Experimental study on strength and ductility of underwater ... - PEER

3 downloads 82 Views 924KB Size Report
Underwater wet welding is commonly used to repair corroded offshore ... air fillet welds are examined in terms of strength, ductility, and failure modes.
Experimental study on strength and ductility of underwater fillet welds in repairing offshore steel structures Xiao Chen, Yasuo Kitane & Yoshito Itoh Dept. of Civil Engineering, Nagoya University, Japan

Results

Introduction Load-deformation 300 Fracture deformation

200

200

Longitudinal 0 0

1

2

3

Longitudinal 400 300

100

Chemical compositions (wt-%)

Weld orientation T: transverse L: longitudinal

TY A

CSY295: Corroded CSY295 C d d SY295. SY295 t: 6-8 mm, l: 20 mm.

"l $

"f s

Weld size

Ductility factor

0.72 0.96 1.41 0.56 0.43

0.016 0.013 0.020 0.013 0.015

-2

HAZ

DEPO

1

0.020 0.019 0.005 0.006 0.007

a

a

w, h =weld leg length, s =weld size, a=weld throat

Definition of weld size Maximum load of the specimen

Number of welds in the specimen

Pmax na l

Average weld length

Average throat thickness

Weld strength

TWA

TSA

TYW

TWW

TSW

0

0 05 0.05

01 0.1

Base plate

0 15 0.15

02 0.2

0 25 0.25

60% 41.0%

40%

30.4% 23.7%

20%

30.3%

21.3% 21.7%

6.9%

-40%

-50.6% -46.6%-50.3%

-60% -80%

Transverse Transverse

STK400

-23.8%

CSY295

-20%

SY295

0% SY295

Strength Strength increase increase

Ductility factor

-54.5% -50.8%

Longitudinal Longitudinal -84.5%

-100%

2

300 # m

(I)

#

300 # m

(I) DEPO

300 # m

(II) BOND

(III) HAZ

Underbead cracks

(II) (III) 300 # m

300 # m

(I) DEPO

(II) BOND

Ferrite+Perlite

300 # m

(III) HAZ

Martensite

Conclusions

s h

h =s

TYA

(b) LCW

-1 0

s

!w $

0 80 0.80

SYW295

DEPO

-3

w

w

Weld strength

fracture deformation of the first fractured weld

0.06 0.02 0.23 0.10 0.10

s

Specimen designation Ductility factor

Cover plate

-4

0.30 0.27 0.10 0.12 0.10

Base steel Y: SY295 W: SYW295 S: STK400 C: Corroded SY295 Welding environment A: in air W: underwater

S

(II) (III)

2

41 34 42 41 30

P

LCW-cover 500 Hv Max: 421 400 3000 200 100

DEPO

497 531 513 394 460

Mn

(I)

HAZ

273 349 392 362 410

Si

DEPO

Base plate

0.29 0.29 0.28 0.28 -

DEPO/BOND failure

200 100

Ducti Ducility ctilitydecrease decrease

HAZ

(a) LCA

LCW-base 500 Hv Max: 5222 400 300 200 100

213 212 213 203 -

0 60 0.60

1 2

Cover plate

500 400 300 200 100

HAZ

properties of steels Table Material 1. Material properties of steels

SY295 CSY295 SYW295 STK400 Electrode

0 40 0.40

-7 -6 -5 -4 -3 -2 -1 0 1 2

Specimen configuration

C

BOND failure

300

SYW295

0 20 0.20

Longitudinal weld specimen

Ultimate Material Young's Poisson's Yield stress, Elongation, stress, ! u modulus, ratio, v ! y (MPa) "! (%) E(GPa) (MPa)

LSW

400

0

LCA- cover Hv Max: 239

Loading

Clip gauge 9 t 9 12.7 t=12.7 or 6-8

Mechanical properties

LCW

-6 -5 -4 -3 --2 -1 0

200

Side view

Transverse weld specimen

LWW

500

1

200

12.7

200

LYW

-5 -4 -3 -22 -1 0

100 200

LSA

500 400 300 200 100

9 9

LCA

Hardness and microstructure

l= 40 or 20

75

Loading

Side view

LWA

LCA-base Hv Max: 213 3

Loading

LYA

600

Ductility factor

40 Clip gauge

DEPO/BOND failure

0 0 00 0.00

5l 5 l 5 40 40

Front view

Front view

BOND failure

200

Experiment program

1.5

Transverse

STK400

Repaired by welding patch plates

Weld strength (MPa)

Weld strength (MPa)

Corroded base

Corroded offshore steel structure

1

700

500

Underwater welder

0.5

Weld deformation (mm)

800

600

Weld

TYA TYW TWA TWW TSA TSW

Transverse 0 0

4

Weld deformation (mm)

Strength g and ductilityy

100

LYA LYW LWA LWW LCA LCW LSA LSW

100

Effect of underwater environment

Patch

A pplied load (kN)

Ultimate load

A pplied load (kN)

Underwater wet welding is commonly used to repair corroded offshore steel structures. The study presents an investigation on strength and ductility of underwater fillet-welded joints. Fourteen different types of weld assemblies are tested to failure, and weld hardness and microstructures are investigated. Differences between underwater and inair fillet welds are examined in terms of strength, ductility, and failure modes. Weldability of base steels in the underwater wet environment is also evaluated.

(1) Underwater fillet welds have larger strength but smaller ductility when compared with in-air welds. Strength increase ranges from 6.9% to 41.0%, while ductility decrease is nearly the same at 50%. (2) Underwater fillet welds on corroded SY295 steels show a drastic ductility decrease of 84.5%, resulting from mechanical mismatching and underbead cracks. (3) The weldability of SY295 steel is undesirable in underwater welding due to its high carbon equivalent.

Contact:

Department of Civil Engineering, Nagoya University Chikusa-ku, Furo-cho, 464-8603, Nagoya, Japan E-mail: [email protected]