Every Missing Not at Random Model Has Got A Missing at Random ...

14 downloads 0 Views 754KB Size Report
BRD4. (α, βk). 7. -2467.43. 0.765. [0.674;0.856]. BRD5. (αj,β). 7. -2463.10. 0.844. [0.806;0.882]. BRD6. (αj,βj). 8. -2431.06. 0.819. [0.788;0.849]. BRD7. (αk,βk). 8.
Every Missing Not at Random Model Has Got A Missing at Random Counterpart With Equal Fit Geert Molenberghs Center for Statistics Universiteit Hasselt, Belgium

Biostatistical Centre Katholieke Universiteit Leuven, Belgium

[email protected]

[email protected]

www.censtat.uhasselt.be

www.kuleuven.ac.be/biostat/

Graybill Conference, June 12, 2008

Toenail Data De Backer, De Keyser, De Vroey, Lesaffre (British Journal of Dermatology 1996)

• Toenail Dermatophyte Onychomycosis: Common toenail infection, difficult to treat, affecting more than 2% of population • Classical treatments with antifungal compounds need to be administered until the whole nail has grown out healthy • New compounds have been developed that reduce treatment to 3 months • Randomized, double-blind, parallel group, multicenter study for the comparison of two such new compounds (A and B) for oral treatment

Graybill Conference, June 12, 2008

1

• Design: . 2 × 189 patients randomized, 36 centers . 48 weeks of total follow up (12 months) . 12 weeks of treatment (3 months) . Measurements at months 0, 1, 2, 3, 6, 9, 12

• General research question:

Are both treatments equally effective for the treatment of TDO?

Graybill Conference, June 12, 2008

2

Unaffected nail length (mm)?

Severity relative to treatment of TDO?

• As response is related to toe size, we restrict to patients with big toenail as target nail =⇒ 150 and 148 subjects • 30 randomly selected profiles, in each group:

Complication: Dropout (24%): Graybill Conference, June 12, 2008

3

The Slovenian Plebiscite Rubin, Stern, and Vehovar (1995)

• Slovenian Public Opinion (SPO) Survey • Four weeks prior to decisive plebiscite • Three questions: 1. Are you in favor of Slovenian independence? 2. Are you in favor of Slovenia’s secession from Yugoslavia? 3. Will you attend the plebiscite? • Political decision: ABSENCE≡NO • Primary Estimand: θ: Proportion in favor of independence

Graybill Conference, June 12, 2008

4

• Slovenian Public Opinion Survey Data: Independence ∗

Secession

Attendance

Yes

Yes

Yes

1191

8

21

No

8

0

4



107

3

9

Yes

158

68

29

No

7

14

3



18

43

31

Yes

90

2

109

No

1

2

25



19

8

96

No



Graybill Conference, June 12, 2008

No

5

Slovenian Plebiscite ←→ Slovenian Public Opinion Survey θ =0.885

Estimator Pessimistic bound Optimistic bound Complete cases Available cases MAR (2 questions) MAR (3 questions) MNAR Graybill Conference, June 12, 2008

θc 0.694 0.904 0.928 ? 0.929 ? 0.892 0.883 0.782 6

Modeling Frameworks & Missing Data Mechanisms

f (yi, r i|Xiθ, ψ) Selection Models: f (y i|Xi, θ) f (ri|Xi, y oi, y m i , ψ) −→

MCAR f (ri|Xi, ψ)

MAR f (r i|Xi, y oi, ψ)

−→

MNAR f (ri|Xi, y oi, y m i , ψ)

Pattern-mixture Models: f (y i|Xi, r i, θ) f (r i|Xi, ψ) Shared-parameter Models: f (y i|Xi, bi, θ) f (r i|Xi, bi, ψ)

Graybill Conference, June 12, 2008

7

MAR in 3 Frameworks

Selection models

Pattern-mixture models

Shared-parameter models

Graybill Conference, June 12, 2008

f (ri|y i, ψ) = f (ri|y oi, ψ)

o m o f (y m i |y i , r i , θ) = f (y i |y i , θ)

?

8

MAR in Selection Models Diggle and Kenward (ApStat 1994)

f (ri|y i, ψ) = f (r i|yoi, ψ) • Longitudinal data: logit [P (Di = j|Di ≥ j, yij , yi,j−1 )] = ψ0 + ψ1yi,j−1 + ψ2 yij ψ2 6= 0

←→

MNAR

ψ2 = 0

←→

MAR

ψ1 = ψ2 = 0

←→

MCAR

• No dependence on the future (NFD): built in Graybill Conference, June 12, 2008

9

MAR in Pattern-mixture Models Molenberghs, Michiels, Kenward, and Diggle (Statistica Neerlandica 1998) Thijs, Molenberghs, Michiels, Verbeke, and Curran (Biostatistics 2002)

o, r , θ) = f (y m|y o, θ) f (ym |y i i i i i

• For longitudinal data: ACMV: available case missing value restrictions: ∀t ≥ 2, ∀s < t : f (yit|yi1, · · · , yi,t−1 , di = s) = f (yit |yi1, · · · , yi,t−1 , di ≥ t) • Practical implementation: doable! f (yit |yi1, · · · , yi,t−1 , di = s) = Graybill Conference, June 12, 2008



αdfd(yi1 , . . . , yi,s−1 )   fd (ys |yi1 , . . . , yi,s−1 ) i α f (y , . . . , y ) i,s−1 d=s d d i1

n  X   Pn

d=s



10

Non-future Dependence in Pattern-Mixture Models Kenward, Molenberghs, and Thijs (Biometrika 2003)

• Within every pattern: . Past: Build a model for the observed data . Present, given past: For the first unobserved time, given the past: Free choice! . Future, given past and present: Use ACMV-type restrictions • Named NFMV: non-future missing values • Equivalence: SeM: NFD

Graybill Conference, June 12, 2008

⇐⇒

PMM: NFMV

11

MAR in Shared-parameter Models Creemers, Hens, Aerts, Molenberghs, Verbeke, and Kenward (2008)

f (y i|Xi, bi, θ) f (ri|Xi, bi, ψ)

Conventional

∩ Extended

o f (y oi|g i, hi, j i, `i)f (y m i |y i , g i , hi , ki , mi ) f (r i |g i , j i , k i ni )

∪ R

o |y f (y oi|g i, hi, j i)f (y m i i , g i , hi , k i )f (r i |g i , j i , k i )f (bi ) dbi R f (y oi|g i, j i)f (r i|g i, j i)f (bi) dbi

MAR

= R

Graybill Conference, June 12, 2008

o f (y oi|g i, hi)f (y m i |y i , g i , hi )f (bi ) dbi f (y oi) 12

MAR in Shared-parameter Models Creemers, Hens, Aerts, Molenberghs, Verbeke, and Kenward (2008)

Extended

o f (y oi|g i, hi, j i, `i)f (y m i |y i , g i , hi , ki , mi ) f (r i |g i , j i , k i ni )

∪ R o f (y oi|g i, hi, j i)f (y m i |y i , g i , hi , k i )f (r i |g i , j i , k i )f (bi ) dbi R f (y oi|g i, j i)f (r i|g i, j i)f (bi) dbi MAR

= R o f (y oi|g i, hi)f (y m i |y i , g i , hi )f (bi ) dbi f (y oi) ∪

Sub-class MAR

Graybill Conference, June 12, 2008

o f (y oi|j i, `i )f (y m i |y i , mi )f (r i |j i , ni )

13

Slovenian Public Opinion Survey: An MNAR Model Family Baker, Rosenberger, and DerSimonian (1992)

• Counts: Yr1 r2 jk • Questions: j, k = 1, 2

E(Y11jk ) = mjk E(Y10jk ) = mjk βjk E(Y01jk ) = mjk αjk

• Non-response: r1 , r2 = 0, 1

E(Y00jk ) = mjk αjk βjk γjk

. αjk : non-response on independence question . βjk : non-response on attendance question . γjk : interaction between both non-response indicators Graybill Conference, June 12, 2008

14

Slovenian Public Opinion Survey: Identifiable Models

Model

Structure

d.f.

loglik

θ

C.I.

BRD1

(α, β)

6

-2495.29

0.892

[0.878;0.906]

BRD2

(α, βj )

7

-2467.43

0.884

[0.869;0.900]

BRD3

(αk , β)

7

-2463.10

0.881

[0.866;0.897]

BRD4

(α, βk )

7

-2467.43

0.765

[0.674;0.856]

BRD5

(αj , β)

7

-2463.10

0.844

[0.806;0.882]

BRD6

(αj , βj )

8

-2431.06

0.819

[0.788;0.849]

BRD7

(αk , βk )

8

-2431.06

0.764

[0.697;0.832]

BRD8

(αj , βk )

8

-2431.06

0.741

[0.657;0.826]

BRD9

(αk , βj )

8

-2431.06

0.867

[0.851;0.884]

Graybill Conference, June 12, 2008

15

Slovenian Public Opinion Survey: An MNAR “Interval” θ =0.885

Estimator [Pessimistic; optimistic] Complete cases Available cases MAR (2 questions) MAR (3 questions) MNAR MNAR “interval” Graybill Conference, June 12, 2008

θc [0.694;0.904] 0.928 0.929 0.892 0.883 0.782 [0.741;0.892] 16

Slovenian Public Opinion Survey: Interval of Ignorance Model BRD1

Structure (α, β)

d.f. 6

loglik -2495.29

θ 0.892

C.I. [0.878;0.906]

BRD2

(α, βj )

7

-2467.43

0.884

[0.869;0.900]

BRD3

(αk , β)

7

-2463.10

0.881

[0.866;0.897]

BRD4

(α, βk )

7

-2467.43

0.765

[0.674;0.856]

BRD5

(αj , β)

7

-2463.10

0.844

[0.806;0.882]

BRD6

(αj , βj )

8

-2431.06

0.819

[0.788;0.849]

BRD7

(αk , βk )

8

-2431.06

0.764

[0.697;0.832]

BRD8

(αj , βk )

8

-2431.06

0.741

[0.657;0.826]

BRD9 Model 10

(αk , βj ) (αk , βjk )

8 9

-2431.06 -2431.06

0.867 [0.762;0.893]

[0.851;0.884] [0.744;0.907]

Model 11

(αjk , βj )

9

-2431.06

[0.766;0.883]

[0.715;0.920]

Model 12

(αjk , βjk )

10

-2431.06

[0.694;0.904]

Graybill Conference, June 12, 2008

17

Every MNAR Model Has Got an MAR Counterpart Molenberghs, Beunckens, Sotto, and Kenward (JRSSB 2008) Creemers, Hens, Aerts, Molenberghs, Verbeke, and Kenward (2008)

• Fit an MNAR model to a set of incomplete data • Change the conditional distribution of the unobserved outcomes, given the observed ones, to comply with MAR • Resulting new model has exactly the same fit as the original MNAR model • The missing data mechanism has changed • This implies that definitively testing for MAR versus MNAR is not possible Graybill Conference, June 12, 2008

18

MAR Counterpart to Pattern-mixture Models

c d c d c f (y io, y im, ri |θ, ψ) = f (y io|ri, θ) f (ri|ψ) f (y im|y io, ri, θ)



c d c d c d h(y io, y im, ri |θ, ψ) = f (y io|ri, θ) f (ri|ψ) f (y im|y io, θ, ψ)

• Starting from PMM is “natural”: clear separation into: . fully observable components . entirely unobserved component Graybill Conference, June 12, 2008

19

MAR Counterpart to Selection Models

c d c d f (y io , y im , ri|θ, ψ) = f (y io, y im|θ) f (r i|y io, y im, ψ)

↓ c d c d c d c d ψ) = f (y io|ri, θ, ψ) f (r i|θ, ψ) f (y im |y io, ri, θ, ψ) f (y io , y im , ri|θ,

↓ c d c d c d c d h(y io , y im , ri|θ, ψ) = f (y io|ri, θ, ψ) f (r i|θ, ψ) f (y im |y io, θ, ψ)

Graybill Conference, June 12, 2008

20

MAR Counterpart to Shared-parameter Models

o f (y io, y im, ri|bi) = f (y oi|g i, hi, j i, `i ) f (y m |y i i , g i , hi , k i , mi ) f (r i |g i , j i , k i ni )

↓ o h(y io, y im, ri|bi) = f (y oi|g i, hi, j i, `i ) h(y m |y i i , mi ) f (r i |g i , j i , ki ni )

with o h(y m |y i i , mi )

Graybill Conference, June 12, 2008

Z

Z

Z

o = g hi ki f (y m |y i i , g i , hi , ki , mi )dg i dhi dki i

21

Slovenian Public Opinion Survey: Counterpart Added θb

Model

Structure

d.f.

loglik

θ

C.I.

BRD1

(α, β)

6

-2495.29

0.892

[0.878;0.906]

0.8920

BRD2

(α, βj )

7

-2467.43

0.884

[0.869;0.900]

0.8915

BRD3

(αk , β)

7

-2463.10

0.881

[0.866;0.897]

0.8915

BRD4

(α, βk )

7

-2467.43

0.765

[0.674;0.856]

0.8915

BRD5

(αj , β)

7

-2463.10

0.844

[0.806;0.882]

0.8915

BRD6

(αj , βj )

8

-2431.06

0.819

[0.788;0.849]

0.8919

BRD7

(αk , βk )

8

-2431.06

0.764

[0.697;0.832]

0.8919

BRD8

(αj , βk )

8

-2431.06

0.741

[0.657;0.826]

0.8919

BRD9

(αk , βj )

8

-2431.06

0.867

[0.851;0.884]

0.8919

Model 10

(αk , βjk )

9

-2431.06

[0.762;0.893]

[0.744;0.907]

0.8919

Model 11

(αjk , βj )

9

-2431.06

[0.766;0.883]

[0.715;0.920]

0.8919

Model 12

(αjk , βjk )

10

-2431.06

[0.694;0.904]

Graybill Conference, June 12, 2008

MAR

0.8919 22

Slovenian Public Opinion Survey: Incomplete Data

Observed ≡ BRD7 ≡ BRD7(MAR) ≡ BRD9 ≡ BRD9(MAR):

BRD1 ≡ BRD1(MAR):

BRD2 ≡ BRD2(MAR):

Graybill Conference, June 12, 2008

1439

78

159

16

16

32

1381.6 101.7

182.9

41.4

8.1

1402.2 108.9

159.0

24.2

15.6

22.3

32.0

144

54

136

179.7 18.3

136.0

181.2 16.8

136.0

23

Slovenian Public Opinion Survey: Complete-data Prediction BRD1 ≡ BRD1(MAR):

1381.6 101.7 24.2 41.4

170.4 12.5 3.0 5.1

176.6 13.0 3.1 5.3

121.3 9.0 2.1 3.6

BRD2:

1402.2 108.9 15.6 22.3

147.5 11.5 13.2 18.8

179.2 13.9 2.0 2.9

105.0 8.2 9.4 13.4

BRD2(MAR):

1402.2 108.9 15.6 22.3

147.7 11.3 13.3 18.7

177.9 12.5 3.3 4.3

121.2 9.3 2.3 3.2

BRD7:

1439 16

78 16

3.2 155.8 0.0 32.0

142.4 44.8 1.6 9.2

0.4 112.5 0.0 23.1

BRD9:

1439 16

78 16

150.8 8.2 16.0 16.0

142.4 44.8 1.6 9.2

66.8 21.0 7.1 41.1

BRD7(MAR) ≡ BRD9(MAR):

1439 16

78 18

148.1 10.9 11.8 20.2

141.5 38.4 2.5 15.6

121.3 9.0 2.1 3.6

Graybill Conference, June 12, 2008

24

Slovenian Public Opinion Survey: Collapsed (Marginalized) Predictions BRD1 ≡ BRD1(MAR):

1849.9 136.2 32.4 55.4

=⇒

θb = 89.2%

BRD2:

1833.9 142.5 40.2 57.5

=⇒

θb = 88.4%

BRD2(MAR):

1849.0 142.0 34.5 48.5

=⇒

θb = 89.2%

BRD7:

1585.0 391.1 17.6 80.3

=⇒

θb = 76.4%

BRD9:

1799.7 152.0 40.7 82.3

=⇒

θb = 86.7%

BRD7(MAR) ≡ BRD9(MAR):

1849.9 136.3 30.4 57.4

=⇒

θb = 89.2%

Graybill Conference, June 12, 2008

25

Toenail Data: Unaffected Nail Length • We opt for the following SPM: E(Yij |gi, Ti, tj , β) = β0 + gi + β1Ti + β2tj + β3Titj logit [P (Rij = 1|Ri,j−1 = 0, gi , Ti, tj , γ)] = γ0 + γ01 gi + γ1Ti + γ2tj + γ3Ti tj • with . Yij : unaffected nail length for subject i at occasion j . tj : time at which the jth measurement is made . Ti : treatment indicator for subject i . gi : normal random effect Graybill Conference, June 12, 2008

26

• Parameter estimates (standard errors):

Effect

Unaffected nail length

Dropout

Parameter Estimate (s.e.)

Parameter Estimate (s.e.)

Mean structure parameters Intercept

β0

2.510 (0.247)

γ0

-3.127 (0.282)

Treatment

β1

0.255 (0.347)

γ1

-0.538 (0.436)

Time

β2

0.558 (0.023)

γ2

0.035 (0.041)

Treatment-by-time

β3

0.048 (0.031)

γ3

0.040 (0.061)

Variance-covariance structure parameters Residual variance

σ2

6.937(0.248)

Scale factor Rand. int. variance Graybill Conference, June 12, 2008

τ2

6.507 (0.630)

γ01

-0.076 (0.057)

2 2 γ01 τ

0.038 (0.056) 27

• Graphical representation of predictions for incomplete portions: o m 2 . MNAR model: Y m i |y i , gi ∼ N (Xi β + Zi gi , σ Ii )

o 2 . MAR counterpart: Y m i |y i ∼ N (Xi β, dJi + σ Ii )

Graybill Conference, June 12, 2008

(dashed lines) (solid lines)

28

Conclusion: Correspondence Between Model Families Molenberghs, Michiels, Kenward, and Diggle (Statistica Neerlandica 1998) Kenward, Molenberghs, and Thijs (Biometrika 2003) Creemers, Hens, Aerts, Molenberghs, Verbeke, and Kenward (2008)

PMM

:

MCAR l MCAR

:

l MCAR

⊂ ⊂

MAR l ACMV

⊂ ⊂

SPM



Graybill Conference, June 12, 2008

l Theorem 1 ∪ Subfamily 1

⊂ ⊂

NFD l NFMV 6= interior l Theorem 2 ∪ Subfamily 2

⊂ ⊂

general MNAR l general MNAR



:



SeM



l general MNAR

29

Conclusion: Counterparts to Models Molenberghs, Beunckens, Sotto, and Kenward (JRSSB 2008) Creemers, Hens, Aerts, Molenberghs, Verbeke, and Kenward (2008) Verbeke and Molenberghs (2008)

• MNAR model

=⇒

MAR model:

. Observed data: same fit . Unobserved data given observed data: MAR prediction • Holds more generally:

Graybill Conference, June 12, 2008

30

Conclusion: Counterparts to Models

Enriched data

Coarse data

Augmented data

Incomplete data

Random effects

Censored data

Latent classes

Grouped data

Latent variables Mixtures

Graybill Conference, June 12, 2008

31

Additional Material

Graybill Conference, June 12, 2008

32

Toenail Data: Severity of Infection

πgi1i2rt = πg · πi1|g · πi2|i1gt · πr|g Variable

Index

0

1

Complete first measurement

i1

non-severe

severe

Incomplete last measurement

i2

non-severe

severe

Dropout indicator

r

dropout

completer

Treatment arm

t

standard

experimental

Latent class

g

class 0

class 1

Graybill Conference, June 12, 2008

33

Toenail Data: Severity of Infection

eαg πg = 1 + eα πi1|g

Model

πi2 |i1gt

e(β0+β1g)i1 = 1 + eβ0+β1g

πr|g

e(γ0 +γ1i1+γ2 g+γ3i1 g+γ4t)i2 = 1 + eγ0 +γ1i1 +γ2g+γ3i1 g+γ4t e(δ0+δ1g)r = 1 + eδ0+δ1g

Restriction

Mechanism

Bin1

β1 = 0

MNAR

Bin1

6=

Bin1(MAR)

Bin2

γ2 = γ3 = 0

MAR

Bin2

=

Bin2(MAR)

Graybill Conference, June 12, 2008

Implication

34

Standard treatment Completers

Experimental treatment

Dropouts

Completers

Dropouts

Observed data 77

5

10

79

3

11

42

9

3

42

3

6

Fit of Model ‘Bin1’ 76.85

5.66

9.04

0.34

9.38

81.21

2.43

9.36

0.15

9.51

40.60

7.99

4.62

0.90

5.52

45.62

3.63

5.19

0.41

5.60

Fit of Model ‘Bin1(MAR)’ 77.12

5.39

8.77

0.61

9.38

81.32

2.32

9.24

0.26

9.51

40.61

7.98

4.62

0.91

5.52

45.63

3.63

5.18

0.41

5.59

Fit of Model ‘Bin2’≡‘Bin2(MAR)’ 75.86

5.58

9.72

0.72

10.44

80.16

2.40

10.27

0.31

10.58

41.50

8.15

3.74

0.73

4.47

46.61

3.72

4.20

0.34

4.53

Graybill Conference, June 12, 2008

35

Suggest Documents