Fast ignition Laser Fusion Reactor KOYO-F - Summary from design ...

17 downloads 179 Views 3MB Size Report
ILE, Osaka. Outline. • Introduction. – Fast ignition. – Gain estimation and the emission. • Chamber and plant system. • Laser system. • Fueling system ...
Fast ignition Laser Fusion Reactor KOYO-F - Summary from design committee of FI laser fusion reactor -

ILE, Osaka

T. Norimatsu Institute of Laser Engineering, Osaka University IFE Forum Presented at US-Japan workshop on Power Plant Studies and related Advanced Technologies with EU participation

After the Roadmap committee, we organized a conceptual design committee to make the issue clear. In total, 34 working group meetings were held from March 2004 to Sep. 2005. • •

ILE, Osaka

Chair; A. Tomabechi Co-chair; Y. Kozaki (IFE, Forum) T. Norimatsu (ILE, Osaka)

Core plasma Working Group

Laser Working Group

Target Working Group

Plant system Working Group

H. Azechi

(ILE, Osaka)

N. Miyanaga

(ILE, Osaka)

T. Norimatsu

(ILE, Osaka)

Y. Kozaki

(IFE, Forum)

K. Mima

(ILE, Osaka)

K. Ueda

(U. Elec.Com.)

A. Iwamoto

(NIFS)

Y. Ueda

(Osaka U.)

Y. Nakao

(Kyushu U.)

Y. Owadano

(Nat. I. Adv. Ind. Sci.)

T. Endo

(Hiroshima U.)

K. Okano

(Cent. Res. Ins.)

H. Sakagami

(Hyogo U.)

M. Nakatsuka (ILE, Osaka.)

H. Yoshida

(Gifu U.)

T. Kunugi

H. Shiraga

(ILE, Osaka)

K. Yoshida

(Osaka)

M. Nishikawa

(Kyushu U.)

Y. Sakawa

(Nagoya U.)

R. Kodama

(ILE, Osaka)

H. Nakano

(Kinki U.)

S. Konishi

(Kyoto U.)

H. Nakano

(Kinki U.)

H. Nagatomo

(ILE, Osaka)

H. Kubomura

(Hamamatsu Co.)

A. Sagara

(NIFS)

T. Jhozaki

(ILE, Osaka)

K. Kawashima (Hamamatsu Co)

Y. Soman

Y. Suzuki

M. Nishikawa

(Kyushu U.)

(Laser Front Tech.)

(Kyoto U.)

(Mitsubishi Co)

T. Jitsuno

(ILE, Osaka)

Hayashi

(JAERI)

H. Fujita

(ILE, Osaka)

H. Furukawa

(ILE, Osaka)

J. Kawanaka T. Kanabe Y. Fujimoto

(ILE, Osaka)

M. Nakai

(ILE, Osaka)

(Fukui U.)

T. Kanabe

(Fukui U.)

Y. Fujimoto

( ILE, Osaka)

( ILE, Osaka)

K. Tsubakimoto (ILE, Osaka)

K. Tsubakimoto (ILE, Osaka)

Y. Furukawa

Y. Furukawa

(ILE, Osaka)

The committee is supported by IFE Forum and ILE, Osaka Univ.

(ILE, Osaka)

Outline ILE, Osaka

• Introduction – Fast ignition – Gain estimation and the emission

• Chamber and plant system • Laser system • Fueling system

Fast ignition is attractive , because the gain is high with a small laser ILE, Osaka

Processes for compression and ignition are separated. Laser irradiation

Compression

Ignition

Burn

Central ignition

Fast Ignition

Fusion Gain

100

Fast ignition

rh ρh < ρc/4 rc

Required gain for reactor KOYO (Osaka design) US-NIF 10

PW laser

Central Ignition

Fast heating of compressed fuel to create a hot spot at its edge

rh < rc/4 ρh ~ ρc

rc

1 0.1

1

Laser Energy ( MJ)

10

Fast heating needs petawatt laser. Critical issue is relativistic dense electron dynamics.

FIREX-1 project has been started to demonstrate Ti = 5 keV. ILE, Osaka

Gekko XII laser

LFEX laser 5

600 times liquid density and 1keV heating have been demonstrated ILE, Osaka

Power required 点火に必要と for ignition 予測されるパワー

0.8 keV

DD Neutron Yield

108 Heating 加熱効率30% efficiency 30%

106 0.4 keV

104

H. Azechi, LPB 91

Heating 加熱効率 efficiency 15% 15%

0.1 Heating Laser Power (PW) R. Kodama, Nature 01&02

1

Two-D simulation checked by implosion experiments at 実験によりベンチマークされた2次元シミュレーションにより,コーンターゲットに Rochester Univ. indicated that high density compression of おいても固体密度の2000倍以上の圧縮が予測されている. reactor-scale, cone target is possible. ILE, GA, Rochester ILE, Osaka 阪大ーGA共同研究 collaboration

S. Hatchet LLNL, APS/DPP '01

One of key requirements to start したがってFIREXを実施するキーディシジョン FIREX-II is satisfied. を下すことができる段階に入ったと思われる.

Although dynamics of cone-guided implosion is quite different from conventional spherical one, high ρR for ignition can be achieved

•existence of the cone causes non-symmetric slip boundary ablated plasma

ILE Osaka

ILE, Osaka

•implosion velocity

•shock hits the surface of the cone •timing of maximum density •hot spot

High gain will be achieved by increasing the laser energy at the same intensity. ILE, Osaka

FIREX-I Q~0.2 0.1

FIREX-II Q~8

Heating pulse

0.35-PW Electron Beam

Demo Q~150 By increaseing the core size, high gain will be achieved.

Johzaki 2003

Fast Ignition Gain Performance ρ = 300g/cc, α = 2 and 3 Energy coupling; ηimp = 5% for implosion & ηheat = 30% for core heating ILE, Osaka

In high gain region, target gain considerably decreases with increasing adiabat α. Wet wall reactor High-Gain

Gain, Q

100

α=2

Dry wall reactor

Self-Ignition

10

α=3 FIREX-2

1

FIREX-1 Driven-Ignition

0.1 10

100 ELtot [kJ]

1000

Outline ILE, Osaka

• Introduction • Chamber and plant system – Chamber structure – Pumping – Protection of final optics

• Laser system • Fueling system

KOYO-F with 32 beams for compression and one heating beam ILE, Osaka



Vertically off-set irradiation



Cascade surface flow with mixing channel



SiC panels coated with wetable metal



Tilted first panels to make no stagnation point of ablated vapor



Compact rotary shutters with 3 synchronized disks

The surface flow is mixed with inner cold flow step by step to reduce the surface temperature. ILE, Osaka

LiPb flow

Steel vessel

Thermal flow of KOYO-F ( One module) ILE, Osaka

LiPb cycle

300 MWe

Chamber Water cycle

300 ℃

300 ℃

50MW

70MW 210MW

Turbin

SG

70MW F2+F3 (80cm) 12.84 ton/s Average flow 7.8 cm/s

904MW

500 ℃

240MW

F1 (20cm) 8.56 ton/s Average flow 24.3 cm/s 80MW 80MW

ηther-elec=30%

500 ℃ Flow rate 21.4 ton/s

200MJ /shot x 4Hz

Specification of KOYO-F ILE, Osaka

Net output

1200 MWe (300 MWe × 4 )

Laser energy

1.1 MJ

Target gain

165

Fusion pulse out put

200 MJ

Reactor pulse rep-rate

4 Hz

Blanket energy multiplication

1.2

Reactor thermal output

916 MWth

Total plant thermal output

3664 MWth (916 MWth × 4 )

Thermal electric efficiency

41.5 %(LiPb Temperature ~500 C)

Total electric output

1519 MWe

laser efficiency Laser pulse rep-rate Laser recirculating power

11.4 % (implosion) , 4.2 % (heating), total 8% 16 Hz 240 MWe(1.2 MJ × 16 Hz / 0.08) Yb-YAG laser operating 150K or 220K)

Total plant efficiency

32.8 %( 1200 MWe/ 3664 MWth)

Estimation of Output Energy Structure 200MJ output (~1.2MJ driver; 1.14MJ imp + 71.5kJ heat) Case ILE, Osaka



89µm



① 200µm

(c) Output Power of Debris (thermal + Kinetic) leaking from each boundary ( ① ~ ④) 1E20

r



Core heating region

(b) Output Power of Radiation leaking from each boundary ( ① ~ ④ )

Output Power [W]

Z

Simulation box 400µm

(a) Output Power and Energy Spectrum of of α-particles leaking from each boundary (①~④)

Fusion Neutron Alpha Radiation Debris

1E19 1E18 1E17 1E16 1E15

0

50

100 150 200 Time [ps]

250

300

Summary of Burn Properties Input and output energies [MJ] for ~ 200MJ output case ILE, Osaka

Fusion [MJ] Carried out by Neutron※2 Alpha※3 Debris※4 Radiation error Gain

Opposite side (④)

1.12 1.14 0.0715 200 160 (80.0%) 11.8 ( 5.9%) 19.4 ( 9.7%) 1.85 ( 0.9%) 6.9 ( 3.4%)

④ Simulation box

12.7 1.31 2.26 0.12

MJ/str MJ/str MJ/str MJ/str

12.7 0.67 1.34 0.15

MJ/str MJ/str MJ/str MJ/str

165

※1 The energy coupling efficiencies of 5% and 30% were assumed for implosion and core heating, respectively. ※2 Neutrons were assumed to be freely and isotropically escaped from the core. ※3 Alpha particle: Leakage/Source = 29.8% (70.2% is deposited inside the core.) ※4 Constitution (energy D:35.5%, T:49.9%, α:14.3% / Number D:43.6%, T:44.5%, α:11.5%)

511µm

Driver Energy※1 Implosion Heating

Heating side (①)

Z

Energy [MJ]

117µm



r

② ① 258µm

The speed of ablated vapor 500 m/s at higher density region and 4000 m/s at the front. ILE, Osaka

(This work is on the way. Depends on the model for stoping range.)

10

6

10

5

10

4

10

3

Ablation Depth 10

102

tritium 5 alfa

0

500

1000

23

10

22

10

21

10

20

10

19

10

18

5000

1500

Time (ns)

0 2000

-3

Case 1 , R = 3 m Time = 2000 ns

4000 3000

Velocity

V=500m/s

V elocity (m/s)

10

10

)

R=3m

108 7

15

Ablation Depth µ( m )

Intensi ty (W/cm2)

109

2000

Number Density -2

-1

0

1

2

3

x (mm)

4

5

1000

0 6

P8

Total mass of ablated materials was 6.2 kg/shot including oblique-incidence effect. ILE, Osaka

z(m) 6

θ

3 4

r(m)

Lot of 0.1 µm radius clusters are formed after adiabatic expansion. ILE, Osaka

(Luk’yanchuk, Zeldovich-Raizer Model)

Future work: Hydrodynamic simulation including phase change is necessary to discuss the formation of aerosol. ILE, Osaka

Jet formation

t=2ms

t=10ms

70m/s 140m/s 250m/s

Size of evaporated vapor in flight

RT instabilities would form larger particles. -->

Four Pb diffusion pumps will be used to keep the chamber less than 5 Pa ILE, Osaka

Φ 0.45m

~ 0.4 x 0.3 x 0.4m each ~ 38 kg, 600 L/min 1 unit = 10 pumps (Total size:~ 1x1x1m for a unit)

Pb vapor 0.9 m

QuickTimeý Dz TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈÇ…ÇÕïKóvÇ-Ç ÅB

Vacuum port

Pb diffusion pump

Dry scroll pump unit

Configuration of a vacuum pump set

6m Pb diffusion pump

LiPb 上部ブランケット 300 ℃

A

Dry scroll pump unit To Tritium process system

Inside: 1073K Pb liquid:673K Alumina vessel + metal jacket (Total size:~ Φ1x1m)

5m

Φ 0.55m

A’ 10000.00

A

9.4m3/s for air

φ6000.00

A'

Pb diffusion pump A-A' 断面図 LiPb液体壁チェンバ-概念図 1/100 単位mm Fusion output   200 MJ / pulse, 800 MW ,Pulse rep-rate s 4 Hz Chamber inner radius   3.0 m, upper wall distance from burning center 10.0 m Pulse heat load     max. 32 J / cm2 , upper wall 2.9 J / cm2 average heat load     max. 128 W / cm2 , upper wall 11.5 W / cm2 Neutron wall load     max. 5.6 MW / m2, upper wall 0.5 MW / m2

Dry scroll pump unit (1 x 1 x 1m)

A set of 3 rotary shutters and buffer gas will be used to protect the final optics from the bluster wave. ILE, Osaka 32 Hz 16 Hz 4Hz

2500

Temperatrue of inner surface

(K)

Gas temperature (Local peak)

2000

Hole on 2nd disk

1500 Hole on 3rd disk

1000

Vapor

Wall surface 1st bluster wave from the wall

500 Blaster waves 1st shutter 32rps

v=150 m/s

v=3,000m/s @20,000K Open

2nd shutter 16rps 3rd shutter 4rps

Hole on 1st disk

Open Open

1 0 µs

100µs

Charged particlies from plasma 1 - 2 μ s alpha 0.2 - 0.4 μ s X-rays 10 ns

1ms

10ms Miss fired target

1 0 0m s Target injection

1s 2nd shot 3rd shot 4th shot

Vapor coming into the beam duct can be stopped with 0.1Torr D2 buffer gas. ILE, Osaka

0.5m

100m/s



The speed of vapor is decelerated from 100 m/s to 30 m/s before the plume breaks due to RT instabilities.



Mass of Pb vapor coming into the beam duct is10mg/shot, that means 1 ton/year! Periodic cleaning in necessary.

Outline ILE, Osaka

• Introduction – Fast ignition – Core plasma

• Chamber and plant • Laser system – Cooled, ceramic Yb:YAG – Beam distributor

• Fueling system

Key technologies of laser for FI fusion plant ILE, Osaka

Foot pulse to form pre-plasma ・32 beams Controlled focus pattern ・2 ω ・wide band ・coherent during amplification in-coherent at focus point

Lasers 16Hz

Distributor

Heating pulse ・1beam coherently bundled ・ω ・wide band OPCPA ・Pulse compression Grating

Main pulse for compression ・32 beams Controlled focus pattern ・3ω ・ wide band Common technologies for compression and heating lasers ・ coherent during amplification ・main amplifier low-coherent at focus point laser material, LD Structure, optical shutter ・beam switching Laser:16Hz, reactor:4Hz ・Optics with multi-coating

Basic specification of lasers for reactor ILE, Osaka

Compression laser

Heating laser

Wave length



ω

Energy/pulse

1.1 MJ

100 kJ

Pulth width

TBD

30 ps

Pulse shape

Foot pulse + Main pulse

Flat top(2 ps reise time)

Beam number

32

1 bundle

F number

depends on plant design

F/10〜20

Uniformity

1 %(foot pulse)

-----

Spot size

Controlled focusing pattern

≤ 50 µm

Rep-rate

16 Hz

16 Hz

Cooled Yb:YAG was chosen for the laser material. ILE, Osaka

Compression laser Heating laser Main pulse

Foot pulse

Wavelength

UV (3ω) 343 nm

Visible (2ω) 515 nm

IR,1030 nm

Bund width

Narrow band

Wide band 1.6 THz

Wide band (Flat top pulse) ~3 nm

Efficiency

8 - 10 %

Not so important

~ 4%

Cooled Yb:YAG ceramic

Laser material

Method for wide bund

Arrayed beams with different wave length

One beam of arrayed beams

~0.1 nm@1030 nm (0.08 THz@343 nm)

pump light: 3w

Wide band OPA

Wide band OPCPA Large KDP pump light: 2w band width≈100nm

OPA: Optical Parametric Amplification OPCPA : Optical Parametric Chirp Pulse Amplification

Characteristics of Nd:YAG and Yb:YAG as materials for high power laser ILE, Osaka

Advantage of Yb:YAG Close wavelength of oscillating light to pumping light ⇒low heat generation

Long fluorescent life time of upper level ⇒easy to store energy

Wide absorption spectrum Life time

⇒ easy to pump with LD

Heat Life time

Heat

Wide fluorescent spectrum

⇒short pulse amplification

Disadvantage re-absorption

Small cross section for stimulated emission ⇒high saturation flounce

Quasi three level system

⇒energy loss due to re-absorption

Why cooled Yb:YAG? ILE, Osaka

Disadvantage Small cross section for stimulated emission

Larger cross section for stimulated emission ⇒Lower saturation flounce

⇒high saturation fluencies

Four level system Quasi 3 level system ⇒Gain loss due to reabsorption

⇒Higher efficiency with low pumping

Higher thermal conductivity ⇒Smaller thermal strength

⇒Appropriate characteristics for high intensity, average power laser

Cooled Yb:YAG ceramic is promising as the laser driver material Parasitic寄生発振限界 osc. limit

ILE, Osaka

Damage threshold 光学破壊限界

RT (W/cm)

Thermal shock parameter 熱ショックパラメーター

100 小口径 Small モジュール module

ceramics

10

crystal

望ましい領域 Optimal area

ceramics

Cooling Nd:YAG

Yb:YAG

?

Nd:SiO2

crystal Nd:Y:CaF2

Nd:CNGG

1

Disordered crystal

Yb:S-FAP Crystal

HAP4 LSG-91H BK-7 LHG-10 LHG-8 Glass

熱破壊 Thermal fracture

0.1 0.1 Artificial control of emission cross section

1

飽和パラメーター Saturation parameter

10 hν/σ (J/cm2)

Cooled Yb:YAG ceramic

2

100

Practical use of ceramic technology

Demonstration of high efficiency by cooling ILE, Osaka

Yb:YAG Yb:YAG LD for pumping LD 10 180K 940nm 580mW

(ROC 40mm)

光–光変換効率 74% Opt-Opt conversion efficiency スロープ効率 90%74%

Pumped areaφ 230µ m

30mm Vacuum vessel

1.4 kW/ cm2

Quasi 3 level system 3 941 nm

1030 nm

4 level 4system

941 nm

1030 nm

785 cm-1

0