributionwasaddedtoboththetrainingandtestingdatasetstofinalizethedatageneration. Thecubicsplinewasusedasthenumericalschemefortheresponsesurfaceconstructionand interpolation.Simulatedmeasurementsbysensors1and5areplottedagainsttheadjustedcycleindex, definedasthesubtractionofthecycletofailurefromtheactualoperationalcycle, inFigure6forall200 trainingunitsinthetrainingdataset.
4 3 5
1 2
Figure5.
5straingaugeslocatedonthesidewallofpower transformer
35
(a) Figure6.
(b)
Simulatedmeasurementsbysensors1(a)and5(b)forpowertransformer problem
IV.2.3. Implementation of ensemble approach
Thetrainingdatasetwith200unitswereequallyandrandomlydividedto10subsets.Similartothe firstexample,whenusedforthetestinginCV,eachunitinasubsetwasassignedwitharandomly generatedRULfromauniformdistributionbetweenitszeroandhalfremaininglife.Allthefivemember algorithmsusedthesameparametersettingswiththosedetailedinSectionIV.1.2.Thescorefunctionin Eq.(32)wasagainusedtocomputetheCVerrorCVfortheaccuracyandoptimizationbasedweighting schemes.
IV.2.4. Results of ensemble approach
Table7summarizestheweightingresultsbythethreeweightingschemesaswellascomparestheCV andvalidationerrorsoftheindividualandensembleapproaches.Comparedtothefirstexample,similar resultscanbeobserved:(i)theensembleapproacheswithallthreeweightingschemesyieldsmallerCV errorthananyoftheindividualmemberalgorithmandtheonewiththeoptimizationbasedweighting givesthesmallestCVerrorof2.7258onthetrainingdataset,a66.48%improvementoverthebest 36
individualmemberalgorithm,RN,whoseCVerroris8.1323;(ii)theaccuracybasedweightingscheme yieldsacomparableCVerrortothatofthediversitybasedweighting;(iii)theoptimizationbased weightingschemeachievesavalidationerrorof5.6138,whichiscomparabletothesmallestvalidation errorof5.6119bythediversitybasedweightingscheme.
Undertheoptimizationbasedweightingscheme,theRULpredictionsbytwoindividualalgorithms, ESandQB,withthelargestweightsandtheensembleapproachareplottedfor218trainingandtesting unitsinFigure7.ItcanbeobservedthatESandQBarepronetoproduceearlyandlateRULpredictions, respectively,whiletheensembleapproachgivesRULpredictionsclosertothetruevalueswithamuch smallernumberofoutliers.
Table7 Weightingresults,CVandvalidationerrorsforpowertransformerproblem
RSSSESQBRN RS
SS
ES
QB
RN
AW
DW
OW
WeightbyAW
0.2128
0.2265
0.2343
0.0677
0.2588
WeightbyDW
0.1488
0.1486
0.1688
0.3290
0.2048
WeightbyOW
0.0000
0.0000
0.6303
0.2336
0.1361
CVerror
9.8922
9.2945
8.9849
Validation error
6.5737
6.8847
7.8251
8.1323 31.0891
3.4874
3.4124
2.7258
20.0356 15.2265
5.7825
5.6119
5.6138
37
(a) Figure7.
(b)
RULpredictionsoftrainingunits(a)andtestingunits(b)forpower transformerproblem(optimizationbasedweighting)
IV.2.5. Comparison of different combinations of member algorithms
Acomparisonstudyofdifferentcombinationsofmemberalgorithmswasagaincarriedoutusingthe optimizationbasedweightingschemeforthepowertransformerproblem.Table8summarizesthe comparisonresultsfromwhichseveralimportantremarkssimilartothoseinthefirstexamplecanbe derived.Firstofall,thememberalgorithmsESandQBcanalwaysbeobservedinthebestensemble approachwithmorethanonememberalgorithms.WealsoobservethatthecombinationESandQB, wheninvolvedintheensembleapproach,alwayshadalargerweightthananyother.Thisresultis differentfromwhatweobserveinthefirstexample,wherethelargestweightwasassignedtothebest individualmemberalgorithm.Thissuggeststhattheoptimizationbasedweightingschememakesless useoforevendiscardedthebestmemberalgorithmthatdoesnotexhibitgoodcooperative performancewithothermembers.Secondly,theQB,whichgivestheworstindividualperformanceand ispronetogivelaterRULpredictions(seeFigure7),wasselectedasanimportantmemberofthebest ensembleapproach.Thisagainsuggeststhatthepredictiondiversityplaysanimportantroleinthe weightdetermination.Thirdly,asisthecaseinthefirstexample,boththemeanandstandarddeviation
38
ofCVerrorsdecreaseasthenumberofmemberalgorithmsincreases.Thustheadditionofmember algorithmstendstoenhancethepredictionaccuracyandreducetheuncertaintyofthisaccuracy.
Table8 ComparisonofCVerrorsofdifferentcombinationsofmemberalgorithmsforpowertransformer
problem(optimizationbasedweighting) Combination
CVerror
Combination
CVerror
Combination
CVerror
RS
9.8922
RSSS
9.2945
RSSSES
8.9561
SS
9.2945
RSES
8.9849
RSSSQB
3.1688
ES
8.9849
RSQB
3.1764
RSSSRN
3.9651
QB
31.0891
RSRN
3.9744
RSESQB
2.7894
RN
8.1323
SSES
8.9561
RSESRN
3.4557
Mean
13.4786
Std
9.8650
RSSSESQB
2.7894
SSQB
3.1815
RSQBRN
3.1470
RSSSESRN
3.4557
SSRN
3.9671
SSESQB
2.7894
RSSSQBRN
3.1433
ES QB
2.7894
SSESRN
3.4557
RS ES QB RN
2.7258
ESRN
3.4557
SSQBRN
3.1559
SS ES QB RN
2.7258
QBRN
6.9724
ES QB RN
2.7258
Mean
2.9680
Mean
5.4752
Mean
3.7609
Std
0.3232
Std
2.7412
Std
1.8640
RSSSESQBRN
2.7258
IV.3.
Electric cooling fan problem
Inadditiontothenumericalstudies,wealsoconductedexperimentaltestingtoverifythe
39
effectivenessoftheensembleapproach.Inthiscasestudy,weappliedtheensembleapproachtothe healthprognosticsofelectroniccoolingfanunits.Coolingfansareoneofthemostcriticalpartsin systemthermalsolutionofmostelectronicproducts[51]andincoolingtowersofmanychemicalplants [52].Thisstudyaimstodemonstratetheproposedensembleprognosticswith32electroniccooling fans. IV.3.1. Experimental setup
Inthisexperimentalstudy,thermocouplesandaccelerometerswereusedtomeasuretemperature andvibrationsignals.Tomaketimetofailuretestingaffordable,theacceleratedtestingconditionfor theDCfanunitswassoughtwithinclusionofasmallamountoftinymetalparticlesintoballbearings andanunbalancedweightononeofthefanunits.TheexperimentblockdiagramofDCfanaccelerated degradationtestisshowninFigure8.Asshowninthediagram,theDCfanunitsweretestedwith12V regulatedpowersupplyandthreedifferentsignalsweremeasuredandstoredinaPCthroughadata acquisitionsystem.Figure9(a)showsthetestfixturewith4screwsateachcornerfortheDCfanunits. AsshowninFigure9(b),anunbalancedweightwasusedandmountedononebladeforeachfan. Sensorswereinstalledatdifferentpartsofthefan,asshowninFigure10.Inthisstudy,threedifferent signalsweremeasured:thefanvibrationsignalbytheaccelerometer,thePrintedCircuitBoard(PCB) blockvoltagebythevoltmeter,andthetemperaturemeasuredbythethermocouple.Anaccelerometer wasmountedtothebottomofthefanwithsuperglue,asshowninFigure10(a).Twowireswere connectedtothePCBblockofthefantomeasurethevoltagebetweentwofixedpoints,asshownin Figure10(b).AsshowninFigure10(c),athermocouplewasattachedtothebottomofthefanand measuresthetemperaturesignalofthefan.Vibration,voltage,andtemperaturesignalswereacquired bythedataacquisitionsystemandstoredinPC.ThedataacquisitionsystemfromNationalInstruments Corp.(NIUSB6009)andthesignalconditionerfromPCBGroup,Inc.(PCB482A18)wereusedforthe dataacquisitionsystem.Intotal,32DCfanunitsweretestedatthesameconditionandallfanunitsrun
40
tillfailure.
Figure8.
DCfandegradationtestblockdiagram
(a) Figure9.
(b)
DCfantestfixture(a)andtheunbalanceweightinstallation (b)
(a)
(b)
41
(c)
Figure10.
SensorinstallationsforDCfantest:(a)accelerometer,(b)voltmeterand(c) thermocouples
IV.3.2. Implementation of Ensemble Approach
ThesensorysignalscreeningfoundthatthefanPCBblockvoltageandthefantemperaturedidnot showcleardegradationtrend,whereasthevibrationsignalshowedhealthdegradationbehavior.This studyinvolvedtherootmeansquares(RMS)ofthevibrationspectralresponsesatthefirstfive resonancefrequenciesanddefinedtheRMSofthespectralresponsesasthePHIfortheDCfan prognostics.Figure11showstheRMSsignalsofthreefanunitstodemonstratethehealthdegradation behavior.TheRMSsignalgraduallyincreasedasthebearinginthefandegradedovertime.Itwasfound thatthePHIishighlyrandomandnonmonotonicbecauseofmetalparticles,sensorysignalnoise,and inputvoltagenoise.
Among32fanunits,thefirst20fanunitswereusedtoconstructthetrainingdatasetfortheCV, whiletherestwereusedtobuildthetestingdatasetforthevalidation.Duetothesmallamountof trainingdata,thiscasestudyemployedthe5foldCVwherethetrainingdatasetwith20unitswas equallyandrandomlydividedto5subsets.Similartothepreviousexamples,whenusedforthetesting inCV,eachunitinasubsetwasassignedwitharandomlygeneratedRULfromauniformdistribution betweenitszeroandhalfremaininglife.Toexpandthenumberoftestingunits,eachtestingfanunit wasassignedwithtworandomlygeneratedRULfromauniformdistributionbetweenitszeroandhalf remaininglife,resultingintotally24testingunits.TheparametersettingsdetailedinSectionIV.1.2was againusedforthefivememberalgorithms.Withonecycledefinedaseverytenminutes,thescore functioninEq.(32)wasagainusedtocomputetheCVerrorCVfortheaccuracyandoptimization basedweightingschemes.
42
Figure11.
SampledegradationsignalsfromDCfantesting
IV.3.3. Results of Ensemble Approach
TheweightingresultsbythethreeweightingschemesandtheCVandvalidationerrorsofthe individualandensembleapproachesaresummarizedinTable9.Comparedtothepreviousexamples, weobservedquitedifferentresultsfromwhichthreeimportantremarkscanbederived.Firstofall,the ensembleapproachwiththediversitybasedweightingschemegivesconsiderablylargerCVand validationerrorsthanthebestindividualmemberalgorithms,RSandES.Thisresultisduetothefact thatthediversitybasedweighting,whichreliesexclusivelyonthepredictiondiversityfortheweight determination,assignedlargerweightstothememberalgorithms,QBandRN,whichproducedverylow predictionaccuracyduetotherandomandnonmonotonicnatureofthePHI(seeFigure11).Secondly, comparedtothebestindividualmemberalgorithms,RSandSS,theensembleapproachwiththe optimizationbasedweightinggavesmallerCVandvalidationerrors.However,theimprovementis insignificant.Sincenonzeroweightsareonlyassignedtothetwomemberalgorithms,RSandES,with superbpredictioncapability,theperformanceoftheresultingensembleistotallydeterminedbythese twoalgorithms.However,RSandESgavesimilarRULpredictionsandtheresultingensemble,whichis 43
indeedacombinationoftwoalgorithmswithsimilarpredictionbehavior,cannotachievesignificant improvementinthepredictionperformance.Therefore,weexpectthattheensembleapproach achievessignificantimprovementinthepredictionperformanceonlyincaseswherememberalgorithms withcomparablepredictionaccuracyproducediverseRULpredictions.Thirdly,althoughthemember algorithms,QBandRN,havelargerpredictiondiversity,theirpredictionaccuracyisnotcomparablewith thatofthebestmemberalgorithms,RSandSS.Asaresult,thesetwoalgorithmswerediscardedfrom thealgorithmpoolbytheoptimizationbasedweighting.Undertheoptimizationbasedweighting scheme,theRULpredictionsbytheensembleapproachareplottedforthetrainingandtestingunitsin Figure12whereweobservedveryaccurateRULpredictionsbytheensembleapproach.
Table9 Weightingresults,CVandvalidationerrorsforelectriccoolingfanproblem
RSSSESQBRN RS
SS
ES
QB
RN
AW
DW
OW
WeightbyAW
0.3646
0.3767
0.2552
0.0008 0.0027
WeightbyDW
0.1423
0.1427
0.1496
0.3285 0.2369
WeightbyOW
0.1155
0.8845
0.0000
0.0000 0.0000
CVerror
1.4770
1.4298
2.1100
717.8430 199.0067
Validation error
0.7027
0.9223
0.7037
461.5064
44
84.3975
1.5188
11.8520
1.4292
0.7185
11.0177
0.6984
(a) Figure12.
(b)
RULpredictionsoftrainingunits(a)andtestingunits(b)forelectriccooling fanproblem(optimizationbasedweighting)
V. Conclusion Thispaperproposedanovelensembleapproachforthedatadrivenprognosticsofhighrisk engineeredsystems.Bycombiningthepredictionsofallmemberalgorithms,theensembleapproach achievesbetteraccuracyinRULpredictionscomparedtoanysolememberalgorithm.Furthermore,the ensembleapproachhasaninherentflexibilitytoincorporateanyadvancedprognosticalgorithmthat willbenewlydeveloped.Tothebestofourknowledge,thisisthefirststudyofanensembleapproach withthreeweightingschemeforthedatadrivenprognostics.Sincethecomputationallyexpensive trainingprocessisdoneofflineandtheonlinepredictionprocessrequiresasmallamountof computationaleffort,theensembleapproachraiseslittleconcernsinthecomputationalfeasibility. Threeengineeringcasestudies(2008PHMchallengeproblem,powertransformerproblemandelectric coolingfanproblem)demonstratedthesuperbperformanceoftheproposedensembleapproachfor thedatadrivenprognostics.Amongthethreeweightingscheme,theoptimizationbasedweighting schemeshowedthecapabilityofadaptivelysynthesizingthepredictionaccuracyanddiversityofeach memberalgorithmtoenhancetheaccuracyofRULpredictions.Consideringtheenhancedaccuracyand
45
robustnessinRULpredictions,theproposedensembleapproachleadstothepossibilityofeffective conditionbasedmaintenancepracticeandriskinformedlifetimemanagementofhighriskengineered systems.
Acknowledgement ThisworkwaspartiallysupportedbyagrantfromtheEnergyTechnologyDevelopmentProgram (2010101010027B)andInternationalCollaborativeR&DProgram(042020110161)ofKoreaInstituteof EnergyTechnologyEvaluationandPlanning(KETEP),fundedbytheKoreangovernment’sMinistryof KnowledgeEconomy,theNationalResearchFoundationofKorea(NRF)grant(No.20110022051) fundedbytheKoreagovernment,theBasicResearchProjectofKoreaInstituteofMachineryand Materials(ProjectCode:SC0830)supportedbyagrantfromKoreaResearchCouncilforIndustrial Science&Technology,andtheInstituteofAdvancedMachineryandDesignatSeoulNationalUniversity (SNUIAMD).
References 1
Dekker R., 1996, “Applications of maintenance optimization models: a review and analysis,”
ReliabilityEngineeringandSystemSafety,v51,n3,p229–240. 2
MarseguerraM.,ZioE.,andPodofilliniL.,2002,“Conditionbasedmaintenanceoptimizationby
means of genetic algorithms and Monte Carlo simulation,” Reliability Engineering and System Safety, v77,n2,p151–165. 3
Zio E., 2009, “Review reliability engineering: Old problems and new challenges,” Reliability
EngineeringandSystemSafety,v94,n2,p125–141. 4
Barata J., Guedes Soares C., Marseguerra M., and Zio E., 2002, “Simulation modelling of
46
repairable multicomponent dteriorating systems for ‘on condition’ maintenance optimization,” ReliabilityEngineeringandSystemSafety,v76,n3,p255–264. 5
Grall A., Berenguer C., and Dieulle L., 2002, “A conditionbased maintenance policy for
stochasticallydeterioratingsystems,”ReliabilityEngineeringandSystemSafety,v76,n3,p167–180 6
WeideJ.A.M.vander,PandeyM.D.,andNoortwijkJ.M.van,2010,“Discountedcostmodelfor
conditionbased maintenance optimization,” Reliability Engineering and System Safety, v95, n3, p236– 246. 7
SmidtDestombesK.S.de,HeijdenM.C.vander,andHartenA.van,2004,“Ontheavailabilityof
a koutofN system given limited spares and repair capacity under a condition based maintenance strategy,”ReliabilityEngineeringandSystemSafety,v83,n3,p287–300. 8
Tinga T., 2010, “Application of physical failure models to enable usage and load based
maintenance”,ReliabilityEngineeringandSystemSafety,v95,n10,p1061–1075. 9
Myotyri E., Pulkkinen U., and Simola K., 2006, “Application of stochastic filtering for lifetime
prediction,”ReliabilityEngineeringandSystemSafety,v91,n2,p200–208. 10
CadiniF.,ZioE.,andAvramD.,2009,“ModelbasedMonteCarlostateestimationforcondition
basedcomponentreplacement,”ReliabilityEngineeringandSystemSafety,v94,v3,p752–758. 11
LuoJ.,PattipatiK.R.,QiaoL.,andChigusaS.,2008,“Modelbasedprognostictechniquesapplied
toasuspensionsystem,”IEEETransactionsonSystems,ManandCybernetics,PartA,v38,n5,p1156– 1168. 12
Gebraeel N., and Pan J., 2008, “Prognostic degradation models for computing and updating
residuallifedistributionsinatimevaryingenvironment,”IEEETransactionsonReliability,v57,n4,p539– 550.
47
13
Gebraeel N., Elwany A., and Pan J., 2009, “Residual life predictions in the absence of prior
degradationknowledge,”IEEETransactionsonReliability,v58,n1,p106–117. 14
Schwabacher M., 2005, “A survey of datadriven prognostics”, Proceedings of AIAA
Infotech@AerospaceConference,Arlington,VA. 15
Wang T., Yu J., Siegel D., and Lee J., 2008, “A similaritybased prognostics approach for
remaining useful life estimation of engineered systems,” International Conference on Prognostics and HealthManagement,Denver,CO,Oct69. 16
ZioE.,andDiMaioF.,2010,“Adatadrivenfuzzyapproachforpredictingtheremaininguseful
life in dynamic failure scenarios of a nuclear power plant,” Reliability Engineering and System Safety, v95,n1,p49–57. 17
Coble J.B., and Hines J.W., 2008, “Prognostic algorithm categorization with PHM challenge
application,”IEEE,InternationalConferenceonPrognosticsandHealthManagement,Denver,CO,Oct6 9. 18
Heimes F.O., 2008, “Recurrent neural networks for remaining useful life estimation,” IEEE,
InternationalConferenceonPrognosticsandHealthManagement,Denver,CO,Oct69. 19
KozlowskiJ.D.,WatsonM.J.,ByingtonC.S.,GargaA.K.,andHayT.A.,2001,“Electrochemicalcell
diagnostics using online impedance measurement, state estimation and data fusion techniques,” Proceedingsof36thIntersocietyEnergyConversionEngineeringConference,Savannah,Georgia. 20
Goebel K., Eklund N., and Bonanni P., 2006, “Fusing Competing Prediction Algorithms for
Prognostics,”Proceedingsof2006IEEEAerospaceConference,NewYork. 21
SahaB.,GoebelK.,PollS.,andChristophersenJ.,2009,“Prognosticsmethodsforbatteryhealth
monitoringusingaBayesianframework,”IEEETransactiononInstrumentationandMeasurement,v58,
48
n2,p291–296. 22
GaoJ.,FanW.andHanJ.,“Onthepowerofensemble:Supervisedandunsupervisedmethods
reconciled,”TutorialonSIAMDataMiningConference(SDM),Columbus,OH,2010 23
BreimanL.,1996,“BaggingPredictors,”MachineLearning,v24,p123140
24
BreimanL.,2001,“RandomForests,”MachineLearning,v45,p532
25
SchapireR.E.,1990,“TheStrengthofWeakLearnability,”MachineLearning,v5,p197227
26
FreundY.,andSchapireR.E.,1997,“Adecisiontheoreticgeneralizationofonlinelearningand
anapplicationtoboosting”,Journalofcomputerandsystemsciences,v55,p119139 27
Friedman J.H. and Popescu B.C., 2008, “Predictive learning via rule ensembles,” The Annals of
AppliedStatistics,v2,n3,p916954 28
PerroneM.P.,andCooperL.N.,“Whennetworksdisagree:ensemblemethodsforhybridneural
networks,”NeuralNetworksforSpeechandImageProcessing.R.J.Mammone,ed.,ChapmanHall,1993. 29
BishopC.M.,2005,Neuralnetworksforpatternrecognition.OxfordUniversityPress.
30
ZerpaL.E.,QueipoN.V.,PintosS.,andSalagerJ.L.Zerpa,2005,“Anoptimizationmethodologyof
alkaline–surfactant–polymer flooding processes using field scale numerical simulation and multiple surrogates,”JournalofPetroleumScienceandEngineering,v47,n3–4,p197–208. 31
Goel T., et al., 2007, “Ensemble of surrogates,” Structural and Multidisciplinary Optimization,
v33,n3,p199–216. 32
Acar E., and RaisRohani M., 2009, “Ensemble of metamodels with optimized weight factors,”
StructuralandMultidisciplinaryOptimization,v37,n3,p279–294. 33
HuJ.,YangY.D.,andKiharaD.,2006,“EMD:anensemblealgorithmfordiscoveringregulatory
49
motifsinDNAsequences,”BMCbioinformatics,v7,n342. 34
ChenS.,WangW.,andZuylenH,2009,“Constructsupportvectormachineensembletodetect
trafficincident,”ExpertSystemswithApplications,v36,n8,p10976–10986. 35
BaraldiP.,RazaviFarR.,andZioE.,2011,“Classifierensembleincrementallearningprocedure
for nuclear transient identification at different operational conditions,” Reliability Engineering and SystemSafety,v98,n4,p480–488. 36
Evensen G., 2003, “The ensemble Kalman filter: Theoretical formulation and practical
implementation,”OceanDynamics,v53,n4,p343–367. 37
Niu G., Yang B., and Pecht M., 2010, “Development of an optimized conditionbased
maintenance system by data fusion and reliabilitycentered maintenance,” Reliability Engineering and SystemSafety,v95,n7,p786–796. 38
KohaviR.,1995,“Astudyofcrossvalidationandbootstrapforaccuracyestimationandmodel
selection,”ProceedingsoftheInternationalJointConferenceonArtificialIntelligenceIJCAI'95'. 39
Saxena A., and Goebel K., 2008, “Damage propagation modeling for aircraft engine runto
failuresimulation,”IEEE,InternationalConferenceonPrognosticsandHealthManagement,Denver,CO, Oct69. 40
LeeW.R.,JungS.W.,YangK.H.andLeeJ.S.,2005,“Astudyonthedeterminationofsubjective
vibration velocity ratings of main transformers under operation in nuclear power plants,” 12th InternationalCongressonSoundandVibration,Paper1017,Portugal,July1114. 41
Wang M., Vandermaar A. J., and Srivastava K. D., 2002, “Review of condition assessment of
powertransformersinservice,”IEEEElectricalInsulationMagazine,v18,n6,p12–25. 42
Ji S., Luo Y., and Li Y., 2006, “Research on Extraction Technique of Transformer Core
50
Fundamental Frequency Vibration Based on OLCM”, IEEE Transactions on Power Delivery, v21, n4, p1981–1988. 43
GarcíaB.,Member,BurgosJ.C.,andAlonsoÁ.M.,2006,“TransformerTankVibrationModeling
asaMethodofDetectingWindingDeformations—PartII:ExperimentalVerification,”IEEETransactions onPowerDelivery,v21,n1,p164–169. 44
Xu H., and Rahman S., 2005, “Decomposition methods for structural reliability analysis,”
ProbabilisticEngineeringMechanics,v20,n3,p239–250. 45
Gebraeel N.Z., Lawley M.A., Li R., and Ryan J.K., 2005, “Residuallife distributions from
component degradation signals: A Bayesian approach,” IIE Transactions on Reliability, v37, n6, p543– 557. 46
Kwon D., Azarian M., and Pecht M., 2008, “Detection of solder joint degradation using RF
impedanceanalysis,”IEEEElectronicComponentsandTechnologyConference,LakeBuenaVista,FL,27 30May,p606–610. 47
Smola A.J., and Schölkopf B., 2004, “A tutorial on support vector regression,” Statistics and
Computing,v14,n3,p199–222. 48
CanuS.,MaryX.,andRakotomamonjyA.,2003,“Functionallearningthroughkernel,”Advances
inLearningTheory:Methods,ModelsandApplications,v190,p89–110. 49
Tipping M.E., 2001, “Sparse Bayesian learning and the relevance vector machine,” Journal of
MachineLearningResearch,v1,p211–244. 50
CernanskyM.,MakulaM.,andCernanskyL.,2007,“Organizationofthestatespaceofasimple
recurrentnetworkbeforeandaftertrainingonrecursivelinguisticstructures,”NeuralNetworks,v20,n2, p236–244.
51
51
Tian X., 2006, “Cooling Fan Reliability, Failure Criteria, Accelerated Life Testing, Modeling, and
Quantification,”IEEE,AnnualReliabilityandMaintainabilitySymposium,NewportBeach,CA,Jan2326. 52
Burger R. Cooling tower technology—maintenance, updating and rebuilding. Fairmont Press;
1995. 53
LindelyD.V.,andSmithA.F.,“BayesEstimatesforLinearModels,”JournaloftheRoyalStatistical
Society(B),v34,n1,p1–41,1972.
52